

NEWSLETTER

TABLE OF CONTENTS

IUE Cesa

NO. 16 APRIS	L 1983
Observatory Controller's Message	2
New personnel at VILSPA	3
AIYOUEE at APOGEE	5
Acknowledgements: Atlas of IUE SN Spectra	6
IUE Spacecraft Status	8
Residual images from previous exposures	10
Photometric Calibration of IUE, X.: Quantification of High Dispersion Order Overlap problem for SWP Camera.	17
IUE Data Reduction XXXI. : Improved LWP Large-Aperture Offset	28
Note on the Wavelength Calibration of Alpha Ori	32
Bright spot detection on IUE images	38
IUE VILSPA Publications	42
Approved proposals 6th round (European Allocation) (NASA Allocation)	45 55
Vilspa log of images (1 April-30 April 82) (1 October 82-1 February 83)	69
Conference Announcements; Various forms	89
IUE ESA Newsletter: Editor: W. Wamsteker Published by: The ESA IUE Observatory	

Typing: Drawings: The ESA IUE Observatory Apartado 54065, Madrid, Spain Telephone: +34-1-4019661 Telex: 42555 VILS E C. Ramirez Palacios J. Garcia Palacios

OBSERVATORY CONTROLLER'S MESSAGE

On the 26th of January we celebrated the fifth anniversary of the launch of IUE. Our satellite has now surpassed the design lifetime and in the absence of major failures we can expect three more years of operations.

Almost on the same day this year, IRAS (Infrared Astronomical Satellite) was launched: we wish every success to our IR colleagues involved in this project.

The selection of the European IUE proposals for the 6th period has been completed (see page 45) as well as their scheduling. Changes however are to be expected in the present schedule due to the launch of EXOSAT. We are now analyzing, in collaboration with the scientists of the EXOSAT Control Station, the scheduling of those proposals wich were approved for the 5th year, and which require coordinated IUE-EXOSAT observations. Depending on the success of this joint scheduling and on the final performance of EXOSAT, the IUE Allocation Committee will reconsider the IUE-EXOSAT proposals which were submitted for the present round and put on stand-by, awaiting a more definitive plan of the EXOSAT operations.

As announced in the last issue, a further change has taken place in the staff of the Observatory: André Heck, Deputy Observatory Controller, left VILSPA on March 31st for the Centre de Données Stellaires in Strasbourg. Andre is one of the founder- members of the IUE Observatory and his contribution to the project has been very important, especially during the most difficult periods: we wish him the best success in his new activity. The position of Deputy Observatory Controller has been taken over by Willem Wamsteker.

Replacements in the vacancies have already started with the arrival of A. Talavera, our first Spanish Resident Astronomer. In the next months more arrivals are expected.

NEW PERSONNEL AT VILSPA

Francisco Javier Olivera Poll (32) has joined the very important group of quietly assure that people, who the of observations results the are (IGCS),as properly reduced image processing specialist, He has an advanced Physics Degree specializing in Automatic Calculus. Previously he worked for a mining company and an idependent service institute. He is married and has 2 children. His favorite pastimes are reading and playing basketball.

Antonio Talavera Iniesta (29) has joined the Resident Astronomers staff VILSPA. Born in Albacete at (La is the first Spanish Mancha) he Resident Astronomer, He obtained his Astrophysical education at the Universidad Complutense in Madrid and did his Ph. D. at the University of Barcelona. After his studies he worked for four years at Meudon on high resolution spectroscopy of normal and peculiar A stars. He likes the outdoors life, especially mountain hiking is one of his favorite pastimes.

The UK Resident Scientist for IUE at Rutherford Appleton Laboratory, the Alan Harris (31) took up the position of UK Resident Astronomer in VILSPA in December. After his Ph. D. at The University of Leeds on balloon-borne infrared astronomy, he spent 3 far years at the M.P.I. for Astronomy in Heidelberg. His research concentrated infrared observations of H II on regions and molecular cloud complexes. Apart from infrared astronomy he also works actively on UV absorption line studies of the interstellar medium. His spare time is usually distributed and, photography amateur among dramatics. Some of the roles he has played include God and a ladies breast prothesis salesman, so we can be sure of his efficient work at VILSPA.

Lourdes Sanz Fernandez de Cordoba has IUE Observatory been delegated to the Scientific member as of the INTA support staff. Her main task within the Observatory will be to keep order in our small but precious Astronomical Library, She obtained her Masters Degree in Astronomy at the Universidad Complutense on the subject of 110 spectra of Supernovae. When she is not worrying about books 00 remote explosions, she likes to do oil painting. Outdoors she passes her time preferably in the company of horses and dogs.

DEPARTURES

Luciana Bianchi: Resident Astronomer (6-12-82) Patrizio Patriarchi: Resident Astronomer (1-1-83) Javier Barbero: Image Processing Specialist (1-3-83) Andre Heck: Deputy Observatory Controller (1-4-83)

ATLAS OF IUE SPECTRA OF SUPERNOVAE CENTRAL

10

Unnally we all feel and when Wesident Antronomers leave vill8PA to refure to their hame institutes or similar locarions. However, Prab Gondhalekar has found a marvelous

Due to the large number of Supernovae, which have gone off and been discovered during the past five years, and the uniqueness of the UV spectra obtained by IUE, it was deemed useful to collect all IUE observations of the 6 supernovae observed until March 82 in a special atlas. This atlas has recently appeared in the special Publications Series of the European Space Agency as ESA-SP 1046: An atlas of UV Spectra of Supernovae. The Atlas contains, apart from plots of the individual spectra in absolute units, color reproductions of the line by line spectra and the tabulated flux values. The spectra of 3 type II Supernovae and 3 type I Supernovae are collected (SN 1978g, 1979c, 1980k, 1980n, 1981b, 1982b). The data in the atlas (4th and 5th files) can also be obtained from the VILSPA IUE Data Bank as a special Archive Tape.

The atlas can be ordered (price : FF 140,- approx.) from:

Distribution Office ESA Scientific and Technical Publications Branch ESTEC Zwarteweg 2200 AG Noordwijk HOLLAND

The tape can be requested (free of charge) from:

IUE Observatory Controller ESA-VILSPA P.O. Box 54065 Madrid SPAIN

ACKNOWLEDGEMENT BUILD BU

Usually we all feel sad when Resident Astronomers leave VILSPA to return to their home institutes or similar locations. However Prab Gondhalekar has found a marvelous way to alleviate our saddness. Knowing (as you all do) the rather limited content of the VILSPA Astronomical library and realizing the difficulties that this generates for the Resident Astronomers, he has used the opportunity of his departure to make a gift to the VILSPA Astronomical Library. He has donated a large number of back issues of Monthly Notices and The Observatory. Also a number of basic physics and mathematics courses. The IUE-VILSPA Observatory staff (and, I am sure, also quite few Guest Observers) wish to express our thanks for this remarkable gesture!

type I Supernesse are collected (BN 19280, Pred) 1980, 1980, 1981b, 1983b, ROTIDELENT in the stlas (400 mm) 5tb files) can also be obtained from the VLEPA IN Late Bank as a special Archive Tape.

LOUDE - Del 19 : ABXING DAUMENT AR GER SETTE AU

EBA Scientific and lechnica Boanch EbiEC Cool AC Norrowigh Hitland

The Tape can be requested (1) of [char

AX.

IUE SPACECRAET STATUS

IUE Spacecraft Operations are continuing normally and effectively, even though the satellite is well in its 6th year of in-orbit operations. It is recalled here that the design lifetime of the hardware is 3 years, with a goal, including the sizing of consumables and degradable hardware, of 5 years.

There are several areas where operational constraints are developing:

The Solar Array Panels are degrading due to radiation at a rate of about 6% per year, therefore operations at extreme Beta angles are limited in time, since the on-board batteries cannot deliver indefinite additional power to the S/C-bus. We believe that we will be able to observe between Beta greater than 20 and less than 120 throughout the 6th round of IUE observations.

The Hydrazine Subsystem temperatures continue to rise. The operating limits were increased in February 1983 to 85 C, except for the +Z Line temperature, which is set to 90 C. This adjustment was necessary to avoid impact on science operations and it is hoped that the new limits will give at least one more year of operations without significant impact on the scientific observations. At present the scheduling software will be reviewed for the 7th round of IUE observations in order to minimize the impact on science operations.

In IUE ESA Newsletter No. 15 we gave information about the Gyroscopes and the feasibility of a backup control system. The following paragraph will provide you with an updated status on this subject, which I received from Ivan Mason, IUE Project Operations Director, GSFC:

"The development of the 2-Gyro/Fine Sun Sensor (FSS) backup spacecraft control system, for use in the event of another gyro failure, is progressing satisfactorily. The new onboard computer (OBC) software control system has been assembled and all design tests have been successfully completed. The ground software modifications have also been completed. Operational simulations are now being performed to verify the interactive capability of all ground and spacecraft software, as best we can, using the ground spacecraft simulator. In June we plan to perform tests with the spacecraft. During these tests operational capabilities and limitations of the new control system will be evaluated". The satellite emerged from the biannual eclipse season (No. 11) in March with no difficulties being noted. The maximum depth of discharge of the two on-board batteries was less than 56%. The battery data indicate that no further reduction of power will be necessary and that the present SI-Configuration during eclipse can be maintained until and prior to eclipse season No. 16, which commences August 25, 1985.

J. Faelker

RESIDUAL IMAGES FROM PREVIOUS EXPOSURES

1. INTRODUCTION

On quite a few IUE images with long exposure times faint residual spectra from previous (over)exposures have been noticed. There are two, entirely different sources of residual images: burnt-in signals in the SEC target and phosphorescence in the UV to optical converter. Virtually all practical problems for guest observers are due to phosphorescence during long exposures. In particular: how do you establish that the faint signal detected after a 7 hour exposure is due to the target studied and not to residual phosphorescence of a previous over-exposure? This problem has two aspects: how do you prevent it to happen and how do you assess the reliability of the images in the data bank.

2. SEC TARGET RESIDUALS

Spectra burnt-in in the SEC target are normally properly removed. The standard SPREP sequence cleans the SEC target satisfactorily after a normal exposure and executing XSPREP takes care of the burnt-in image after an over exposure. XSPREP has to be done immediately after an overexposure in excess of 8x. Residuals in the SEC target should then not present any serious problem.

Of course one should be aware that the high illumination level of the UVC in an XSPREP (300% + 200% + 50% vs. 200% + 50% for a normal SPREP) will give a higher background due to phosphoresence immediately following the PREP.

3. AFTERIMAGES DUE TO PHOSPHORESENCE

The P11 phosphor in the UV to optical converter (UVC) exhibits phosphorensence i.e. the conversion is not an instantaneous process and the integration capacity of the phosphor results in a decay slower then the incoming photon rate. A small fraction of the incident energy, typically 1%, is stored in the phosphor and later slowly released. The dynamic range of incoming flux accessed by IUE is ~10xx5, this is mainly obtained through differences in the integration time.Thus for integrations from 30min to 8hrs the cumulative effect of the phosphor decay can be important. From pre-launch measurements (Coleman et al., 1977) we know that during this period the phosphor decay signal, Fp(t), has

10

terme A 10x ever-specific r

a power-law dependance on the time interval, since the original excitation (Δt):

$$F_{p}(t) = k \times F_{i} \times (\Delta t)^{-n}$$

where k and n are camera dependant constants (table 1) and F(t) is the flux during the earlier exposure. An exposure between t1 and t2 of an object with signal strength, $F_{\xi^{-}}$, will result in a total incident flux on the camera of Fo =F₁ x(t2-t1) where we have assumed that F(t) is time independent. The resultant phosphor decay signal during a later exposure from t3 to t4 will be:

$$F = \int_{t_{1}}^{t_{2}} \int_{t_{3}}^{t_{4}} k \times F_{i} \times (t-t')^{-n} dt dt'$$

= $\frac{k \times F_{0}}{(t_{2}-t_{1}) \times p \times (1-n)} \times \{(t_{4}-t_{1})^{p}-(t_{4}-t_{2})^{p}+(t_{3}-t_{2})^{p}-(t_{3}-t_{1})^{p}\}$

where p=2-n. In most cases of practical interest the original exposure between t1 and t2 is virtually instanteneous with respect to (t3 - t4) in which case a simpler formula can be used

 $F = \frac{k}{(1-n)} \times \{(t_4-t_{12})^{(1-n)} - (t_3-t_{12})^{1-n}\}$

21/10 bdr

Representative values for k and n are 2x10xx-4 and 0.75. Note that these formulae diverge for very large values of t4, eventually the phosphoresence should decrease faster than the t^{-h} power law predicts. The laboratory measurements by Coleman <u>et</u> <u>al</u>. were done over periods up to 8 hours. Practical experience with the cameras in orbit shows that for longer periods relations (2) and (3) overestimate the amount of phosphoresence. In fact I do not know of any example of noticable phosphor decay after 2 shifts (16 hours) have passed. If one calculates phosphor decay over periods longer then 8 hrs, the calculated decay is too large.

In table 1 we list the predicted phosphor decay signal during a 7 hour exposure, after a 10x overexposure 2 hours before the start of the 7 hour exposure. A 10x overexposure corresponds to a peak flux of 2000DN, 0.2% to 0.5% of the incident signal is emitted as a phosphorescent signal. The constants n and k are temperature sensitive (Coleman, 1978) the results in table 1 are valid for T = 20C. In orbit the phosphors operate in a slightly cooler environment: T = 6-17C; consequently n will be slightly lower and k slightly larger. The temperature dependence of the constants is not well known but over the temperature range of interest the changes are most likely less than 30%.

4. DISCUSSION 250 1 Stepher Dat and backed a state

The

Phosphor decay is a problem because the IUE cameras are efficient at integrating weak signals over long periods. If a 6 min exposure to 200 DN is made 3 hrs after a 50x overexposure, the phosphor decay signal corresponds to 0.5 DN and can thus be ignored. However if you do a 7 hour exposure on a faint target which will result in a 25 DN signal, the equally large phosphor decay signal will be a major problem. A good example of such of such problems is SWP 14423 a low resolution 14h exposure of a faint object which has a high resolution decay signal, resulting from 4 images, 15x to 20x overexposed, superimposed on it (see figure 1). The decay and object signal have equal intensities and so far the unfortunate observers have not disentangled them succesfully.

RWJ

, 白小川市市信笑丽

Note that phosphorescence effects add up: a couple of small over exposures can be as bad as a single large one, in particular if they come from objects with the same type of spectra.

