spacer link to MAST page spacer logo image spacer

Select LEGUS Scientific Publications

arXiv:1410.7456
2015AJ....149...51C
Daniela Calzetti et al. 2014
Legacy ExtraGalactic UV Survey (LEGUS) with The Hubble Space Telescope. I. Survey Description.
The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope, aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ∼kpc–size clustered structures. Five–band imaging, from the near–ultraviolet to the I–band, with the Wide Field Camera 3, plus parallel optical imaging with the Advanced Camera for Surveys, is being collected for selected pointing of 50 galaxies within the local 12 Mpc. The multi–band images are yielding: (1) accurate recent (~50 Myr) star formation histories from resolved massive stars; and (2) the extinction–corrected ages and masses of star clusters and associations. The extensive inventories of massive stars and clustered systems will be used to investigate the spatial and temporal evolution of star formation within galaxies. This will, in turn, inform theories of galaxy evolution and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of star formation at high redshift. This paper describes the survey, its goals and observational strategy, and the initial science results. Because LEGUS will provide a reference survey and a foundation for future observations with JWST and with ALMA, a large number of data products are planned for delivery to the community.

arXiv:1404.6001
2014ApJ...787L..15E
Debra Elmegreen et al. 2014
Hierarchical Star Formation in Nearby LEGUS Galaxies
Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from ~1 to ~200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in 7 galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarfs would follow from the observed structure if cloud and stellar subregions more readily coalesce when self-gravity in the unit cell contributes more to the total gravitational potential.

arXiv:1504.08323
2015ApJ...806..195V
Schuyler D. Van Dyk et al. 2015
LEGUS Discovery of a Light Echo Around Supernova 2012aw
We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained nearly two years after explosion with the Wide Field Channel 3 onboard the Hubble Space Telescope (HST) by the Legacy ExtraGalactic Ultraviolet Survey (LEGUS). The multi-band observations span from the near-ultraviolet through the optical (F275W, F336W, F438W, F555W, and F814W). The apparent brightness of the echo at the time was ~21–22 mag in all of these bands. The echo appears as essentially a complete ring, with prominent enhanced brightness to the southeast. The SN itself was still detectable, particularly in the redder bands. We are able to model the light echo as the time-integrated SN light scattered off of diffuse interstellar dust in the SN environment. We have assumed that this dust is analogous to that in the Milky Way with RV = 3.1. The SN light curves that we consider also include models of the unobserved early burst of light from the SN shock breakout. Our analysis of the echo suggests that the distance from the SN to the scattering dust elements along the echo is ~45 pc. The implied visual extinction for the echo-producing dust is consistent with estimates made previously from the SN itself. Finally, our estimate of the SN brightness in F814W is fainter than that measured for the red supergiant star at the precise SN location in pre-SN images, possibly indicating that the star has vanished and confirming it as the likely SN progenitor.

arXiv:1506.03928
2015MNRAS.452.3508G
Dimitrios A. Gouliermis et al. 2015
Hierarchical Star Formation across the ring galaxy NGC 6503
We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep HST photometry obtained with the Legacy ExtraGalactic UV Survey (LEGUS). We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95% being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviors, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of ~1.7 for length-scales between ∼20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5 kpc. About 60% of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behavior in a time-scale of ∼60 Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.

arXiv:1705.01588
2017ApJ...841..131A
A. Adamo et al. 2017
Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ∼ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

arXiv:1709.06101
2018MNRAS.473..996M
Matteo Messa et al. 2018
The young star cluster population of M51 with LEGUS - I. A comprehensive study of cluster formation and evolution
Recently acquired WFC3 UV (F275W and F336W) imaging mosaics under the Legacy Extragalactic UV Survey (LEGUS), combined with archival ACS data of M51, are used to study the young star cluster (YSC) population of this interacting system. Our newly extracted source catalogue contains 2834 cluster candidates, morphologically classified to be compact and uniform in colour, for which ages, masses and extinction are derived. In this first work we study the main properties of the YSC population of the whole galaxy, considering a mass-limited sample. Both luminosity and mass functions follow a power-law shape with slope -2, but at high luminosities and masses a dearth of sources is observed. The analysis of the mass function suggests that it is best fitted by a Schechter function with slope -2 and a truncation mass at 1.00 +/- 0.12 x 10^5 M_solar. Through Monte Carlo simulations, we confirm this result and link the shape of the luminosity function to the presence of a truncation in the mass function. A mass limited age function analysis, between 10 and 200 Myr, suggests that the cluster population is undergoing only moderate disruption. We observe little variation in the shape of the mass function at masses above 1 x 10^4 M_solar over this age range. The fraction of star formation happening in the form of bound clusters in M51 is ~20 percent in the age range 10-100 Myr and little variation is observed over the whole range from 1 to 200 Myr.

