A Revised Parameterization of the Dispersion Constants

for High Dispersion IUE Spectra

Myron A. Smith

I Introduction.

of variables in a set of lgebram relatlons is the most important step in solving them.
This is no less true in the representation of the wavelengths on a two-dimensional
echelle format than it is for dynamical problems. In preparation for the creation of
a high dispersion line-by-line file for the final archive processing of IUE images, this
article sets forth the justification for the most economical parametric representation of
wavelengths on the IUE camera format. Although this representation will be tailored
to the particular circumstances of the JUE cameras the parameter representations
can be incorporated analytically into any two-dimensional format. Some of the very
peculiarities of the IUE cameras that make the flux calibrations so difficult for this in-
strument are also those that permit a simplification of the representation of dispersion
constants.

The requirements for an optimal representation of the wavelengths are that:
1. there be a 1:1 correspondence between terms and physical causes,
2. the number of parameters be kept to a minimum,

3. the terms comprise an orthogonal set, so that errors in the terms are mutually
independent,

4. the addition of unanticipated terms can be accommodated in a natural way,

5. the representation easily permit analyses in new ranges of parameter space
or dimensions. For the IUE this might include dependences in time, camera
temperature, intensity of exposure, etc.

II. Current Representation.

The solution of wavelengths in line and sample space in current JUESIPS
requires the computation of a set of least squares constants A;’s and B;’s common to
the entire image and is defined by the following linear equations:

Sample Number = A1 Z; + A9 Zy + A3 Z3 + ... + A7 Zy
(1)
Line Number = B1Z, + BogZ9 + BgZ3 + ... + B7 Z;
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In this representation the Z’s are defined as follows:

71 =1, Zg = ml, Z3 = (m))?, (2)

Zy = m, Zs = A, Zg m2), Z7 = m A2

The justification for this representation has not been documented in the IUE
literature, although several terms do make obvious sense as will be shown below. The
relations in (2) date back to the early history of the Project and to a suggestion by
Dr. Sara Heap that the high order and cross terms might map out opto- electronic
distortions. However, notice that the equations (1) and (2) preserve all aspects of the
assumed s, [ rectilinear coordinate system. They do not exhibit any r™ geometric
dependences suggested by optical aberrations, even though the focus can be readily
shown to be affected toward the edges of the camera field.

In the following we will analyze the parameterization of the two-dimensional
spectral field in the IUE cameras and lay out a new plan for the representation of
wavelength positions on the echelle format with only four parameters, a translational
constant and a scale factor for each of the z, y axes. What makes this simple repre-
sentation possible is the “virtual” property of pixels in the cameras, that is they are
not fixed entities on the detector, and also the use of gratings to disperse light in both
z and y directions.

III. Representation of a Single Echelle Order along the z Azis

To calculate the spectral dispersion of a single echelle order the normal proce-
dure is to work in one dimension and to evaluate the angular dispersion of the grating,
dB/dX = (m/d)secB, where B is the echelle grating diffraction angle, and where
B and X change in the direction of dispersion. One generally evaluates the dispersion
at an arbitrary position along the spectrum by computing the value of 8 there. How-
ever, one may equally represent spectral dispersion by a Taylor expansion of its value
around a suitable fiducial “z” position. In the following it will be convenient to rotate
the camera field so that the “z” and sample axes are aligned. Then the value of s is
given by the equation:

s = 80 + famx 3 (1/n)x (m/d)* x d*(sec8)/dB™ x (62)*+1

In this equation the reference position can be conveniently defined to be the echelle
blaze maximum, corresponding to the blaze angle (o, and all higher order derivatives
are evaluated at that point.

Let’s consider the first term of the series in equation (3), and in particular
the expansion around the wavelength interval §)X. It is convenient to expand the term
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méA as follows:

m(SA = m(A-Ao) = mA'on
Notice that the second term, mM,, is nothing more than the blaze wavelength for the
echelle grating. Since it is a constant, it can be folded in with the initial translational
constant that specifyies the position s, of the blaze wavelength Ao. Thus the first term
in the summation in equation (3) merely introduces the parameter m .

Similarly, the second term in the series involves the product m? x (A= Ao)2.
The two lower order terms in its expansion, mA, and (mA)mM,, can be included into
the first two parameters of the representation for wavelength; the only new one is the
parameter (m A)2. Thus, so far the parameters representing wavelengths in a single
order are:

1, m A, (m A)2. (4)

Of course, this parametric expansion could continue indefinitely. In the IUE spectro-
graph the echelle orders have m ~ 100. Thus, along a typical order in the camera
field the nonlinearities in dispersion amount to about +1% and +0.01% from the first
and second terms, respectively. The first of these is significant, but we will judge
the second to be negligible and therefore neglect terms of higher order than m2\? in
this discussion. In the actual implementation described in Section VI, higher order
terms can be easily included without introducing complications into the parametric
representation.