The precise level of an overexposure is often not known. Especially for early images retrieved from the data bank it is important to look for other images of the same star in the Merged Image Log and to obtain, if possible, reliable estimates of the overexposure level. nd 2900 A and a 10 DN peak

Camera operations without overexposures normally do not cause measurable phosphorescence. The only exception is an accumulation of optimum exposures in one shift (say a 200 DN exposure every hour) followed by a full shift exposure immediately afterwards. Provided the decay signals add up (same aperture, resolution and object types) a very faint 2.5 to 5 DN peak signal will be generated. I have seen two examples of this in the LWR camera (low resolution object spectrum and a high resolution decay signal). In both cases the decay signal was so faint that the observers simply ignored the high resolution remnant. Obviously the situation is very difficult if the previous overexpsures were made in the same spectrograph configuration as your long exposure. Then the observed signal can sometimes be completely due to the phosphor decay.

A.A.J. SNIJDERS

12

E

M.A.J. SNIJDERS

erg cm-2 s-1 A-1. This is a typical flux level (for phosph decay) in the SWP camera after heavy overexposures followed by 7 to 14 hour integrations. The image log gives exposure levels in DN, but most guest observers think in physical fluxes. These illustrate the phosphor decay in physical units. numbers Typically one can measure fluxes down to 1x10xx-15 erg cm-2 s-1 A-1 during 7-14 hours exposures with the SWP camera for >1600 A without much problem. For fainter objects systematic errors (e.g.: background determination, phosphor decay and overlapping weak radiation hits) make measuring the signal or establishing its reality difficult (Hammerschlag- Hensberge et al. 1982, Snijders et al. 1982). For the LWR camera the corresponding numbers are: a minimum flux level of 5x10xx-16 erg cm-2 s-1 A-1 can be measured between 2600 A and 2900 A and a 10 DN peak phosphor decay signal in 7 hours corresponds to 7x10xx-16 erg cm-2 s-1 A-1. In summary: phosphor decay generates only a weak signal but during long exposures it can quite easily exceed the flux from a faint target. It might be good to point out at this stage that most of the problems with overexposed cameras are <u>not</u> due to errors in the calculated exposure time, but usually occur because an observer wants to study a very steep spectrum with a large dynamic range and is interested in the fainter parts of it (e.g. the 2200 A extinction maximum or F star continua below 1700 A), Such programs can be identified and it is therefore beneficial for the scheduling of IUE, when users notify the project of such conditions in their response to the scheduling questionnaires. ·丹西山参"等省的主义的专业、"百姓"

One trick, which has been tried by observers with a recently overexposed camera, is to do an XSPREP, expose the camera for half an hour during the slew to their target and read the camera after If this 30 min test image was completely blank arrival. theu assumed that the effects of the overexposure could be ignored. This is incorrect: a 25x overexposure 3 hours before your 30 min test images gives rise to a ~1 DN phosphor decay signal, which is undetectable. If you follow this up with a 2 shift exposure a 10 to 15 DN decay signal is deposited by the phosphor and that is quite noticable. This test only shows that the XSPREP has effectively cleaned the SEC target. I was actually able to test this during a 2 shift LWR exposure. The SWP camera had been repeatedly overexposed during the previous shift on A and F stars. A 30 min and a 767 min SWP blank sky image were obtained during the 14 hour LWR exposure (SWP 8192 and SWP 8193). The 30 min exposure showed no detectable signal (a peak signal of about 1 DN was predicted to be present) but the 767 min blank sky image shows a 10 to 20 DN signal longward of 1700 A, a clear residual from the A and F type spectra.

Some practical points of interest should be noted: the 10 to 20 DN signal corresponded in this case to a flux level of 1 to 2x10xx-15

phosphor

13

REFERENCES:

1. Coleman, C., Golton, E., Gondhalekar, P., Hall, J., Oliver, M., Sandford, M., Snijders, T., and Stewart, B., 1977, IUE technical note nr. 31, "Camera Users Guide".

2. Coleman, C.I., 1978, "The 7th symposium on Photo-Electronic Image Devices", ed. D. Mc Mullan and Morgan, B.L., p. 125.

3. Hammerschlag-Hensberge, G., McClintock, J.E. and van Paradijs, J., 1982, Ap. J. Lett., <u>254</u>, L1.

4. Snijders, M.A.J., Penston, M.V., Boksenberg, A., and Sargent, W.L.W., 1982, M.N.R.A.S., <u>201</u>, 801.

14

TABLE 1

Phosphor decay parameters for the IUE cameras

CAMERA	k(x10xx4)	n	DN PEAK
LWP	1.2	0.72	5.4
LWR	2.9	0.77	8.0
SWP	1,8	0.78	4,5
SWR	1.0	0,70	5.4

SOURCE

Coleman <u>et al</u>. (1977) for k and n (T $^{\sim}$ 20C); DN(peak) is the predicted decay signal during a 7 hour exposure which started 2 hours after a 10x overexposure. A 10x overexposure corresponds to peak fluxes which would give rise to 2000DN signal. k is the scale factor for phosphor decay; n is the exponent for the decay time dependence.

FIGURE 1:

The image SWP 14423 shows the target exposure (14hrs) of Neptune. Superposed one clearly distinguishes the high resolution spectra due to phosphorensence .

PHOTOMETRIC CALIBRATION OF THE IUE

X. Quantification of the High Dispersion Order Overlap Problem for SWP

L. Bianchi and R. Bohlin

I. INTRODUCTION

A long standing problem with <u>IUE</u> data is the determination of the true background level in the region of the spectral format where the high dispersion orders are closely spaced. Bianchi (1980) has outlined a technique for determining the net spectrum directly from the extracted gross data without reference to the extracted interorder background. The problem has been reduced, but not eliminated, by the introduction of the new software and automatic registration techniques (Bohlin and Turnrose 1982 and Thompson and Bohlin 1982.) These two production improvements have made high dispersion extractions consistent and stable, which is essential to the correction technique outlined here.

In order to evaluate any correction technique and to quantify the errors in <u>IUE</u> line profiles that are caused by the order overlap, we have compared line depths in <u>IUE</u> spectra to line depths observed by the <u>Copernicus</u> satellite. The excess line depth (i.e. order overlap) in <u>IUE</u> spectra can be expressed as a percent of the local net continuum level. The interpretation of these excesses suggest that the amount of order overlap for point sources is about 32% at 1150Å and decreases to zero at about 1400 Å. The transfer of a spectral feature from one order to the next is below the 5% level. The net is the most appropriate quantity to scale the order overlap, because the background and gross are affected by the radiation level and the variability of the camera null level.

II. COPERNICUS DATA

The resolution of <u>Copernicus</u> is 0.05Å for Ul spectra and 0.2Å for U2. Since the <u>IUE</u> resolution is 0.1Å, the absorption lines chosen for study are those that are broad enough so that the Ul and U2 line depths agree to within 5%. The choice of lines was further restricted to strong lines with central depths between 0 and 35% of the continuum. The spectra studied are those with complete Ul scans: zeta Oph(Morton 1975), zeta Pup(Morton and Underhill 1977), tau Sco(Rogerson and Upson 1977), and iota Her (Upson and Rogerson 1980). Except for iota Her (see section IV), all <u>Copernicus</u> Ul and U2-spectra were corrected for instrumental scattered light from the grating and for the U2 stray light by the method of Bohlin (1975). The <u>Copernicus</u> line depths should be accurate to about 3% of the continuum, although about half of the lines considered go to zero in both Ul and U2 and, therefore, have zero error.

III.	IUE	DAT	'Α	

	The	four IUE spectra	are listed TABLE 1	in Table 1.	
H D		NAME	SWP NO.	APER.	EXP(s)
66811		zeta Pup	13726	L	4
149438		tau Sco	16222	L	6
149757		zeta Oph	14428	L	24
160762		iota Her	5720	S	80

All four spectra were reprocessed for this study with the production software in effect at GSFC in June 1982. The continua are drawn in the same way as for the <u>Copernicus</u> spectra, so that the main source of error is in the choice of the bottom of the line. Again, this error is estimated at 3%.

IV. RESULTS

The amount of order overlap in <u>IUE</u> spectra can be measured by the difference between the line depth in <u>Copernicus</u> and the line depth in <u>IUE</u>. The measured order overlap is shown in Fig. 1, as measured in % of the local net continuum. The first letter of the star's constellation is centered at each measured value. The vertical bars with the letter at the top of the bar represent the range of order overlap as determined by UI and U2, independently. The straightline fit through the data of Fig. 1 is drawn without regard for the iota Her points which lie systematically low. Evidently, either the <u>Copernicus</u> scattered light corection is too large or this small aperture <u>IUE</u> spectrum has less order overlap. The former possibility is relevant, since Upson and Rogerson (1980) found that the normal scattered light correction is not applicable to the <u>Copernicus</u> UI data for iota Her. Darius (1980) argued against any lower order overlap in the small aperture, but his large error bars permit the small $\sim 5\%$ difference found here. One error bar of $\pm 3\%$ is illustrated, and all data (except iota Her) agree with the fit within their expected uncertainty.

Since the measured lines are all broad and deep, the contribution of the order itself to the excess background is generally small. Therefore, the actual order overlap appropriate to regions without strong lines in adjacent orders is significantly more than the amount shown in Fig. 1.(See Appendix 1.)

and itshif from the grate

F:g. 1

V. ORDER OVERLAP IN THE OLD SOFTWARE

Since the background was systematically higher with the old high dispersion software in use before Nov. 10, 1981 at GSFC and before March 11, 1982 at Vilspa, the order overlap was worse. The amount of added order overlap in old software is the ratio of NEW/OLD net spectra as shown in Fig. 4 of Bohlin and Turnrose (1982). The maximum increase is ~10% at the shortest wavelengths and drops to zero near 1400Å, giving a maximum expected order overlap of ~42% for old SWP spectra.

However, an astronomer should regard the 42% derived above as a lower limit to the actual uncertainty in old reductions, because the extracted background was not accurately registered in a routine way before Nov. 24, 1981 at GSFC and March 11, 1982 at Vilspa (Thompson and Bohlin 1982). The random photometric errors before these dates can be as large as 35% (Bohlin and Coulter 1982). For problems that require accurate backgrounds, an astronomer shold have the spectra reprocessed with the modern system. The background extraction should continue to improve with the planned implementation of techniques to remove the residual geometric distortion in the orders.

VI. CORRECTION TECHNIQUES

If reprocessing of old reductions is impractical, a correction technique is recommended such as that of Bianchi (1980), which uses only the extracted gross spectrum. This technique assumes a Gaussian plus a Lorentz function for the order profile and takes into account the correction for the neighboring two orders. The accuracy of the result depends on actual shape of the long range wings of the PSF.

For modern reductions with proper spectral registration, the amount of order overlap measured in Fig. 1 can be used to make a simple, but sufficiently accurate, correction as described in Appendix 1.

As an example of this correction technique, Fig. 2 shows corrected orders (solid line) 114 to 111 in the spectrum of zeta Pup. The dashed line is the amount of the order overlap correction that has been added to the standard extracted net to get the solid line displayed. Both the La line and the shifted absorption component of the NV P-Cygni line go to zero in the <u>Copernicus</u> spectra. The Fortran subroutine used to compute the order overlap correction is in Appendix 2.

APPENDIX 1

The order overlap correction derived here deals with the order m itself and the neighboring two orders m-l and m+l. The wings of all other orders should contribute nearly equal amounts to extracted gross and background spectra. The derivation here is for point sources in focus. Extended sources and out of focus high dispersion IUE spectra cannot be reduced properly with standard procedures at the short wavelengths where the orders are not well separated.

The corrected net $N_{\rm O}$ can be expressed in terms of the net $n_{\rm O}$ on the new software tapes as

$$N_{o} = n_{o} + \Delta B_{o} + \underline{\Delta B_{+}} + \underline{\Delta B_{+}} - \Delta N_{-} - \Delta N_{+}.$$
(1)

The subscripts -, o, and + refer to the orders m-1, m, and m+1, respectively throughout this discussion. The corrections ΔB are normalized to the extraction slit height and are due to the fact that the extracted background is too high which makes the net n_o too low. The corrections ΔN are the excess contributions to the gross from the wings of the adjacent orders. A correction ΔN_o is not needed for the few percent of the order m that lies outside the extraction slit, because a photometrically stable signal can be defined for any length slit as long as the extraction is precisely registered.

For the case of a deep line as measured by the correction C in Fig. 1, $\Delta B_0 = 0$. On the average, the neighboring orders have approximately equal net continua n. With these assumptions and some knowledge of the order profile shape, a solution can be obtained. The precise PSF for IUE is not known, however, Bianchi (1980) has shown that the core of the profile is Gaussian with a longer range component in the wings. These wings produce the elevated background in the short wavelength orders and probably drop off as r^{-2} , where r is the distance from the peak of the order. De Boer, Preussner, and Grewing (1982) find IUE high dispersion profiles are purely Gaussian but suggest that their results are consistent with Bianchi, presumably because the faint Lorentz wings are difficult to detect.

Thus, if b is the background contribution due to one order, then this order contributes as an increase of b/4 to the neighboring net and as b/9 to the background on the other side of order m (See Fig. 3). In summary:

> $\Delta B_{o} = 0$ $\Delta B_{-} = \Delta B_{+} = b + b/9$ $\Delta N_{-} = \Delta N_{+} = b/4$ $n_{-} = n_{+} = n$

- 23 -

Eq. 1 becomes:

$$N_0 - n_0 = b + b/9 - b/4 - b/4 = \frac{11b}{18}$$
 (2)

Since this difference $N_0 - n_0$ is just what has been measured in Fig. 1, where C if the fractional correction in terms of n, Eq. 2 becomes:

$$b = \frac{18}{11} Cn$$
(3)

This suggests for arbitrary continua in the three orders that the contribution to the background from any order is:

$$b_{-} = \frac{18 \text{ C} \text{ n}_{-}}{11}$$

$$b_{0} = \frac{18 \text{ Cn}_{0}}{11}$$

$$b_{+} = \frac{18 \text{ Cn}_{+}}{11}$$

For the case of non-zero signal in the order m, the contribution

 $\Delta B_{o} = b_{o}$

and the general solution to Eq. 1 becomes

$$N_{o} = n_{o} + \frac{18C}{11} [n_{o}] + \frac{10C}{11} [n_{-}] + \frac{10C[n_{+}]}{11} - \frac{9C}{22} [n_{-}] - \frac{9C}{22} [n_{+}]$$

$$N_{o} = n_{o} + 1.636C [n_{o}] + 0.5C [n_{-}] + 0.5C [n_{+}]$$
(4)

where the [] indicates the appropriately smoothed net spectrum. The appropriate smoothing is 31 points done twice, just the same as the background smoothing for the new software, since the correction is essentially for errors in the smooth background that is used to compute the net on the tape. The FORTRAN program to implement Eq. 4 appears in Appendix 2.

In the case where the 3 continua are all equal, Eq. 4 becomes:

$$\frac{N_{o} - n_{o}}{[n_{o}]} = 2.636C , \qquad (5)$$

which is used to estimate the maximum order overlap of 32% when C = 0.12 at 1150Å.