arXiv:1803.08527
2018MNRAS.477.1683M
Matteo Messa et al. 2018
The young star cluster population of M51 with LEGUS - II. Testing environmental dependences
It has recently been established that the properties of young star clusters (YSCs) can vary as a function of the galactic environment in which they are found. We use the cluster catalogue produced by the Legacy Extragalactic UV Survey (LEGUS) collaboration to investigate cluster properties in the spiral galaxy M51. We analyse the cluster population as a function of galactocentric distance and in arm and inter-arm regions. The cluster mass function exhibits a similar shape at all radial bins, described by a power law with a slope close to -2 and an exponential truncation around 105 M_solar. While the mass functions of the YSCs in the spiral arm and inter-arm regions have similar truncation masses, the inter-arm region mass function has a significantly steeper slope than the one in the arm region, a trend that is also observed in the giant molecular cloud mass function and predicted by simulations. The age distribution of clusters is dependent on the region considered, and is consistent with rapid disruption only in dense regions, while little disruption is observed at large galactocentric distances and in the inter-arm region. The fraction of stars forming in clusters does not show radial variations, despite the drop in the H2 surface density measured as a function of galactocentric distance. We suggest that the higher disruption rate observed in the inner part of the galaxy is likely at the origin of the observed flat cluster formation efficiency radial profile.

arXiv:1801.05467
2018ApJS..235...23S
Elena Sabbi et al. 2018
The Resolved Stellar Populations in the LEGUS Galaxies
The Legacy ExtraGalactic UV Survey (LEGUS) is a multiwavelength Cycle 21 Treasury program on the Hubble Space Telescope. It studied 50 nearby star-forming galaxies in 5 bands from the near-UV to the I-band, combining new Wide Field Camera 3 observations with archival Advanced Camera for Surveys data. LEGUS was designed to investigate how star formation occurs and develops on both small and large scales, and how it relates to the galactic environments. In this paper we present the photometric catalogs for all the apparently single stars identified in the 50 LEGUS galaxies. Photometric catalogs and mosaicked images for all filters are available for download. We present optical and near-UV color–magnitude diagrams for all the galaxies. For each galaxy we derived the distance from the tip of the red giant branch. We then used the NUV color–magnitude diagrams to identify stars more massive than 14 M_solar, and compared their number with the number of massive stars expected from the GALEX FUV luminosity. Our analysis shows that the fraction of massive stars forming in star clusters and stellar associations is about constant with the star formation rate. This lack of a relation suggests that the timescale for evaporation of unbound structures is comparable or longer than 10 Myr. At low star formation rates this translates to an excess of mass in clustered environments as compared to model predictions of cluster evolution, suggesting that a significant fraction of stars form in unbound systems. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

arXiv:1902.00082
2019MNRAS.484.4897C
D. O. Cook et al. 2019
Star cluster catalogues for the LEGUS dwarf galaxies
We present the star cluster catalogues for 17 dwarf and irregular galaxies in the HST Treasury Program `Legacy ExtraGalactic UV Survey' (LEGUS). Cluster identification and photometry in this sub-sample are similar to that of the entire LEGUS sample, but special methods were developed to provide robust catalogues with accurate fluxes due to low cluster statistics. The colours and ages are largely consistent for two widely used aperture corrections, but a significant fraction of the clusters are more compact than the average training cluster. However, the ensemble luminosity, mass, and age distributions are consistent suggesting that the systematics between the two methods are less than the random errors. When compared with the clusters from previous dwarf galaxy samples, we find that the LEGUS catalogues are more complete and provide more accurate total fluxes. Combining all clusters into a composite dwarf galaxy, we find that the luminosity and mass functions can be described by a power law with the canonical index of -2 independent of age and global SFR binning. The age distribution declines as a power law, with an index of ≈- 0.80 ± 0.15, independent of cluster mass and global SFR binning. This decline of clusters is dominated by cluster disruption since the combined star formation histories and integrated-light SFRs are both approximately constant over the last few hundred Myr. Finally, we find little evidence for an upper-mass cut-off (<2σ) in the composite cluster mass function, and can rule out a truncation mass below ≈104.5M⊙ but cannot rule out the existence of a truncation at higher masses.

arXiv:2212.07519
2022arXiv221207519C
D. O. Cook et al. 2022
Fraction of Stars in Clusters for the LEGUS Dwarf Galaxies
We study the young star cluster populations in 23 dwarf and irregular galaxies observed by the HST Legacy ExtraGalactic Ultraviolet Survey (LEGUS), and examine relationships between the ensemble properties of the cluster populations and those of their host galaxies: star formation rate (SFR) density ( ΣSFR ). A strength of this analysis is the availability of SFRs measured from temporally resolved star formation histories which provide the means to match cluster and host-galaxy properties on several timescales (1-10, 1-100, and 10-100~Myr). Nevertheless, studies of this kind are challenging for dwarf galaxies due to the small numbers of clusters in each system. We mitigate these issues by combining the clusters across different galaxies with similar ΣSFR properties. We find good agreement with a well-established relationship ( MbrightestV -SFR), but find no significant correlations between ΣSFR and the slopes of the cluster luminosity function, mass function, nor the age distribution. We also find no significant trend between the the fraction of stars in bound clusters at different age ranges ( Γ1−10 , Γ10−100 , and Γ1−100 ) and ΣSFR of the host galaxy. Our data show a decrease in Γ over time (from 1-10 to 10-100~Myr) suggesting early cluster dissolution, though the presence of unbound clusters in the youngest time bin makes it difficult to quantify the degree of dissolution. While our data do not exhibit strong correlations between ΣSFR and ensemble cluster properties, we cannot rule out that a weak trend might exist given the relatively large uncertainties due to low number statistics and the limited ΣSFR range probed.