IV. Two-Dimensional Visualization.

Our key to a good visualization is a picture provided by Dr. Ted Gull, shown
in Figure 1. This figure shows an optical echellogram of a Hg-vapor lamp aided by a
relatively powerful cross-dispersing grating. The lines drawn in the figure identify the
following coordinate system:

1. an z axis defined along a reference echelle order; any order may be chosen for
convenience,

2. a y axis perpendicular to the z axis,
3. alocus of constant A, indicated by a shallow dashed line,

4. a “X vector” perpendicular to #3, also indicated by a dashed line.

The spectrum in Figure [ is so overexposed that both the continuum and the strong
Hg emission lines are readily visible. The z axis is identified with the direction of
dispersion of a reference echelle order. Hence, the parameter m A can be thought of a
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or aligned with the z axis. The cross dispersing grating is aligned perpendicularly
to the echelle so that it disperses light perpendularly, that is along the y axis. As
one moves up the y axis one encounters new echelle orders, and the wavelengths differ
from the preceding ones by the ratio of echelle orders, mjgyer/Mupper. Hence, we see
that 1/m may be taken as a vector, and therefore a continuous variable, aligned with
the y axis.

 Now notice the three emission lines along the dotted shallow line. These are
actually the same line in adjacent echelle orders, so the line adjoining them is the locus
of constant wavelength. Look carefully at the features of this slanted “spectrum?”.
These features are caused by ruling errors of the echelle grating; one can even see
patterns from the brightest ones replicated in mirror image on opposite sides of a bright
line. Physically, this “spectrum” is the monochromatic scattering function resulting
from both gratings. If they were perfectly ruled and the gratings were infinite in extent,
there would be no “continuum.” Next, one can identify the vector perpendicular to
this locus with the A parameter. The sharp spikes trailing above and below the sharp
lines show the monochromatic scattering image from the cross dispersing grating alone.

The two dimensional format is not quite uniform over the entire image. Be-
cause both gratings disperse light, the A vector is the vectorial sum of the dispersions
of the two gratings, mA and ). An angle ¥ between them can be equated to the
arctangent of the ratio of various grating parameters. The most significant of these
parameters is the spectral order, i.e., tan (¥) ~ mxgisp /m, = 1/m for the IUE.
Notice that as one moves vertically along the y axis, the echelle order m varies, and
this causes the angle % to change as well. This fact has two consequences. First, it
means that adjacent echelle orders are not quite parallel. This departure from paral-
lelism can be called “order splaying.” Second, if one were to proceed along an echelle
order some distance one would find eventually that the local value of ¥ had changed
relative to its value at the blaze, (i.e., at y = 0), and thus the order is slightly curved.
For most grating cross-dispersers, this curvature is negligible along the useful range of
the echelle blaze function. However, for spectrographs using prismatic cross dispersers
the angle of “diffraction” is a function of wavelength, and the curvature is much more
noticeable (e.g., Schroeder 1987). It should be added that the effective “B,” of the
cross disperser in the JUE cameras is only about one degree. Therefore, the change
in secfxgisp along the y axis, and therefore the nonlinearity in cross dispersion, is
altogether negligible.

To summarize, Figure I provides a visualization of the geometrical orientation
of the parameters mA, 1/m, and X as vectors z, y, and y', respectively. It is
convenient to associate the blaze angle 8, with ¢ = 0, and a reference echelle order
with y = 0. Because only one order is exactly aligned with the z axis, some provision
must be made for splaying of the orders. Finally, the nonlinear term in relation (4)

can be thought of simply as a term in zZ.
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V. Two Dimensional Parameterization.

The echelle orders in a grating cross-dispersing system can be represented by
a series of hyperbolas, given by the equation z y = constant. Parametrically, this
isaterm in A, which was already identified as parameter Z5 in relation (2). Recall
that the slope of this line is given by the angle 1, which angle changes across the
camera field. The “splaying function” can be approximated as a straight line segment
of the full hyperbola as long is m is large and myg;,p is small. Note that the A vector
generates splaying only when used with the nearly parallel vector 1/m. Of course,
the errors in these two terms will be strongly correlated. Note also that operationally,
m remains discrete only in the term mM , where it is used in a look-up table to assign
each wavelength to a unique echelle order.

This parametric analysis can be generalized to handle spectrograph formats
with special features. For example, those with prismatic cross-dispersers will have
curved echelle orders and perhaps even “S-shaped” distortions that can be parame-
terized by y = z2 (m3)\2) and y = z° (m* }\3) dependences, respectively, Additionally,
it is possible in principle to handle optical aberrations at the edges of the field by
rewriting 1/m and mA in polar coordinates.

From the foregoing, we can drop terms Zg and Z7 because they are
inappropriate representations of the optical formatting in the spectrograph. In those
cases for which it is possible to rectilinearize the orders, the splaying (Z5) term can be
eliminated and the s and ! (sample and line) equations decoupled from one another.
We will now also advocate the linearization of the high dispersion wavelengths, and
therefore the elimination of z2 (Z3) or higher terms. In that case, each equation
becomes represented in the simplest possible way, by a constant and scale factor:

s = A7 4+ Ag mA

()

Il = By + Bsyl/m

This is the logical conclusion of our efforts and our recommended parametric repre-
sentation for the final archiving of IUE spectra. Once again, it should be stressed
that one cannot remove terms Z3 and Z5 in the representation of all echelle formats
because in many cases their detectors consist of real fixed pixels.