Order overlap is primarily an artificially raised background caused by the overlapping wings of the order profile in the higher echelle orders. A secondary effect of order overlap is the transfer of a spectral feature from one order to a neighboring order, since the wings of the point spread function (PSF) are not zero at the location of a close order. The depth of these "ghost lines" is the contribution ΔN_{+} from a neighboring order. The smoothing of these ΔN terms was assumed to be the large interval of 31 points in deriving Eq. 4. The following arguments will set a low limit on the importance of ghost lines and therefore justify the large smoothing of these excess contributions to the extracted net: Suppose that a zero depth line in the continuum of m + 1 with $n_{+} = n_{0}$ is present as a narrow ghost line in order m. The depth of the dip is

$$\frac{\Delta \mathbf{N}_{+}}{\mathbf{n}_{0}} = \frac{\mathbf{b}}{4\mathbf{n}_{0}} = 0.41C$$

This is a maximum of 5% at 1150Å and drops to the even more insignificant upper limit of 3% longward of 1260Å. The lack of any visible ghost lines from the strong emission lines in WAVECAL spectra is consistent with these limits.

an and a second se

10 million 100 mil

nady fill is callede tobto sublian add up

APPENDIX 2-26-

REFERENCES

- Bianchi, L. 1980, in IUE Data Reduction, ed. W. W. Weiss et al., Vienna: Austrian Solar and Space Agency, p. 161.
- Bohlin, R. C. 1975, Ap.J., 200, 402.
- Bohlin, R. C. and Coulter, B. T. 1982, "Photometric Calibration of the <u>IUE</u> IX. Photometric Stability in High Dispersion," NASA IUE Newsletter No. 19, p. 48.
- Bohlin, R. C., and Turnrose, B. E. 1982, "<u>IUE</u> data Reduction XXV. Implementation of Basic Improvements to Extraction of High Dispersion Spectra," NASA <u>IUE</u> Newsletter No. 18,.p. 29.
- Darius, J. 1980, "Spectral Resolution and Interorder Background," ESA IUE Newsletter No. 5, p. 28.
- de Boer, K. S., Preussner, P.-R., and Grewing, M. 1982, Astron. and Astrophys., in press.
- Morton, D. C. 1975, Ap.J., 197, 85.
- Morton, D. C., and Underhill, A. B. 1977, Ap.J. Suppl., 33, 83.
- Rogerson, J. B., and Upson, W. L. 1977, Ap.J. Suppl., 35, 37.
- Thompson, R. W., and Bohlin, R. C. 1982, "IUE Data Reduction XXVI. Automatic Registration of the Extraction Slit with the Spectral Format," NASA IUE Newsletter No. 18, p.45.

Upson, W. L., and Rogerson, J. G. 1980, Ap. J. Suppl., 42, 175.

COLUMN , 4-1484 July 11, 11, 14791

(GMT 264:17:20)

stand so to proble?

- 28 -

IUE DATA REDUCTION

XXXI. Improved LWP Large-Aperture Offset

With the information available from the latest set of mean LWP dispersion constants (see IUE Data Reduction XXX), it is possible to calculate a refined value for the offset from the long wavelength small aperture (LWSA) to the long wavelength large aperture (LWLA) as seen in the long wavelength prime (LWP) camera. This offset value is needed to transplant the fundamental LWP small-aperture dispersion relations to the large aperture. For the short wavelength prime (SWP) and long wavelength redundant (LWR) cameras, small-tolarge-aperture offsets were presented in IUE Data Reduction Memo V (<u>NASA IUE Newsletter No. 6</u>). The preliminary LWP offsets in use prior to the effective date of this memo represented a mirror-reflection of the LWR offsets.

If Z is the distance along the low-resolution order in pixels, the low resolution dispersion $d\lambda/dZ$ is defined by

$$\frac{d\lambda}{dZ} = \frac{1}{\frac{dZ}{d\lambda}} = \frac{1}{\sqrt{\left(\frac{ds}{d\lambda}\right)^2 + \left(\frac{d\ell}{d\lambda}\right)^2}} = \frac{1}{\sqrt{\frac{a^2}{a^2 + \frac{b^2}{2}}} = \frac{1}{.3779060}$$

= 2.646 ± 0.002 Å/pixel

where $a_2 = -0.286471340$ and $b_2 = 0.246469336$ are the scale terms of the mean dispersion relations.

For comparison, in the long wavelength redundant (LWR) camera the dispersion scale is $d\lambda/dZ = 2.652 \pm 0.002$ Å/pixel. This implies that in the spectral image plane, 1 LWP pixel = 0.9977 ± 0.001 LWR pixel. Hence the separation of the LWSA and the LWLA, taken to be R = 26.9 pixels (with an estimated uncertainty of about 0.1 pixels) in LWR, may with little error be taken to be 26.9 pixels in LWP as well.

à

Formal error if the LWR and LWP errors quoted above are considered to be independent. If they are non-independent, this formal error estimate increases to ±0.004 pixels.

Together with the knowledge of the angle which the low dispersion spectrum makes with the image scan lines, this information is used to calculate the offset to the LWLA from the LWSA, as follows. The angle Θ between the order and an image line is defined by

$$\Theta = \arctan\left(\frac{d\ell}{ds}\right) = \arctan\left(\frac{b_2}{a_2}\right) = -40.°7.$$

Since the angle ω_s between the dispersion line and the line joining the LWSA and the LWLA is known from LWR studies to be $83^{\circ}\pm0.5$, the angle α between an image line and the LWSA-LWLA connector is 42.3 ± 0.5 ; see Figure 1. Hence the line and sample components of the offset to the LWLA from the LWSA are

 $\Delta L = R \sin (42^{\circ}.3\pm0^{\circ}.5) = \pm 18.1\pm0.2$ pixels $\Delta S = R \cos (42^{\circ}.3\pm0^{\circ}.5) = \pm 19.9\pm0.2$ pixels

Effective September 21, 1982 these offsets have been used in defining the large-aperture dispersion relations for LWP, replacing the previouslyused LWR mirror-reflection values of $\Delta L = 19.4$ and $\Delta S = 18.6$. Assuming that the new offsets correctly indicate the location at which objects are placed in the large aperture, Figure 2 shows that the use of the former offsets had introduced a wavelength error of -4.8Å in low dispersion and a velocity error of -1.0 kms⁻¹ (i.e., -0.008Å in order 100) in high dispersion.

B.E. Turnrose

Figure 1. LWP Aperture Geometry.

ON THE ABSOLUTE WAVELENGTH CALIBRATION : ~ ORI.

The spectrum of ~ Ori was exposed for 930 min with the SWP/ HI mode of the IUE during joint NASA/ESA shifts on 19 August 1981 (SWP 14775). The spectrum was recorded through the large aperture of the spectrograph.

The resulting wavelengths of identified and well exposed lines (see Figure 1) are given in Table I. When the radial velocity of the star (+21 km/s) is taken into account the lines are found to be blue shifted by-0.131 \pm 0.015A (-23.2 \pm 27 km/s). This would imply an outflow velocity at chromospheric level of about 20 km/s for \ll Ori.

This was a remarkable and quite surprising result, and we looked for possible instrumental causes for the measured shift. It was noted that a slight positioning error of the star within the large aperture would give rise to an apparent shift of the spectrum relative to the wavelength standard derived with the Pt-Ne calibration lamp. A positional error of the star within large aperture by 1 arcsec may lead to an error of the SWP/HI wavelength scale by as much as 7 km/s.

A new spectrum of \ll Ori was obtained on 20 August 1982 (SWP 17725). This time we made the exposure through the small aperture of the spectrograph, and with an exposure time of 370 minutes. The stellar spectrum was followed immediately by a Ne-Pt lamp exposure.

The 20 August spectrum of \ll Ori is quite noisy as shown by Figure 2. Only five lines could be measured with confidence (Table 1). The average shift of the five lines was to the red and became λ (\ll Ori) - λ (lab) = 0.015 ± 0.053 A (2.4 ± 8.3 km/s).

We selected 28 well exposed lines of the Ne II and 28 lines of Pt II ($\lambda\lambda$ 1400 - 1950 A) of the Ne-Pt lamp spectrum to check the adopted wavelength scale. The laboratory wavelengths are taken from Kelly and Palumbo (1973) and Turnrose and Bohlin (1981) respectively. From the Ne II line spectrum we derived λ (Ne-Pt lamp, IUE) - λ (lab) = 0.005 ± 0.013 A (0.8 ± 2.1 km/s). In the case of Pt II we found corresponding relative shift 0.014 ± 0.012 A (2.4 ± 2.1 km/s).

We conclude that we observe no significant, relative wavelength displacement for the "chromospheric" lines of \ll Ori within the accuracy of the measurements.

The present observations of \sim Ori SWP/HI spectra have shown that when observing with the large aperture the wavelength scale may be off by as much as 25 km/s.

TABLE 1

Emission lines of Ori observed with the IUE SWP/HI mode (1): Observations with large aperture on 19 August 1981 (2): Observations with small aperture on 20 August 1982

all a star (the hand set) it.

	Line				$\lambda (\propto 0ri) - \lambda (lab)$	
λ (lab)	d get a 1	Ide	in t	30	veral (1) teres	(2)
			0.0	1101	o the states	19.000
1641.178A		0	I	1 m F i	-0.127A	-
1785.272		Fe	II		-0.147	Testing and the second
1786.752	1.000	Fe	II		-0.137	
1787.996	- 144	Fe	II		-0.142	
1807.311		S	I		-0.130	
1820.342		S	т		-0.123	+0.091
1826.245		S	Ī		-0,109	-0.014
1900.286		S	I		-0.159	-0.028
1914.698		S	I		-0.113	-0.022
1993.620		C	I		-0.125	+0.050

REFERENCES:

Kelly, R.L., Palumbo, L.J., 1973, "Atomic and Ionic Emission Lines below 2000 Angstrom", NRL Report 7599.

Turnrose, B.E., Bohlin, R.C., 1981, IUE NASA Newsletter No. 13.

O.Engvold, O. Kjeldseth Moe, E. Jensen, A. Brown, C. Jordan, R.A. Stencel, J. Linsky.

33

Figure 1 t α Ori observed with large aperture 19 August 1981 (SWP/HI order no. 72)

- 34 -

 $\frac{\text{Figure 2}}{(\text{SWP/HI order no. 72})} - \frac{\alpha \text{ Ori observed with small aperture 20 August 1982}}{(\text{SWP/HI order no. 72})}$

- 28 -

BRIGHT SPOT DETECTION ON IUE IMAGES

INTRODUCTION

Long exposure IUE images show discrete impulse noise produced in the UV converter and in the SEC Vidicon tube. This noise is produced by random "hot" pixels (IUE Newsletter No 8, October 1980, pages 12-14) with a high probability of being excited or by particle events induced by the natural-radiation environment of the IUE orbit. The result is a set of "bright spots" in the IUE raw images.

The analysis of such bright spots will require to identify the affected pixels in the raw image photowrites. This tedious procedure was replaced by implementing under IUESIPS the BSPOT program.

The algorithm used is described in this note, along with the standard parameters used at both VILSPA and GODDARD (implementation: 19 October 1982 at both stations). A discussion about the suitability of the standard parameters is also given.

ALGORITHM

with

The algorithm used to detect discrete impulse noise on two dimensional IUE raw images, is a cascade (mean + median) filter.

Raw images are scanned in the following way:

Let R(i,j) be the portion of image to be scanned.

A pixel in line i, sample j is detected as a bright spot whenever the conditions (1) and (2) are fulfilled.

D	(i,j)	>	Ave	CD	(k,1))	+	Δ	(1)
D	(i,j)	>	ined	(D	(k,1))	+	Δ	(2)
	(i,j) (k,1)	E	R(: S(:	(j) (,j)	and			

D(i,j) is the DN value of a pixel,

∆ is a threshold

S(i,j) is a seven pixel window running parallel to the orders centered in the pixel under test as shown in Figure 1.

Ave (.) is the weighted average operator:

Ave =
$$\frac{\sum W(k,1) \quad D(k,1)}{\sum W(k,1)}$$

with W(k,1) = weight of pixel (k,1) & S(i,j)

Med (.) is the median operator.

The standard parameters used by BSPOT are:

Program BSPOT produces a list of detected pixels used later during the spectral extraction to flag bad quality fluxes (= -300). This list is also printed out along with the used parameters.

The region where the algorithm is applied, corresponds to the region where the photometrical correction will be performed. A detected pixel can be found in three different parts:

- Gross spectrum, its value is not modified, it will only be flagged.
- Background, the pixel will not be considered when calculating the smoothed background. It will be flagged.
- Out of the spectral extraction zone, no action is taken.
 It will only appear in the printout.

DISCUSSION

The suitability of the standard bright spot parameters is not completely determined. Many tests have been performed on several images, indicating that the parameters are related with the background level.

This implies that a variable threshold is necessary to flag bright pixels efectively.

The value of 90 is mainly intended for high background level images and those are the images for which bright spot flagging is more important. In Table 1 a sample of BSPOT printout is shown. Underlined are those bright spots corresponding to "hot" pixels.

J.R. Munoz Peiro

Figure 1 - BSPOT detecting slit. For each camera the slit runs parallel to the orders.

TABLE 1

*** OPERATING PARAMETERS FOR BSPOT ***

CAMERA 3 HIGH DISPERSION FLAG HODE THRESHOLD 90 NPIXEL 7 WEIGHTS 0 0 1 0 1 0 0 N. INPUT FILES = 1 N. OUTPUT FILES = 1

BSPOT POSITIONS AS LINE-SAMPLE

07-550 259-452 376-371 475-414 203-337	119-355 260-267 <u>379-522</u> 495-495	132-265 261-266 <u>399-523</u> 516-496	188=494 296=682 440=186 523=463	200-399 326-452 442-239 532-450	202-552 334-394 449-474 532-451	206-551 343-296 456-232 577-350	224-497 344-475 457-231 612-387	256=436 348=525 460=128 613=387	256=469 369=427 474=312 615=512
703=337								1.	

TOTAL N. OF SPOTS # 41

SWP 17147 EXP. TIME = 25800 sec.

2

*** OPERATING PARAMETERS FOR BSPOT ***

CAMERA 2 HIGH DISPERSION FLAG HODE THRESHOLD 90 NPIXEL 7 WEIGHTS 0 0 1 0 1 0 0 N. INPUT FILES = 1 N. OUTPUT FILES = 1

BSPOT PUSITIONS AS LINE-SAMPLE

169-499 408-529	170-200	<u>175-369</u> <u>177-610</u> 424-549 426-516	<u>178-610</u> <u>207-391</u> <u>433-479</u> 468-555	2013-392	215-326 518-545	256-323	256-324
TOTAL N. OF	SPOTS =	18 LWR 15436	EXP. TIME = 1320 sec.		•		

- 41 -

IUE VILSPA PUBLICATIONS

Mass Loss from Extreme Helium Stars, Hamann, W.R., Schonberner, D., Heber, U., 1982, Astron. Astrophys. <u>116</u>, 273-285.

Interpretation of Line Profiles of the Symbiotic Star V 1016 Cyg, Kindl, C., Marxer, N., Nussbaumer, H., 1982, Astron. Astrophys. <u>116</u>, 265-272.

Atmospheric Parameters and Carbon Abundance of White Dwarfs of Spectral Types C2 and DC, Koester, D., Weidemann, V., Zeidler-K.T., E.M., 1982, Astron. Astrophys. <u>116</u>, 147-157.

The Far-UV Spectrum of the Low-excitation Planetary Nebula HD 138403, Surdej, J., <u>Heck</u>, A., 1982, Astron. Astrophys. <u>116</u>, 80-88.

Shell and Photosphere of Sigma Ori E:New Observations and Improved Model, Groote, D., Hunger, K., 1982, Astron. Astrophys. <u>116</u>, 64-74.

The Galactic Abundance Gradient from Supernova Remnant Observations, Binette, L., Dopita, M.A., D'Odorico, S., Benvenuti, P., 1982, Astron. Astrophys. <u>115</u>, 315-320.

Chromospheric Mg II Emission in A5 to K5 Main Sequence Stars from High Resolution IUE Spectra, Blanco, C., Bruca, L., Catalano, S., Marilli, E., Astron. Astrophys. <u>115</u>, 280-292.

Electron Densities from the OIV 1401 Multiplet, Nussbaumer, H., Storey, P.J., 1982, Astron. Astrophys. <u>115</u>, 205-206.

A study of Ultraviolet Spectra of Aur/VV Cep Systems, Hempe, K., 1982, Astron. Astrophys. <u>115</u>, 133-137.

The Width of Echelle Orders in IUE Images as Derived with the Astronomical Image Display and Analysis (AIDA) System in Tubingen, de Boer, K.S., Preussner, P.R., Grewing, M., 1982, Astron. Astrophys. <u>115</u>, 128-132

The Visible and Ultraviolet Continuum from a Herbig-Haro Object in the Core of M16 (NGC 6611), Meaburn, J., 1982, Astron. Astrophys. <u>114</u>, 367-372.

The UV Spectrum of the Old Nova HR Del at Different Orbital Phases, Friedjung, M., Andrillat, Y., Puget, P., 1982, Astron. Astrophys. <u>114</u>, 351-356.

An SMC Star with a Galactic-type Ultraviolet Interstellar Extinction, Lequeux, J., Maurice, E., Prevot-Burnichon, M.L., Prevot, L., Rocca- Volmerange, B., 1982, Astron. Astrophys. <u>113</u>, L15- L17.

Discovery of CaII Absorption at 1840 A in IUE Spectra of Two Helium-rich White Dwarfs, Koester, D., Vauclair, G., Weidemann, V., Zeidler-K.T., E.M., 1982, Astron. Astrophs. <u>113</u>, L13-L14.

The Outer Atmosphere Structure of Three Late Type Stars, de Castro, E., Fernandez-Figueroa, M.J., Rego, M., 1982, Astron. Astrophys. <u>113</u>, 94-98.

IUE Observations of Dwarf Novae During Active Phases, Klare, G., Krautter, J., Wolf, B., Stahl, O., Vogt, N., Wargau, W., Rahe, J., 1982, Astron. Astrophys. <u>113</u>, 76-84.

Forbidden Emission Lines of Fe VII, Nussbaumer, H., Storey, P.J., 1982, Astron. Astrophys. <u>113</u>, 21-26.

First Ultraviolet Observations of Two New Cataclysmic Variables 1E0643-1648 and 4U1849-31 Bonnet-Bidaud, J.M., Mouchet, M., Motch, C., 1982, Astron. Astrophys. <u>112</u>, 355-360.

On the Linearity of the SWP Camera of the International Ultraviolet Explorer (IUE): A Correction Algorithm, Holm, A., Bohlin, R.C., <u>Cassatella</u>, A., Ponz, D.P., Schiffer, F.H., 1982, Astron. Astrophys. <u>112</u>, 341-349.

The OB Subdwarf Feige 66, a Chemical-composition Twin to HD 149382, Baschek, B., Hoflich, P., Scholz, M., 1982, Astron. Astrophys. <u>112</u>, 76-82.

The ultraviolet continuous and emission-line spectra of the Herbig- Haro objects HH 2 and HH 1, Bohm-Vitense, E., Bohm, K.H., Cardelli, J.A., Nemec, J.M., 1982, Astrophys. J., 262: 224-233,

Optical and ultraviolet observations of the X-ray globular cluster Bo 158 in M31, <u>Cacciari</u>, C., <u>Cassatella</u>, A., <u>Bianchi</u>, L., Fusi Pecci, F., Kron, R.G., Astrophys. J., <u>261</u>: 77-84.

A study of interstellar absorption at high galactic latitudes I. Highly ionized gas, Pettini, M., West, K.A., 1982, Astrophys. J., <u>260</u>: 561–578.

Preside Nove PR Del at Different Erbit Press Andrillet, Y., Piger, 198 351-355. The violent interstellar medium associated with the Carina Nebula. I. The line of sight toward HD 93205, Laurent, C., Paul, J.A., Pettini, M., 1982, Astrophys. J., <u>260</u>: 163-182.

Very extended ionized gas in radio galaxies - I. A radio, optical and ultraviolet study of PKS 2158 - 380, 1982, Fosbury, R.A.E., Boksenberg, A., Snijders, M.A.J., Danziger, I.J., Disney, M.J., Goss, W.M., Penston, M.V., <u>Wamsteker</u>, W., Wellington, K.J., Wilson, A.S., Mon. Not. R. Astr. S., <u>201</u>, 991-1008.

IUE observations of the BL Lac object AO 0235+164, 1982, Snijders, M.A.J., Boksenberg, A., Penston, M.V., Sargent, W.L.W., Mon. Not. R. A. S., <u>201</u>, 801-805.

Ultraviolet spectra of planetary nebulae - IX. High-dispersion observations of NGC 7662, 1982, Flower, D.R., Penn, C.J., Seaton, M.J., Mon. Not. R. A. S., 201, 39P-43P.

The carbon and nitrogen abundances in WN and WC Wolf-Rayet stars, 1982, Smith, L.J., Willis, A.J., Mon. Not. R. A. S., <u>201</u>, 451-472.

Interstellar extinction in the Small Magellanic Cloud, 1982, Nandy, K., McLachlan, Thompson, G.I., Morgan, D.H., Willis, A.J., Wilson, R., Gondhalekar, P.M., Houziaux, L., Mon. Not. R. A. S., <u>201</u>, 1P-6P.

The evolution of viscous discs - III. Giant discs in symbiotic stars, 1982, Bath, G.T., Pringle, J.E., Mon. Not. R. A. S., <u>201</u>, 345-355.

The ultraviolet spectra of the nuclei of spiral galaxies -I. NGC 4594, 3031, 5194 and 4258, 1982, Ellis, R.S., Gondhalekar, P.M., Efstathiou, G., Mon. Not. R. A. S., 201, 223-251. GUEST OBSERVER PROPOSALS APPROVED BY THE EUROPEAN ALLOCATION COMM.

Program Title Authors Institute NUMBER d innized get in radio calazies - 1. A nadio, The integrated spectra of globular Fusi-Pecci Bologna clusters in M31 and the Fornax Bologna FE002 dwarf galaxy. . Weilington, K. Interstellar studies of the gas Welsh UCL FM004 in galactic giant HII regions 121 JE art 16 enou UV observations of blue stragglers Fracassini Milano FA009 -----High resolution spectroscopy of Baschek Heidelberg FA010 Blue Halo Stars High dispersion observations of Koppen Heidelberg FA011 Planetary Nebulae Star formation in NGC 5367 Reipurth Copenhagen FA013 -----Tubingen FN014 Investigations of motions in the de Boer gaseous Galactic Halo III and out of nortonices UV Variability of FK Comae Rucinski FC015 Munchen ------Fredga Stellar activity cycle in Stockholm FC016 viscovs diecs -Beta Hydri A 'Star Burst' Galactic Nucleus? Meaburn Manchester FE019 ------UV spectroscopy of blue dwarf Gondhalekar RAL FE021 UV observations of supernovae Panagia Bologna FE022 -----Effective temperatures and Heber Kiel FA027 gravities of subdwarf B-stars Hack Trieste The atmospheric eclipsing binary FC029 Epsilon Aurigae The symbiotic star CH Cygni Hack Trieste FC030 The protoplanetary nebula V 1016 Cyg Nussbaumer Zurich FI031

Massive Post-Main-Sequence Envelope objects of the LMC	Wolf	Heidelberg	FA032
Interstellar extinction and a study of early type supergiants in the SMC	Nandy	Edinburgh	FH034
Very low excitation (VLE) compact Nebulae in the Magellanic Clouds	Nandy	Edinburgh	FA035
Composition of dust and gas in the Perseus Arm	Nandy	Edinburgh	FM036
Expanding shells of interstellar gas around OB associations	Phillips	UCL	FM038
High dispersion spectroscopy of interacting binaries	Drechsel	Nvernberg	FI041
Atmospheric abundances of white dwarfs in binary and suspected binary systems	Bues	Bamberg	FA042
Detection of a gas stream in algol	Melaro	Trieste	F1043
UV Observations of inhomogeneous Red Dwarfs atmospheres	Moe	Oslo	FC044
IUE Observations of strong X-ray sources embedded in otherwise "normal" galactic nuclei	Clavel	Meudon	FE045
UV Spectroscopy of White Dwarfs	Koester	Kiel	FC046
Lambda Bootis Stars	Baschek	Heidelberg	FA050
Observations of Variable Seyfert Nuclei	Ulrich	Munchen	FE052
UV FeII fluorescence in cool giant and supergiant stars	Engvold	Oslo	FC053
The symbiotic star HBV 475	Nussbaumer	Zurich	F1054
Coronae and chromospheres of cool giants and supergiants dependence on spectral type	Jordan	Oxford	FC055
Study of the emission line profile and continuum in very blue quasars of low redshift	Bergeron	Paris	FE056
Spectroscopy of high excitation narrow emission line galaxies with radiative Balmer decrement	Durret	Paris	FE059

.....

Mass loss from central stars of Perinotto Arcetri FA060 planetary nebulae A study of two, young, solar-type Jordan Oxford FC061 stars High dispersion observations of Jordan Oxford FC062 alpha Boo Simultaneous UV, X-ray and optical Clavel Meudon FE063 observations of NGC 4593 High resolution and time resolved Jameson Leicester FI065 spectroscopy of cataclysmic variables producesk feadaed generations and UV observations of Nova-Like Hill St Andrews FID66 Cataclysmic Variables a second stinu to stinue to second Absorption from companions to Bergeron Paris FE067 quasars or from the quasar itself ? High resolution spectra of two Rucinski Munchen FC068 FK Comae-type stars and supersystems to service and servic Investigation of the High-velocity Lawrent Verrieres FM069 components in the Great Carina wall ward provide the second Nebula Nebula Seturador de Debusdes este Observations of the Seyfert Ulrich Munchen FE070 Galaxy NGC 5548 Stellar populations in Lenticular Ellis Durham FE073 Galaxies The enigmatic Hypergiant P Cygni Waters Utrecht FA074 High resolution spectroscopy of Cassatella Vilspa FI075 White Dwarf accreting systems The UV activity phase of the Cassatella Vilspa FI076 recurrent nova T CrB Interstellar molecular lines Somerville London FM079 Anomalous interstellar extinction Somerville London FM080 UV spectrophotometry of compact Clegg London FA081 southern planetary nebulae and their central stars Lines from nebular envelopes of Seaton London FA082 importance for spectroscopic diagnostics and abundance determinations

Ultraviolet spectrophotometry of planetary nebulae in the Magellanic Clouds	Barlow	London	FA083
Observations of two heavily reddened planetary nebulae	Barlow	UCL	FA084
Evolution of Blue Horizontal Branch and Subdwarf B Stars	Lynas-Gray	London	FA085
Rapid fluctuations in low- luminosity Seyfert I galaxies	Wilson	London	FE086
Ultraviolet variations in in selected Seyfert galaxies	Wilson	London	FE087
A study of the UV variations of the double quasar	Wilson	London	FE088
An attempt to apply the Gun Peterson Test to intergalactic Helium	Wilson	London	FE089
High dispersion spectroscopy of HZ Her: the nature and origin of the emission lines	Wilson	London	F1090
Spectrophotometry of HZ Her: the accretion disk	Wilson	London	F1091
UV spectral variations of HD 50896 (WN5+?) - Do WR+Collapsar systems exists ?	Willis	London	F1094
Fundamental parameters of the super Eddington X-ray transient source A0538-66	Willis	London	FI095
Stellar wind variations in the enigmatic subluminous star HD 45166 (gWR+B8V)	Willis	London	FA096
Physical properties of the accretion disk in RZ Oph	Willis	London	FC097
Diagnosis of physical conditions in the North Polar Spur	Hartquist	London	FM098
UV Observations of epsilon Aurigae	Stickland	RGO	FI101
Galactic coronal gas investigations by I2.0observations of young globula clusters of the LMC	Geyer	Davn	FM104

UV-observations of bright, compact open cluster and neighbouring young globular cluster of the LMC	Cassatella	Vilspa	FE105
UV observations of hot hydrogen- deficient variables	Hill	St Andrews	FA107
Studies of nuclear regions of Sersic-Pastoriza galaxies - II	Thompson	Edinburgh	FE108
Winds and Coronae in Red Giants	Reimers	Hamburg	FC109
Mass-loss of Red Giants with model Hot Companions	Reimers	Hamburg	FC110
Lyman-Alpha emission from X-ray Clusters with Cooling Cores	Norgaard	Copenhagen	FE112
UV energy distribution in CD galaxie	Bertola	Padova	FE113
Non-LTE analysis of Central Stars of Planetary Nebula	Kudritzki	Munchen	FA114
Non-LTE analysis of Subdwarf O-stars	Kudritzki	Munchen	FA115
Deep exposures on the Cygnus Loop	Danziger	Munchen	FM117
The long-term variability of the Lyman alpha emission from Jupiter, Saturn, and Uranus	Fricke	Bonn	FS118
Study of interstellar gas adjacent to two spiral arms	Harris	RAL	FN122
Study of M-Dwarf Flares	Bromage	RAL	FC123
A high resolution study of the Jet of R Aquarii	Charles	Oxford	FC124
Periodic & new comets	Wallis	Cardiff	F\$125
Studies of High Galactic Latitude Ga	Harris	RAL	FM126
Best possible UV line list from RR Tel	Penston	RGO	F1128
Completion of UV observations of an all-sky sample of X-ray active galaxies	Lawrence	RGO	FE13(
Abundances and excitation mechanisms in peculiar emission-line nuclei of galaxies	Pagel	RGO	FE13
Continued monitoring of NGC 4151	Penston	RGO	FE132

The extent of the gaseous galactic halo	Pettini	RGO	FM133
IVE observations of QSOs and BL Lac Objects	Snijders	RGO	FE135
A study of ultraviolet variability of Seyfert 2 galaxies	Snijders	RGO	FE137
Short wavelength line profiles in T Tauri stars	Penston	RGO	FC138
Long exposure observations of extragalactic sources	Penston	RGO	FE139
Distances of 21 centimeter high velocity (OORT) clouds	Pettini	RGO	FM140
UV observations of stars rotating very close to theoretical breakup velocity	Molaro	Trieste	FA141
Chromospheric and coronal activity in regular-period RS CVn-like stars	Fernandez	Madrid	FC142
Structure of the envelope of Be star	Hubert-D.	Paris	FA144
UV observations of the interacting Binary CX Dra	Koubsky	Ondrejov	FI146
Observations of a BL Lac object	Ulrich	Munchen	FE148
The UV variability and rotational modulation of T Tauri stars	Jordan	Oxford	FC150
Observational basis for an empirical theoretical modeling of Be stars	Doazan	Paris	FA152
Investigation of mass-loss and chromospheric effects in a A-shell stars	Doazan	Paris	FA153
High resolution observations of Mercury-Manganese stars	Dworetsky	London	FA154
Evolved globular cluster stars	Caloi	Frascati	FA155
Integrated spectra of globular clusters	Caloi	Frascati	FE156
Contemporaneous studies of active galactic nuclei	Coe	Southampton	FE157
Periodicities in X-ray sources	Coe	Southampton	FI158
Variability of Akn 120	Kollatschny	Gottingen	FE162

.