VI. Rectilinearing the Orders, Linearizing the Wavelengths

In the next Newsletter Shaw will discuss a strategy to correct for image dis-
tortions of JUE images. The plan calls for correcting the measured reseau positions
to their known values by interpolation with two dimensional cubic splines. The im-
plict idea behind such an approach is to exploit the “virtual’ property of IUE pixels
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to modify the centroid of each pixel slightly with respect to its neighbors. There is
virtually no penalty for fractional adjustments in the floating-point pixel positions
provided that the adjustments are done prior to the final resampling, i.e., their con-
version to integer values. We propose to correct for order splaying and wavelength
nonlinearities along an echelle order by explicit geometric mapping, that is, by adding
two more vector terms to the de-distortion field. There are a few rationales for this
vector approach. The first is convenience: constant spacing for the relevant physical
variable, wavelength, permits its linearization. The convenience offered by de-splaying
is a simple (and conceivably shorter) extraction slit. A second rationale is the reduc-
tion of dispersion constant in equation (1), particularly when they can be calculated
precisely from known grating constants. A third advantage is the benefit realized in
the stability and errors of the solution by removing nonorthogonal and cross-coupling
terms such as z? and zy.

Operationally, the vector-mapping procedure consists of the following steps:

Step #1: Rotate the camera format.

Rotate the camera format about its center until the z axis is aligned with a
convenient order.

Step #2: De-splay the orders.

This is accomplished by rotating each order around its # = 0 point. A
straight line representation is adequate for IUE spectra though linearity need
not be imposed. The angle 1 is computed at the center of each echelle
order and a reference order angle ¥, is subtracted from it. It is sufficient
to estimate the y positions of these orders at # = 0 from the dispersion
constants from previous wavelength calibrations. The vector shifts from this
de-tilting are applied to virtual pixel locations along each echelle order.

Step #3: Linearize wavelengths.

The nonlinear terms (in practice only n = 2) can be computed as a function
of B, and therefore s or z positions from equation (2). In practice, the values
can be computed explicitly for the y = 0 order and then scaled to other
orders by the ratio of their m’s, which takes into account the “compression”
of the blaze function toward shorter wavelengths. The computation of the
nonlinearity proceeds by incrementing outward along the sample direction
from ¢ = 0 and computing the new angle B and the term secftanf at
each pixel. Note that this is equivalent to evaluating a Taylor series at a fixed
point £ = 0 with several higher order terms (eqn. 3). This computation
determines the shift of each pixel relative to the preceding one as well as
the aggregate shift for this pixel before the operation began. Notice that
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this algorithm also permits a small correction for the curved camera focal
plane. Computing the linearization requires knowledge of both B, and
mean dispersion values for each camera, but these are already known.

VII. Final Recommendations.

Dr. Tom Ayres has pointed out that the current coefficients in the solution
for dispersion constants given by eqn. (1) range over 10 orders of magnitude, and that
these vast inequalities can promote instabilities in the solution. Therefore, we would
underscore his recommendation to the April, 1989 meeting of the F.A.D. Committee
workshop that all parameters be normalized to a value appropriate to the middle of
the cameras.

With only a spatial and scale constant representing each dimension in eqn.
(5), one can afford to solve for constants over small spatial scales rather than over
the entire camera image. This opens the possibility of analyzing the behavior of each
of the four A;, B; coefficients as a function the smallest spatial unit, an individual
echelle order. Such analysis provides an insurance policy that all spatial mappings
“upstream” are correct. If they are not, they will show up as trends, wiggles, or even
as discontinuities (in the case of camera fault lines separating “tectonic plates”) that
could require fine-tuning of the vector shifts. In addition, all time and temperature
calibrations to date have resulted only in a camera-averaged translational shift, but
perhaps higher order dependences are imposed across the camera field. The solution
of the dispersion relations order-by-order would permit such evaluations rather easily.

Figure 2 shows histograms provided by Mr. Randall Thompson based upon
a new line library of Pt wavelengths suggested by Ayres. In order to provide solutions
for 4 variables, each echelle order should contain five lines; to be safe, let’s say six
lines. These histograms show that for both cameras (the LWR and LWP are identical)
the line density is just high enough to permit a wavelength solution for an individual
order. At the top and bottom of the camera fields, it may become necessary to group
together two or three orders. It should be admitted also that this library assumes that
the wavelength calibrations would be made over a large range of exposure times, which
unhappily has not always been possible. Still, it is clear that it should be possible to
reduce substantially the spatial averaging required for the positions of high dispersion
wavelengths in the IUE cameras.

The author wishes to acknowledge Dr. Tom Ayres’ work and suggestions on
this subject, and to thank Dr. Dan Schroeder for his comments on an earlier draft.
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Figure 1 -- Echellogram of Hg-vapor spectrum with superimposed coordinate system.
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