1

.

Barred spirals with X-ray nuclei	Fricke	Gottingen	FE164
The outburst of AG Draconis	Altamore	Roma	FI166
Study of matter ejected by superluminous stars	Giangrande	Frascati	FM167
Coordinated UV and optical observations of BL Lac objects	Tanzi	Milano	FE176
Star formation in irregular galaxies	Casini	Milano	FE177
A search for UV variability in the clumpy irregular galaxy Markarian 297 (=NGC 6052)	Benvenuti	Vilspa	FE178
The UV stellar classification programme	Heck	Vilspa	FA179
Ultraviolet observations of V348 Sgr during ascending and descending phases	Heck	Vilspa	FA180
Ultraviolet studies of the shells of Herbig Ae and Be stars	Tjin	Amsterdam	FA181
Near ultraviolet observations of the high-redshift BL Lac object 0215+015	Blades	Vilspa	FE182
Absolute spectrophotometry of blue stars for calibration of space instruments, including space telescope	Blades	Vilspa	FA183
Observations of Lyman alpha haloes of galaxies, using QSOs as back- ground probes	Blades	Vilspa	FE184
Absorption measures of gas in haloes of galaxy	Blades	Vilspa	FM185
Far UV study of an X-ray selected sample of active galactic nuclei	Grewing	Tubingen	FE191
Probing the HI holes in the direction of HZ 43 and HR 1099	Grewing	Tubingen	FM192
Study of blue stars in the LMC emission nebula N 144	Grewing	Tubingen	FA193
The shell structure of the Herbio Ae star HD 250550	Talavera	Meudon	FA194

Emission, mass loss and envelopes in Herbig Ae stars	Praderie	Paris	FA195
A far UV study of the interstellar matter in the Small Magellanic Cloud	Prevot	Marseille	FM197
Simultaneous ground-based and UV observations of the star V 4046 Sgr	de la Reza	Brazil	FC199
IUE observations of FK Comae stars with coordinated ground-based photometry	Bianchi	Torino	FC201
Observations of Orion nebulary variables emitting soft X-rays	Bianchi	Torino	FC203
Dust envelopes of Herbig Ae stars	Catala	Meudon	FA208
Modelling of the T Tauri star RU Lupi	Gah n	Stockholm	FC210
UV observations of star-forming cooling flows	Fabian	Cambridge	FE212
UV, optical and IR observations of T Tauri type stars	Giovannelli	Frascati	FC215
Mass loss rate from a 0535+26/ HDE 245770 system in quiescence and in outburst	Giovannelli	Frascati	FI217
UV spectra of Gygnus OB2 association	Giovannelli	Frascati	FA218
UV observations of the secondary component of Algol-type binaries	Catalano	Catania	FC220
Mg II emission of MS stars in open clusters	Catalano	Catania	FC221
Coordinated ultraviolet-X ray observations of Seyfert galaxies	di Cocco	Bologna	FE223
Determination of absolute velocities for emission lines in late type stars	Engvold	0510	FC225
Wolf rayet stars in dwarf emission line galaxies	Joubert	Marseille	FE227
Emission lines in the halo of edge-on galaxies	Joubert	Marseille	FE228
Lyman continuum observations of broad absorption line QSDs	NcMahon	Cambridge	FE229

Note that the last out out and the last			
Masses of cepheids	Eichendorf	Munchen	FC231
Classical cepheids and their blue companions	Eichendorf	Munchen	FC232
H II regions and star formation bursts in NGC 1510	Eichendorf	Munchen	FM233
Star formation and chemical enrichment in two blue compact galaxies	Bergvall	Uppsala	FE235
Nuclear region of the galaxy NGC 1365	Jorsater	Sweden	FE237
Ultraviolet observations of newly discovered X-ray sources	Bonnet B	Saclay	F1240
High resolution ultraviolet spectra of the carbon star TW Hor	Querci F	Toulouse	FC241
UV energy distribution of the dwarf elliptical galaxy NGC 205	Bertola	Padova	FE243
Carbon abundance in M 33 and M 31 from supernova remnants	D'odorico	Munchen	FE248
IUE observations of surface structure of eclipsing and non-eclipsing RS CVN systems	Rodono	Catania	FC249
High dispersion study of luminous cool stars	Gustafsson	Uppsala	FC251
Search for chromospheres in A-type stars	Freire	Strasbourg	FA252
Time scales of M dwarf flares	Butler	Armagh	FC254
Short time variations in the mass-loss rate of early type stars	Henrichs	Amsterdam	FA255
Probing Seyfert I nuclei through observations over a large wavelength interval	Wamsteker	Vilspa	FE257
High resolution UV spectra of M 83 (=NGC 5236)	Wamsteker	Vilspa	FE258
2000-5000 A observations of weak Fe II line Seyferts	Netzer	Tel Aviv	FE260
Carbon stars sequence: R to N stars	Querci M	Tovlouse	FC265

-

IUE observations of POP II standard stars	Cacciari	Vilspa	FC268
Spatial coverage of Jupiter and Saturn	Combes	Neudon	FS269
Accretion in twin degenerate systems	Solheim	Tromso	F1270
Star forming activity in interacting galaxies	Alloin	Meudon	FE272
Study of the interstellar medium in the Scorpius- Ophiuchus region	Pottasch	Groningen	FM273
Spatial variation of the plasma electron temperature in the IO Torus	Bertaux	Verrieres	F\$275

C 0

	NASA APPROVI	ED IVE PROGRAMS FO	R THE SIXTH YEA	R	N)	•	
NAME	· • • - • • • • • • • • • • •	INSTITUTION	COUNTRY	PROG			
TITLE				1D			
A'HEARN SOLAR ANN	MICHAEL F. ALOGS FOR CALIBRA	MARYLAND ATION OF REFLECTIV	U. S ITIES OF BODIES	STFMA IN THE SOLAR S	YSTEM		
A'HEARN COMETS AS	MICHAEL F. 5 TARGETS OF OPPO	MARYLAND DRTUNITY	U. S.	SCFMA			
ADELMAN ELEMENTAI	SAUL J. ABUNDANCES IN S	CITADEL SHARP-LINED LATE B	U.S. AND EARLY A ST	HSFSA ARS			
AGRAWAL ULTRAVIO	PRAHLAD C. _ET OBSERVATIONS	TATA INST. OF NEWLY DISCOVER	INDIA ED AM HERCULIS-	CVFPA LIKE X-RAY BINA	RY H0139-68		
AHMAD SECONDAR	IMAD A. MINIMA OF ZETA	IMAD-AD-DEAN AURIGAE BINARIES	U. S.	VVFIA			
AKE FURTHER I	THOMAS B., III CLIPSE OBSERVAT	CSC IONS OF EPSILON AU	U.S. RIGAE	VVFTA			611) ville
ALLER STRUCTURI	LAWRENCE H. OF AND ABUNDANC	CAL LA CES IN HIGH-EXCITA	U. S. TION PLANETARIE	NPFLA S			
AYRES HIGH-DIS	THOMAS R. PERSION OBSERVAT	COLORADO-LASP	U.S. IS	LGFTA			10
AYRES SME AND	THOMAS R. IUE: THE SOLAR-SI	COLORADO-LASP	U. S.	STFTA			
AYRES CAPELLA P	THOMAS R. HL	COLORADO-LASP	U. S.	LDFTA	18 H.C.		
AYRES THE HYDRO	THOMAS R. DGEN EMISSION OF	COLORADO-LASP ACTIVE RED DWARFS	U. S.	CCFTA			
AYRES DETERMIN	THOMAS R.	CÓLORADO-LASP E VELOCITIES FOR EI	U. S. MISSION LINES O	CSFTA F LATE-TYPE STA	RS		
BALIUNAS VERTICAL	SALLIE L. STRUCTURE OF TH	CFA - SAO ATMOSPHERES OF AG	U. S. CTIVE G-GIANT S	LGF SB TARS			
BARKER	PAUL K.	W. ONTARIO	CANADA	BEFPB			

ភ ភ រ

1

.

TITLE

	NASA APPROVED IUE PROGRAMS FOR	THE SIXTH YEAR		
NAME	INSTITUTION	COUNTRY PR	20G	

- BARKER TIMOTHY WHEATON U.S. MPFTB THE IONIZATION STRUCTURE OF PLANETARY NEBULAE BASRI GIBOR S. CAL BERKELEY U.S. IGFGB
 - BLAIR WILLIAM P. CFA SAO U. S. NSFWB CARBON ABUNDANCE IN M33 AND M31 FROM SUPERNOVA REMNANTS

AN ABSORPTION LINE STUDY OF HIGH LATITUDE DIFFUSE CLOUDS

.

- BOGGESS ALBERT GSFC U.S. QSFAB UV OBSERVATIONS OF SEYFERT GALAXIES
- BOGGESS
 ALBERT
 GSFC
 U.S.
 HZFAB

 AN ATTEMPT TO DETECT INTERGALACTIC HELIUM IN A HIGH-Z QUASAR SPECTRUM
- BOHM KARL-HEINZ WASH. U. S. CSFKB THE ENVIRONMENT OF THE COHEN-SCHWARTZ STAR
- BOHM KARL-HEINZ WASH. U.S. IMFKB INTERSTELLAR ABSORPTION AND EXTINCTION
- BOHM-VITENSE ERIKA WASH. U. S. CCFEB CHROMOSPHERIC EMISSION OF CLOSE BINARIES WITH NONSYNCHRONIZED ORBITAL & ROTATIONAL PERIODS
- BOHM-VITENSE ERIKA WASH. U.S. HCFEB CEPHEID COMPANIONS AND MASSES
- BOHM-VITENSE ERIKA WASH. U.S. LGFEB WHITE DWARF COMPANIONS AND CHROMOSPHERES OF STARS WITH PECULIAR ELEMENT ABUNDANCES
- BOND HOWARD E. LOUISIANA ST. U. S. NPFHB ULTRAVIOLET OBSERVATIONS OF CLOSE-BINARY AND PULSATING NUCLEI OF PLANETARY NEBULAE
- BOND HOWARD E. LOUISIANA ST. U. S. HCFHB A SEARCH FOR WHITE-DWARF COMPANIONS OF SUBGIANT CH STARS
- BOWYER C. STUART CAL BERKELEY U.S. WDFCB CONTINUING STUDIES OF HOT WHITE DWARFS AND THE LOCAL ISM
- BOWYER C. STUART CAL BERKELEY U.S. SPFCB OBSERVATIONS OF H LY ALPHA EMISSION FROM NEPTUNE
- BOWYER C. STUART CAL BERKELEY U.S. SUFCB OBSERVATIONS OF H LY ALPHA EMISSION FROM URANUS

~ ~	10010	-
02	/28/8	

×

3		•		
	NASA APPROVED	IVE PROGRAMS FOR	THE SIXTH YE	AR
NAME	 Е ·	INSTITUTION	COUNTRY	PROG ID
BOWYER	C. STUART	CAL BERKELEY	U.S.	XGFCB
FAR U	V SPECTROSCOPY OF X-R	AY ACTIVE GALACTI	CNUCLEI	
BOWYER	C. STUART	CAL BERKELEY	U. S.	EHFCB
SEARC	H FOR EMISSION LINES	IN THE GASEOUS HA	LO OF EDGE-ON	N GALAXIES
BOWYER	C. STUART	CAL BERKELEY	U. S.	NJFCB
FAR U	V SPECTROSOCOPY OF TH	IE OPTICAL EMISSIO	IN KNOTS IN TH	He Inner Jet of Cen A
BROWN	DOUGLAS N.	WASH.	U S.	HEFDB
MASS	LOSS AND PHOTOSPHERIC	STRUCTURE IN EAR		RUM VARIABLES
BRUGEL	EDWARD W.	COLORADO-LASP	U.S.	IBFE8
ANALY	SIS OF THE SYMBIOTIC	STARS V1016 CYG.	HM SGE AND V1	1329 CYG
BRUHWEILER	FREDERICK C.	CSC	U. S.	GHFFB
AN'UL	TRAVIOLET SEARCH FOR	HIGH VELOCITY GAS	AT HIGH GALA	ACTIC LATITUDES
BRUHWEILER	FREDERICK C.	CSC	U. S.	WDFF8
MASS	LOSS AND RADIATIVE LE	VITATION IN HOT W	HITE DWARFS	
BRUHWEILER	FREDERICK C.	CSC	U. S.	EHFF8
THE L	YMAN ALPHA ABSORPTION	FOREST IN QSOS C	F INTERMEDIAT	E REDSHIFT
CALDWELL	JOHN	STONY BROOK	U. S.	SPFJC
IVE S	DLAR SYSTEM OBSERVATI	ONS, I. URANUS AN	10 NEPTUNE BEL	DW 2000 ANGSTROMS
CALDWELL	JOHN	STONY BROOK	U.S.	SSFJC
IVE S	DLAR SYSTEM OBSERVATI	ONS, II. SATURN'S	RINGS	
CALDWELL	JOHN	STONY BROOK	U. S.	SJFJC
IUE S	DLAR SYSTEM OBSERVATI	ONS .IV. CHEMICAL	COMPOSITION	AT JUPITER'S POLES
CHAPMAN	ROBERT D.	GSFC	U. S.	VVFRC
PHYSI	CS OF THE CIRCUMSTELL	AR ENVELOPE, ACCR	ETION DISK &	SECONDARY COMPANION IN EPSILON AUR
CODE	ARTHUR D.	WISCONSIN	U. S.	IEFAC
A STU	DY OF REDDENING IN GA	LACTIC SYMBIOTIC	STARS	
COHEN	ROSS D.	CAL SAN DIEGO	U. S.	QSFRC
HYDRO	GEN LINE RATIOS IN TH	E NARROW-LINE REG	IONS OF ACTIV	VE GALAXIES

.

CONTI PETER S. COLORADO STELLAR WINDS IN THE MAGELLANIC CLOUDS U.S. MLFPC

1 б 1 ł.

•

.

NAME		INSTITUTION	COUNTRY	PROG ID
TITLE				
CONTI UV SPECTR	PETER S. RAL VARIATIONS OF HD	COLORADO 50896 (WN 5+?)	U.S.	WRFPC
COWLEY	CHARLES R.	MICHIGAN	U. S.	HSFCC
SUPERFICI	ALLY NORMAL EARLY B	STARS WITH SHA	RP SPECTRAL LINES	
DAVIDSON	KRIS	MINNESOTA	U.S.	EGFKD
UV SPECTR	ROSCOPY OF TWO SPECI	Al Extragalacti	C OBJECTS	
DEAN	CHARLES A,	S M SYSTEMS	U. S.	MLFCD
SHARP LIN	NE DISPLACED FEATURE	S IN O SUBDWARF:	S: A SECOND MASS	LOSS MECHANISM?
DOSCHEK THE BEST	GEORGE A. POSSIBLE UV LINE LI	NRL ST FROM RR TEL	U.S.	HSFGD
DRILLING	JOHN S.	LOUISIANA ST.	U.S.	HSFJD
ULTŘAVIOL	.ET SPECTROSCOPY OF	SUBLUMINOUS O S	TARS	
DUFOUR	REGINALD J.	RICE	U.S.	NDFRD
HIGH DISP	PERSION IUE OBSERVAT	IONS OF METAL-PO	DOR H II REGIONS	- II
DUPREE	ANDREA K.	CFA - SAU	U.S.	QSFAD
ULTRAVIOL	ET VARIABILITY OF T	HE DOUBLE QSO QO	0957 +561	
DUPREE CHROMOSPH	ANDREA K. HERES IN METAL DEFIC	CFA - SAO IENT GIANTS	U. S.	CCFAD
FANG	LI ZHI	CFA-S&T CHINA	CHINA	QSFLF
UV OBSERV	ATIONS OF CIV EMISS	ION LINES FOR LO	DW REDSHIFT QSOS	
FEIBELMAN	WALTER A.	GSFC	U. S.	NPFWF
OBSERVATI	ONS OF THE BIPOLAR I	PLANETARY NEBUL	A NGC 2346	
FEKEL	FRANCIS C., JR.	GSFC	U. S.	CCFFF
ULTRAVIOL	ET OBSERVATIONS OF U	JNUSUAL CHROMOSI	PHERICALLY ACTIVE	GIANT STARS
FELDMAN	PAUL D.	JOHNS HOPKINS	U. S.	SCFPF
OBSERVATI	ONS OF COMETS WITH T	THE INTERNATION	Al ultraviolet ex	PLORER
FERLAND	GARY J.	KENTUCKY	U. S.	QSFGF
ULTRAVIOL	ET AND OPTICAL OBSEI	RVATIONS OF 3C	120	
FESEN	ROBERT A.	GSFC	U. S.	NSFRF

- 58 -

.

		NASA APPROVED	LUE PROGRAMS FOR	THE	SIXTH YEAR			
N	AME TITLE		INSTITUTION	COU	NTRY	PROG ID		
G	ALLAGHER HIGH STAR	JOHN S. III FORMATION RATE IRF	ILLINDIS REGULAR GALAXIES	U. AND	S THE IMF OF M	EPFJG IASSIVE STARS		
G	ARMANY Narrow com	CATHARINE D. PONENTS IN HOT STA	COLORADO AR WINDS	U.	S .	MLFCG		
G	IAMPAPA OBSERVATIO	MARK S. NS OF FLARE ACTIV	AURA - SAC PK	U. DME P	S. FLARE STARS	FSFMG		
GI	ASSGOLD QUASAR EMI	A. E. SSION LINES AND IC	NEW YORK U. DNIZING RADIATIO	U. N	S .	QSFAG		
GI	LASSGOLD MULTIFREQU	A. E. ENCY OBSERVATIONS	NEW YORK U. OF BL LAC OBJEC	U. TS AM	S. VD VIOLENTLY	BLFAG VARIABLE QUASARS		
GI	REEN HIGH DISPE	RICHARD F. RSION QUASAR ABSOR	ARIZONA RPTION SPECTRA	U.	S.	QSFRG		
GF	REEN HIGH REDSH	RICHARD F. IFT QUASARS	ARIZONA	U .	S .	HZFRG		
G	REEN BRIGHT OPT	RICHARD F. ICALLY SELECTED QU	ARIZONA JASARS WITH HIGH	U. X-R#	S. Ny FLUX	XQFRG		
GU	JINAN COORDINATE	EDWARD F. D ULTRAVIOLET SPEC	VILLANOVA CTROSCOPY AND OP	U. TICAL	S. PHOTOMETRY	CCFEG DF FK COMAE	-	
H	ISCH IDENTIFICA	BERNHARD M. TION OF ACTIVE REC	LOCKHEED GIONS ON THE ECL	U. IPSIM	S. NG BINARY FLA	CBFBH Re star pair yy gem		
H	AISCH TEMPORAL E	BERNHARD M. VOLUTION OF UV EMI	LOCKHEED ISSION LINES DUR	U. Ing f	S. LARES ON DME	FSFBH STARS		
н	AISCH A COMPARAT	BERNHARD M. IVE STUDY OF DM AN	LOCKHEED ND DME STARS	U.	S .	LDFBH		
H	ALLAM STELLAR RO	KENNETH L. TATION AND CHROMOS	GSFC SPHERIC SURFACE	U. DISTR	S. RIBUTION	LDFKH		
H	ARTMANN A STUDY OF	LEE W. The relationship	CFA - SAO BETWEEN MG II E	U. MISSI	S. IAND AND ROTA	MGFLH TION		
н	ARTMANN	LEE W.	CFA - SAU	U.	S .	CCFLH		

• •

· .

1 59 Т

02/	28	/83
~ ~ ,		

....

9

NAME		INSTITUTION	COUNTRY	PROG
TITLE				ID
HECHT DUST EXT	JAMES H. Inction in hr 5999	AEROSPACE COR	U.S. •	CDFJH
HECKATHORN	JOY NICHOLS	CSC	U. S.	IGFJH
HIGH VEL	OCITY COMPONENTS OF	UV INTERSTELLAR	LINES IN THE C	CARINA NEBULA
HOBBS	LOU M.	CHICAGO-YRKS	U. S.	GHFLH
THE DIST	RIBUTION OF INTERST	ELLAR GAS IN THE	Galactic Halo	
HOBBS IVE OBSE	LOU M. RVATIONS OF INTERST	CHICAGO-YRKS ELLAR CARBON	U.S.	IGFLH
HODGE	PAUL W.	WASH.	U. S.	EGFPH
UV OBSER	VATIONS OF OB STARS	IN NGC 185 AND	NGC 205	
HODGE	PAUL W.	WASH.	U. S.	MLFPH
EVOLUTIO	N OF MASS LOSS IN S	TARS OF MAGELLAN	IC CLOUD CLUSTE	ERS
HOLBERG	JAY B.	USC - ARIZONA	U.S.	HSFJH
COMBINED	Voyager and iue en	ERGY DISTRIBUTIO	NS FOR HOT DEGE	ENERATE STARS
HOLBERG	JAY B.	USC - ARIZONA	U.S.	WDFJH
HIGH RES	DLUTION OBSERVATION	S OF HOT WHITE D	WARFS	
HOLM EXTINCTI	ALBERT V. DN IN R CRB VARIABL	CSC ES	U. S.	RCFAH
HOLM	ALBERT V.	CSC	U. S.	CBFAH
HIGH RES	DLUTION SPECTROSCOP	Y OF WHITE DWARF	ACCRETING SYST	TEMS
HOLM THE 1978	ALBERT V. OUTBURST OF WZ SAG	CSC ITTAE	U. S.	CVFAH
HONEYCUTT	R. KENT	INDIANA	U. S.	LGFRH
CHROMOSP	HERIC ACTIVITY, TIO	STRENGTH AND SP	ECTRAL TYPES IN	N M GIANTS
HUCHRA	JOHN P.	CFA - SAO	U.S.	EGFJH
ULTRAVIO	Let spectrophotometi	RY OF HOT GALAXI	ES	
TMHOLEF	CATHERINE L.	csc	U. S.	STFCI

- 60 -

2

-

.

NASA APPROVED IUE PROGRAMS FOR THE SIXTH YEAR					
NAME		INSTITUTION	COUNTRY	PROG	
TITLE					
JENKINS	EDWARD B. HALOS OF GALAXI	PRINCETON	U. S.	EHFEJ	
JOHNSON STUDIES OF	HOLLIS R. THE ULTRAVIOLET	INDIANA SPECTRA OF CARBON	U. S. N STARS	CSFHJ	
KAFATOS A HIGH RESO	MINAS DLUTION STUDY OF	GEORGE MASON THE JET IN R AQUA	U. S. ARII	NJFMK	
KAFATOS ULTRAVIOLEI	MINAS EXTINCTION IN S	GEORGE MASON MBIOTICS STARS	U. S.	CDFMK	
KAFATOS OBSERVATION	MINAS IS OF PECULIAR UV	GEORGE MASON EMISSION IN RX P	U.S. PUPPIS	ZAFMK	
KALER CENTRAL STA	JAMES B. NRS OF LARGE PLAN	ILLINOIS ETARY NEBULAE	U. S.	NPFJK	
KEEL WOLF-RAYET	WILLIAM C. STARS IN NGC 5430	AURA - KPNO	U. S.	WRFWK	
KIRSHNER SUPERNOVA S	ROBERT P. SPECTROSCOPY	MICHIGAN	U. S.	SNFRK	
KONDO COORDINATED	YOJI OBSERVATIONS OF	GSFC BL LACERTAE OBJE	U. S. ECTS IN SERVERAL	BLFYK WAVELENGTH REGIONS	
KRISS HYDROGEN LI	GERARD A. NE RATIOS IN SEVI	MICHIGAN FERT GALAXIES AND	U. S. LOW REDSHIFT QU	QSFGK ASARS	
LAMBERT EPSILON AUF	DAVID L. RIGAE IN ECLIPSE	TEXAS	U. S.	VVFDL.	
LIEBERT TWO COOL WH	JAMES W. HITE DWARFS WITH P	ARIZONA METALLIC LINES	U. S.	WDFJL	
LINSKY MASS LOSS F	JEFFREY L. RATES FOR K-M GIAN	COLORADO-JILA NTS AND SUPERGIAN	U. S ITS	MLFJL	
LINSKY	JEFFREY L.	COLORADO-JILA	U. S.	FKFJL	

i.

.

LINSKY JEFFREY L. COLORADO-JILA U.S. TTFJL HIGH DISPERSION STUDY OF TWO T TAURI STARS: RU LUPI AND COD-34 7151 - 61 -

.

NASA APPROVED IUE PROGRAMS FOR THE SIXTH YEAR

.

NAME		INSTITUTION	COUNTRY	PROG	
TITLE					
LINSKY THE ROTA	JEFFREY L. ION-ACTIVITY COR	COLORADO-JILA Relations for Earl	U.S. Y F DWARFS	AFFJL	
LINSKY UV VARIA	JEFFREY L. BILITY AND ROTATIO	COLORADO-JILA DNAL MODULATION OF	U.S. T TAURI STAR	CSFUL	
LINSKY SURFACE	JEFFREY L. STRUCTURE OF ECLIP	COLORADO-JILA SING AND NON-ECLI	U.S. IPSING RS CVN S	RSFUL	
LINSKY HIGH DIS	JEFFREY L. PERSION STUDY OF I	COLORADO-JILA LUMINOUS COOL STAF	U.S. ₹5	LGFJL	
LINSKY AN EMISSI	JEFFREY L.	COLORADO-JILA SIS OF STARS NEAR	U. S. THE TRANSITION	CCFJL N REGION DIVIDING LINE	
LINSKY LYMAN ALF	JEFFREY L. PHA EMISSION FROM	COLORADO-JILA COOL DWARF STARS	U. S.	LDFJL	
MARAN TIME VAR	STEPHEN P. ATIONS IN YOUNG P	GSEC PLANTARY NEBULAE C	U. S. DF THE MAGELLA	NVFSM NIC CLOUDS	
MARGON A SENSITI	BRUCE VE PROBE FOR AN E	WASH. EXTENDED GALAXIAN	U.S. HALO	ЕНГВМ	
MARGON THE NATUR	BRUCE RE OF THE UV EXCES	WASH. SS OBJECTS WITH MI	U. S. SSING H-ALPHA	HSFBM	
MASSEY STELLAR V	PHILIP L. VINDS IN M31 AND M	DAD 133	CANADA	MLFPM	
MCCLUSKEY IUE SPECT	GEORGE E. ROSCOPY OF THE IN	LEHIGH NTERACTING BINARY	U. S. U SAGITTAE	IBFGM.	x
MICHALITSIANOS LOW DISPE	S ANDREW G. RSION UV OBSERVAT	GSFC TIONS OF THE R AQU	U.S. JARII JET	NJFAM	
MILLER IVE OBSER	H. RICHARD RVATIONS OF ACTIVE	GEORGIA ST. GALACTIC NUCLEI	U. S.	QSFHM	
MILLER ULTRAVIO	JOSEPH S. ET SPECTROPHOTOME	CAL S CRUZ TRY OF "NORMAL" S	U. S. SPIRAL GALAXIES	EGFJM	
NOOPE	PICHAPD I	C11	11 S	OSERM	

.

.

- 62 -

.....

.

NASA AI	PROVED IUE PROGRAMS FO	R THE SIXTH Y	EAR		
ΝΔΜΕ	INSTITUTION	COUNTRY	PROG ID	= = = = = = = = = = = = = = = =	
TITLE		1			
MOORE RICHARD UV/OPTICAL/IR SPECT	CIT ROPOLARIMETRY OF LOW PO	U. S.	EQFRM		
MOOS H. WARREN STUDY OF ULTRAVIOLE	N JOHNS HOPKINS FEMISSIONS FROM SATURN	U. S. , URANUS AND I	SPFHM NEPTUNE		
MODS H. WARREN STUDY OF SPATIAL AND	JOHNS HOPKINS TEMPORAL VARIATIONS I	U. S. N JOVIAN ULTRA	SJEHM AVIOLET EMISSIONS		
MOOS H. WARREN STUDY OF THE TORUS (N JOHNS HOPKINS OF IO USING THE IUE	U. S.	SIFHM		
MORRISON NANCY D. THE ULTRAVIOLET ENER	TOLEDO RGY DISTRIBUTION OF PHI	U. S. CASSIOPEIAE	CSFNM		
MORRISON NANCY D. A-TYPE SUPERGIANTS:	TOLEDO THREE UNIQUE SPECTRA	U. S.	AFFNM		
MULLAN DERMOTT STATISTICS OF MASS I	J. DELAWARE DSS FLUCTUATIONS IN CO	U.S. OL GIANTS	LGFDM		
NELSON ROBERT M UV SPECTROPHOTOMETR	JPL Y OF THE GALILEAN SATEL	U. S. LITES, SATURN	SPFRN IAN SATELLITES & SEL	ECTED ASTEROIDS	
NOUSEK JOHN A. BLUE SOFT X-RAY CAN	PENN ST.	U. S.	WDF JN		
NOUSEK JOHN A. NEWLY DISCOVERED AM	PENN ST. HER SYSTEMS: E2003 + 2	U. S. 23 AND E1405-4	CVF JN 451		
OKE JOHN BEVI	ERLY CIT VARIABLE TYPE 1 SEYFER	U. S. T GALAXIES	QSFJO		
OLIVERSEN NANCY A. THE GEOMETRIC STRUC	CSC TURE OF ECLIPSING SYMBI	U. S. Otic binarieș	ZAFNO		
PANEK ROBERT U UV STUDY OF GAS AND	CSC DUST IN ORION	U. S.	IMFRP		
PANEK ROBERT J	. CSC	U. S.	APERP		

63

T

ĉ.

	NASA APPROVED I	UE PROGRAMS FOR	THE SIXTH YEAR	
NAME		INSTITUTION	COUNTRY	PROG ID
TITLE				
PARSONS	SIDNEY B.	GSFC	U.S. 4	HCFSP
MASS RATIOS	OF BINARY STARS	WITH LUMINOUS CO	OL PRIMARIES AND	HOT SECONDARIES
PARSONS	SIDNEY B.	GSFC	U. S.	DCFSP
CHROMOSPHER	ES OF TYPE I AND	TYPE II CEPHEIDS	OF LONG PERIOD	
PARSONS	SIDNEY B.	GSFC	U.S.	IBFSP
HD 207739 A	ND OTHER STRANGE	F + B BINARY STA	RS	
PATTERSON	JOSEPH	CFA - SAD	U. S.	CVFJP
ACCRETION D	ISK PARAMETERS IN	Cataclysmic var	IABLES	
PLAVEC	MIREK J.	CAL LA	U.S.	CBFMP
INTERACTING	BINARY STARS OF	THE W SERPENTIS	TYPE	
RAYMOND DEEP EXPOSU	JOHN C. RES ON THE CYGNUS	CFA - SAO LOOP	U. S.	NSFJR
RAYMOND	JOHN C.	CFA - SAO	U. S.	NFFJR
THE TRANSIT	Ion to radiative	SHOCKS IN THE CY	GNUS LOOP	
RAYMOND WHITE DWARF	JOHN C. S AND THE INTERST	CFA - SAO ELLAR MEDIUM	U. S.	IGFJR
RAYMOND HIGH DISPER	JOHN C. SION STUDY OF HZ	CFA - SAD Heculis	U. S.	XBFJR -
RAYMOND	JOHN C.	CFA - SAD	U.S.	CVFJR
DEVELOPMENT	OF P CYGNI PROFI	LES IN DWARF NOV	A OUTBURST	
REICHERT	GAIL A.	GSFC	U. S.	XGFGR
ULTRAVIOLET	STUDIES OF X-RAY	SELECTED ACTIVE	GALACTIC NUCLEI	
RUDY	RICHARD J.	ARIZONA	U. S.	QSFRR
LYMAN ALPHA	OBSERVATIONS OF	SEYFERT 1.8 AND	1.9 GALAXIES	
RUDY	RICHARD J.	ARIZONA	U. S.	RGFRR
HYDROGEN LI	NES AND FEII EMIS	SION IN BROAD-LII	NE RADIO GALAXIES	
RUMPL	WILLIAM M.	CSC	U. S.	WRFWR
AN INVESTIG	ATION OF THE BINA	RY NATURE OF THE	WOLF-RAYET STAR	HD 50896
SARGENT	WALLACE L. W.	CIT	U.S.	QSFWS
COORDINATED	OBSERVATIONS OF	VARIABILITY IN B	RIGHT SEYFERT 1 (GALAXIES

а.

I. 64 F

	NASA APPROVED IUE PROGRAMS FOR THE SIXTH YEAR					
NAME	1442 - X - T	INSTITUTION	COUNTRY	PROG ID		
SARGENT ULTRAVI	WALLACE L. W. OLET AND OPTICAL VAR	CIT IABILITY IN BRI	U. S. GHT SEYFERT 1 (ESFWS		
SARGENT	WALLACE L. W. POSURE OBSERVATIONS	CIT DF EXTRAGALACTI	U.S. C OBJECTS	EHFWS		
SAVAGE	BLAIR D. JED STUDIES OF MAGELLA	WISCONSIN ANIC CLOUD HALO	U.S. GAS	EHFBS		
SAVAGE AN INVE	BLAIR D. STIGATION OF GLOBAL	WISCONSIN SPECTRAL PECULI	U. S. ARITIES IN THE	HSFBS NGC 6231 MAIN SEQUENCE B STARS		
SAVAGE THE GAL	BLAIR D. ACTIC DISTRIBUTION O	WISCONSIN F HIGHLY IONIZE	U.S. DGAS	IGFBS		
SAVAGE INVESTI	BLAIR D. GATION OF MOTIONS IN	WISCONSIN THE GASEOUS GA	U. S. LACTIC HALO	GHFBS		
SAVAGE A STUDY	BLAIR D. OF EXTINCTION IN TH	WISCONSIN E LARGE MAGELLA	U. S. NIC CLOUD	1EFBS		
SAVAGE CONTINU	BLAIR D. DA AND EXTINCTION OF D	WISCONSIN DB STARS IN CLU	U.S. STERS	OBFBS		
SCHWARTZ ULTRAVI	RICHARD D. OLET OBSERVATIONS OF	MISSOURI-ST.L LOW EXCITATION	U. S. HERBIG-HARO DE	HHFRS		
SHAW IUE OBS	J. SCOTT SERVATIONS OF THE RS (GEORGIA CVN - WHITE DWA	U. S. RF BINARY DH LE	WDFJS		
SHIPMAN CARBON	HARRY L. AND SILICON IN THE H	DELAWARE ELIUM WHITE DWA	U.S. RF GD 40	WDFHS		
SHORE SPECTRO	STEVEN N. OPHOTOMETRY OF HELIUM	CASE W.R. PECULIAR STARS	U. S.	HEFSS		
SHULL IUE INT	J. MICHAEL ERSTELLAR OBSERVATIO	COLORADO-JILA NS	U. S.	IGFUS		
SHULL STELLAR	J. MICHAEL AND INTERSTELLAR ST	COLORADO-JILA JDIES WITH IUE	U.S. ARCHIVES	' IMFUS		
C 1/111						

•

•

×.

-65

Ł

.

 ${}^{n_{j}}$

9

	NASA APPROVED	IVE PROGRAMS FOR	. Lac	31711 161	AR .	
NAME		INSTITUTION	COU	INTRY	PROG ID	
TITLE						
SIMON A STUDY OF	THEODORE YELLOW GIANTS IN	HAWAII THE HERTZSPRUNG	U. Gap	S	CCFTS	
SIMON CHROMOSPHEI	THEODORE RIC ATIVITY AND B	HAWAII INARY INTERACTIO	U. N IN	S. 39 CETI	RSFTS	
SIMON A STUDY OF	THEODORE TWO, YOUNG, SOLAR	HAWAII R - TYPE STARS	U.	S .	STFTS	
SION HIGH RESOLU	EDWARD M. JTION ULTRAVIOLET	VILLANOVA OBSERVATIONS OF	U. Hot	S. Subdwarf	HSFES B STARS	
SION ULTRAVIOLET	EDWARD M. STUDIES OF THE N	VILLANOVA VERY HOT, PULSAT	U. ING	S. HELIUM-RIC	HEFES H "PG1159"	DEGENERATE STARS
SION CONTINUED L	EDWARD M. ULTRAVIOLET STUDIE	VILLANOVA ES OF UX URSA MA	U. Jori	S. S STARS	CVFES	
SITKO MULTIFREQUE	MICHAEL L. NCY OBSERVATIONS	MINNESOTA OF STRONG 1-MM	U.	S. CES	QSFMS	
SLETTEBAK ULTRAVIOLEI	ARNE OBSERVATIONS OF	OHIO ST. Bright Lameda Bo	U. I TOC	S. S STARS	LBFAS	
SNOW A SURVEY OF	THEODORE P. JR VARIABILITY IN E	COLORADO-LASP BE STARS	U.	S .	BEFTS	
SNOW A STUDY OF	THEODORE P., JR MODERATE IONIZATI	COLORADO-LASP	U. NDS	S .	HSFTS	
SNOW INTERSTELLA	THEODORE P.JR R LINES AND ULTRA	COLORADO-LASP	U. I NC	S. N DARK CLC	IMFTS	
SNOW STELLAR WIN	THEODORE P., JR DS IN B AND BE ST	COLORADO-LASP	U.	S .	OBFTS	
SODERBLOM ULTRAVIOLET	DAVID R. STUDIES OF STARS	CFA - SAO 5 IN A PLEIADES M	U. IVVI	S. NG GROUP	CCFDS	
SODERBLOM	DAVID R. PERIODS OF ALPHA	CFA - SAO	υ.	S .	LDFDS	

- 66

02/28/83 0 NASA APPROVED IUE PROGRAMS FOR THE SIXTH YEAR NAME INSTITUTION COUNTRY PROG ID TITLE STARRFIELD SUMNER G. ARIZONA ST. U.S. CVFSS ULTRAVIOLET OBSERVATIONS OF GALACTIC NOVAE IN OUTBURST STONER RONALD E. BOWLING GREEN U. S. OSERS ANALYSIS OF TIME VARIABILITY OF EMISSION LINES IN SEYFERT 1 GALAXIES AS FOUND IN IUE DATA CSC U. S. DCFCS STURCH CONRAD R. ULTRAVIOLET OBSERVATIONS OF THREE DWARF CEPHEIDS SZKODY PAULA WASH. CBFPS U. S. A STUDY OF 4 NEW AM HER VARIABLES WASH. SZKODY PAULA U. S. CVFPS EXTENDED OUTBURST/HIGH EXCITATION CATACLYSMIC VARIABLES WASH. SZKODY PAULA U. S. ZAFPS A STUDY OF THE ORBITAL VARIABILITY OF Z CAM TORRES-PEIMBERT SILVIA U.N.A. DE MEX MEXICO NPFST HIGH DISPERSION UV SPECTROSCOPY OF THE PLANETARY NEBULA NGC 3918 TREMAINE SCOTT D. MIT U. S. GHFST THE EXTENT OF A HOT GASEOUS GALACTIC HALO TURNSHEK DAVID A. PITTSBURGH U. S. QSFDT LYMAN CONTINUUM OBSERVATIONS OF BROAD ABSORPTION LINE QSOS GSFC UNDERHILL ANNE B. SGFAU U. S. SPOTTED SURFACES ON LUMINOUS EARLY-TYPE STARS WALDRON WAYNE DELAWARE U. S. CCFWW CORONAL EFFECTS ON THE WINDS OF EARLY TYPE STARS WEEDMAN DANIEL W. PENN ST. QSFDW U. S. STAR FORMATION IN NGC 1068 WEGNER GARY A. DARTMOUTH U. S. WDFGW A SEARCH FOR METAL LINES IN THE ULTRAVIOLET SPECTRA OF WHITE DWARFS

- WILLS BEVERLEY J. TEXAS U.S. OSFBW THE CONTINUUM ENERGY DISTRIBUTIONS OF INTERMEDIATE REDSHIFT QUASARS
- WING ROBERT F. OHIO ST. U. S. CSFRW A SEARCH FOR MOLECULAR ABSORPTION FEATURES IN THE PHOTOSPHERIC SPECTRA OF COOL STARS

0	2	1	2	R	1	Ĥ	1
~	Æ.,		æ.,	0	1	v,	×.,

2/28/8	3.3		£				•	
		NASA APPROVED	IUE PROGRAMS FO	R THE SIXTH Y	EAR			
	NAME TITLE		INSTITUTION	COUNTRY	PROG ID			
	WOOTTEN INVESTI	H. ALWYN IGATION OF NEUTRAL C	NRAD IRCUMNEBULAR MAT	U. S. ERIAL IN PLAN	NPFHW			
	WORDEN COORDIN	SIMON P. NATED MAGNETIC AND C	AIR FORCE SP. HROMOSPHERIC/COR	U. S. ONAL SYNOPTIC	CCFSW OBSERVATIONS			
	WORRALL COORDIN	DIANA M. NATED MULTIFREQUENCY	CAL SAN DIEGO OBSERVATIONS OF	U. S. VARIABLE AGN	BLFDW			
	WU ULTRAVI	CHI-CHAO IOLET OBSERVATIONS O	CSC F THE BLUE STAR	U. S. PROJECTED IN	NSECW THE REMNANT OF SUP	ERNOVA AD 1006		
	WU TARGET	CHI-CHAO OF OPPORTUNITY OBSE	CSC RVATIONS OF NOVA	U.S. AND X-RAY NO	CVFCW			
	WU PHOTOME	CHI-CHAO TRIC STANDARDS FOR	CSC SPACE TELESCOPE	U.S. INSTRUMENTS	HSFCW			
	WU Short 1	CHI-CHAO TIME VARIATIONS IN T	CSC HE MASS-LOSS RAT	U.S. E OF EARLY TY	MLFCW PE STARS			
	WU UV OBSE	CHI-CHAO ERVATIONS OF LOW RED	CSC SHIFT QUASARS	U. S.	QSFCW			

- YORK DONALD G. CHICAGO U. S. IGFDY DISTANCES OF 21 CM HIGH VELOCITY (DORT) CLOUDS
- YORK DONALD G. CHICAGO U.S. EHFDY ABSORPTION MEASURE OF GAS IN GALACTIC HALOS
- ZINN ROBERT YALE U.S. GCFRZ INTEGRATED SPECTRA OF GLOBULAR CLUSTERS IN M31 AND THE FORNAX DWARF GALAXY
- MARIE-CHRISTIN W CONNECTICUT U.S. ZOLCINSKI CCFMZ IUE SURVEY OF HYADES STARS, PART IV: THE K AND M DWARFS

¥ ¥ * ¥ * * * * × 01 Oct 82 - 01 Feb 83 ¥ * × pue ¥ ¥ ¥ ¥ 58 7qA 05 - 58 7qA 10 ¥ ∗ × ¥ × ¥ × ¥ × ¥ sapemi to pol A921IV ¥ * × * ¥ * * ¥ PROGRAMME REFERENCE NUMBERS FOR THE PROGRAMME IDENTIFICATION IN THIS LISTING CAN BE FOUND IN I U E E S A NEWSLETTER NO. 13 (JUNE 1982), PAGE 43.

×.

Χ.

THE CLASSIFICATION IS SUPPLIED BY D STICKLAND FOR USE ONLY WITHIN THE PROJECT

• •	011N	50	R.N. OR S TYPES
00		51	LONG PERIOD VARIABLE STARS
01	CARIN	52	TODECHLAR VARTABLES
02	MUUN	52	DECHLAR VARIARIES
03	PLANET	53	
04	PLANETARY SATELLITE	24	CLACETCAL NOVAE
05	MINOR PLANET	50	LLASSICAL NUVAE
06	COMET	50	SUPERNUVAE
07	INTERPLANETARY MEDIUM	57	SYMBIULIC SLAND
08		58	T TAURI
09		59	X-RAY
	· · · · ·	60	CHELL STAP
10	WC	44	STA CADINAE
11	k N	61	DIL CADINAL
12	MAIN SEQUENCE D	OC	PULSAR
13	SUPERGIANT O	63	NUVA=LINC
14	OE	64	STELLAR OBJECT NUT INCLUDED ABOVE
15	OF	65	
16	SD 0	66	,
17	WD D	67	1
18		68	
19	UV=STRONG	69	
			STANDA NEDULA & CENTRAL STAR
20	BO-B2 V-IV	10	PLANEIARY NEOULA + CENTRAL, STAP
21	B3-B5 V-IV	71	PLANETARY NEBULA = CENTRAL STAR
22	86-89,5 V-IV	72	H II REGION
23	B0-B2 III-I	73	REFLECTION NEBULA
24	83-85 III-I	74	DARK CLOUD (ABSORTION SPECTRUM)
25	86-89.5 III-I	75	SUPERNOVA REMNANT
26	BF	76	RING NEBULA (SHOCK IONISED)
27	aP	77	
28	SD8	78	
20	WDB	79	
<u> </u>			
30	AO-A3 V-IV	80	SPIRAL GALAXY
31	44-49 V-IV	81	ELLIPTICAL GALAXY
32	AO=A3 ITI=I	82	IRREGULAR GALAXY
22	A4-A9 TTT-I	83	GLOBULAR CLUSTER
14	AF	84	SEYFERT GALAXY
15	A M	85	QUASAR
35	AP	86	RADIO GALAXY
77		87	BI LACERTAE DBJECT
31	RD A	86	EMISSION LINE GALAXY (NON-SEYFERT)
20	CONCOSTE	20	ANARALI BING STRUCK STRUCTURES AND
24	CONFUSIE T.	07.	
40	F0-F2	90	INTERGALACTIC MEDIUM
41	F3=F9	91	
42	FP	92	
43	LATE TYPE DEGENERATE STARS.	93	
44	G (TO 1FF879); GIV-VI (FROM 1FE879)	94	
45	G T-TI (FROM 1FEB79)	95	
46	K (TO IFFR79); K TV+VI (FROM IFFR79)	96	
A 7	K T_TIT (FROM 1FFR79)	97	
цŔ	H (TO IFERTOS: M DAARES (FH IFERTO)	591	WAVELENGTH CALIBRATION (NASA LOG)
10	M T-TIT (FROM 1FER79)	99	NULLS AND FLAT FIELDS (NASA LOG)
P0 7	IL THE TRY ALLOUD TO BUILD		

CLASSIFICATION OF OBJECTS USED IN THE JOINT ESA/SRU LOG UF IUE OBSERVATIONS

I

.

EXPOSURE CLASSIFICATION CODES

SINCE 1 AUG 78 A TWO-DIGIT CODE HAS BEEN USED TO DESCRIBE EXPOSURE Levels. This code occupies the first two character positions of the Comment Field.

DIGIT 1: EXPOSURE LEVEL OF CONTINUUM DIGIT 2: EXPOSURE LEVEL OF EMISSION LINES

THE CLASSIFICATIONS BELOW APPLY TO BOTH:

0: NOT APPLICABLE 1: NO SPECTRUM VISIBLE 2: FAINT SPECTRUM; MAX DN < 20 ABOVE BACKGROUND 3: UNDEREXPOSED: MAX DN < 100 ABOVE BACKGROUND 4: WEAK; MAX DN BETWEEN 100 AND 150 ABOVE BACKGROUND 5: GOOD: NO SATURATION BUT MAX DN OVER 150 ABOVE BACKGROUND 6: A BIT STRONG: A FEW PIXELS SATURATED 7: SATURATED FOR LESS THAN HALF THE SPECTRUM 8: MOSTLY SATURATED BUT SOME PARTS USABLE 9: COMPLETELY SATURATED

ON 1 SEP 79 A FURTHER DIGIT WAS ADDED TO DESCRIBE THE LEVEL OF THE BACKGROUND, THE: MEAN DN GIVEN BY A SUBSET HISTOGRAM OF WIDTH 2 PIXELS BETWEEN:

SWP 550,130 AND 685,310 AND LWR 160,195 AND 90,300

HAS BEEN CODED AS FOLLOWS: (LIMITS INCLUSIVE)

1.1		
0	DN<50	
1	21 < DN < 30	bl Ers Farmers
2	31 < 0 N < 40	
3	41 < DN < 50	
4	50 < DN < 60	The second
5	60 < DN70	
6	71 < DN < 80	
7	80 <dn<90< th=""><th>2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1</th></dn<90<>	2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1
8	91 < DN < 100	
9	DN>101	
X	SATURATED	
		A DECEMBER OF A

10.00

- 7
| OBJECT | CL | MAG | R, | Α. | DEC | D | С | IMAGE | A | | DATE | EXPOSURE | TIME | PRO | ECC |
|--|--------------------------------------|--|--------------------------------------|--|---|--------------------------------------|-----------------------|---|-------|--------|--|--|---|--|---------------------------------|
| 47 TUC
47 TUC
0045-735
0045-735
0046-735 | 16
16
22
22
22 | 10.30
10.30
13.10
13.10
13.40 | 00 2
00 2
00 4
00 4
00 4 | 1 54
21 54
5 05
5 05
6 24 | -72 2
-72 2
-73 2
-73 2
-73 2 | 1 L
1 L
5 L
5 L
7 L | 32322 | 16855
13101
16699
12964
12965 | | 000000 | 82APR29
82APR29
82APR06
82APR06
82APR06 | 07:29:00
06:39:00
07:12:00
06:09:00
08:57:00 | 0016:00
0016:00
0075:00
0060:00
0046:00 | EA170
EA170
EM210
EM210
EM210
EM210 | 402
502
400
503
202 |
| 0046-735
0048-737
0048-737
0052-730
0052-730 | 22
21
21
22
22 | 14.40
11.10
11.10
12.25
12.30 | 00 4
00 4
00 4
90 5
00 5 | 6 24
18 49
18 49
52 20
52 20 | -73 2
-73 4
-73 4
-73 0
-73 0 | 7 L
4 L
2 L
2 L | 22323 | 12972
12973
16707
12963
16698 | レレレレレ | | 82APR07
82APR07
82APR07
82APR06
82APR06 | 03:05:00
06:29:00
06:16:00
03:50:00
04:35:00 | 0150:00
0008:00
0010:00
0040:00
0050:00 | EM210
EM210
EM210
EM210
EM210
EM210 | 305
602
500
603
500 |
| HD 5394
NGC 416
HD 18352
0312-770
NGC 1466 | 20
83
20
85
83 | 02.60
11.40
07.00
15.90
11.60 | 00 5
01 0
02 5
03 1
03 4 | 53 40
56 38
55 49
12 56
14 48 | +60 2
-72 3
+61 0
-77 0
-71 5 | 7 H
7 L
5 H
3 L
0 L | 33333 | 16694
16747
16708
16816
16686 | SLLLL | | 82APR05
82APR11
82APR07
82APR23
82APR03 | 06:36:00
02:58:00
08:06:00
02:41:00
02:35:00 | 0000:11
0408:00
0100:00
0425:00
0432:00 | EA080
GLOBC
EM210
UK 427
GLOBC | 501
304
701
343
203 |
| SK-70 36
SK-70 36
SK-70 36
SK-70 36
HD 32630 | 59
59
59
59
21 | 13.20
13.20
13.20
13.20
13.20
03.30 | 05 0
05 0
05 0
05 0
05 0 |)1 39
01 39
)1 39
01 39
01 39
)3 00 | -70 3
-70 3
-70 3
-70 3
+41 1 | 8 L
8 L
8 L
8 L
0 L | 32231 | 16740
12998
12981
16718
01514 | | | 82APR10
82APR10
82APR08
82APR08
82APR08
82APR05 | 03:33:00
02:33:00
04:50:00
03:23:00
05:53:00 | 0065:00
0055:00
0055:00
0065:00
0065:00 | EI108
EI108
EI108
EI108
PHCAL | 501
504
503
501
502 |
| HD 34816
HD38666
HD34816
0537-441
LMC X-1 | 20
00
00
85
59 | 04.30
00.00
00.00
14.00
14.50 | 05 1
05 1
05 1
05 3
05 4 | 17 16
17 16
17 16
37 21
40 05 | -13 1
-13 1
-13 1
-44 (
-69 4 | 4 L
3 H
3 H
17 L
16 L | 1
1
1
3
2 | 01512
01511
01513
16829
1299 9 | | | 82APR05
82APR05
82APR05
82APR25
82APR25
82APR10 | 04:30:00
03:20:32
05:04:35
03:05:00
05:02:00 | 0000:01
0000:41
0000:20
0402:00
0135:00 | PHCAL
PHCAL
PHCAL
UK370
EI108 | 502
503
502
203
405 |
| LMC X-1
LMC X-1
HD 38666
LWP1509
R MON | 59
59
12
00
44 | 14.50
14.50
05.20
00.00
00.90 | 05 4
05 4
05 4
05 4
05 4 | 40 05
40 05
44 08
44 08
36 26 | -69 4
-69 4
-32 1
-32 1
+08 4 | 16 L
16 L
19 L
19 H
17 L | 3
3
1
1
2 | 16741
16719
01510
01509
13006 | | 000 | 82APR10
82APR08
82APR05
82APR05
82APR01
82APR12 | 07:21:00
06:36:00
02:47:00
02:31:00 | 0145:00
0191:00
0002:32
0140:00 | EI108
EI108
PHCAL
PHCAL
EC223 | 301
402
502
342 |
| R MON
NGC 2261
HD 63032
HD 63032
HD 63032 | 44
73
47
47
47 | 00,90
00,00
03,60
03,60
03,60 | 06
06
07
07
07
07 | 36 26
36 26
43 28
43 28
43 28 | +08
+08
-37
-37
-37 | 47 L
47 L
51 L
51 L | 32233 | 16749
13007
12925
16675
16675 | | | 82APR12
82APR12
82APR01
82APR01
82APR01 | 04:54:00
08:06:00
02:34:00
03:19:14
02:57:09 | 0180:00
0087:00
0015:00
0015:00
0015:00 | EC223
EC223
EC140
EC140
EC140 | 201
202
702
401
601 |
| 04.40129
HD 71129
1004+130
NGC 4125
MK 198 | 9 47
9 47
9 85
9 81
9 84 | 01.90
01.90
14.00
12.00
14.50 | 08
08
10
12
12 | 21 29
21 29
04 45
05 42
06 43 | -59
-59
+13
+65
+47 | 21 H
21 H
24 L
27 L
20 L | 2323 | 12926
16676
16824
13025
16842 | | | 82APR01
82APR01
82APR24
82APR25
82APR15 | 04:32:00
04:36:00
03:36:00
02:42:00
02:57:00 | 0001:00
0001:00
0371:00
0420:00
0410:00 | EC140
EC140
UK427
EE184
UK370 | 552
551
333
308
224 |

OBJECT	CL	MAG	R	.A.	14.9	DE	C	D	C	IMAGE	A	0	DATE	EXPOSURE	TIME	PRO	ECC
3C 273	85	12.90	12	26	33	+02	20	н	3	16786	L	0	82APR18	02:04:00	0792:00	UK 447	339
3C 273	85	12.90	12	26	33	+02	20	Η	3	16791	L	0	82APR19	01:25:00	0825:00	UK 447	339
HD109551	47	04.90	12	32	38	+70	18	Η	2	12928	L	0	B2APR01	09:20:00	0023:00	EC140	331
HD109551	47	04.90	12	32	38	+70	18	Η	2	12927	L	0	82APR 01	06:41:00	0030:00	EC140	332
HD109551	47	04.90	12	32	38	+70	18	L	3	16678	L	0	B2APR01	07:17:00	0120:00	EC140	701
NGC 4889	81	14.00	12	57	44	+28	15	L	1	01524	L	0	82APR16	03:18:00	0368:00	EE184	203
ETA UMA	21	01.80	13	45	34	+49	34	Η	1	01531	L	0	82APR20	07:55:00	0000:06	PHCAL	603
HD124448	21	10.00	14	11	47	-46	03	Η	3	16782	L	0	82APR17	03:07:00	0270:00	EA015	512
HD124448	21	10.00	14	11	47	-46	03	H	2	13036	L	0	82APR17	07:41:00	0124:00	EA015	413
HD135345	45	05.20	15	12	46	-41	18	Η	3	16677	L	0	82APR01	05:20:00	0030:00	EC140	501
+33 2642	20	10.80	15	50	01	+33	05	L	1	01525	L	0	82APR20	03:15:00	0003:00	PHCAL	503
+33 2642	20	10.80	15	50	01	+33	05	L	1	01526	L	0	82APR20	03:46:00	0004:00	PHCAL	603
HD143454	57	09.80	15	57	25	+26	04	Η	1	01536	L	0	82APR30	03:18:00	0307:00	PHCAL	036
NGC 6254	16	13.40	16	54	30	-04	02	L	2	13100	L	0	82APR29	03:09:00	0090:00	EA170	603
NGC 6254	16	13.45	16	54	30	-04	02	L	3	16854	L	0	82APR29	04:44:00	0060:00	EA170	502
HD155763	25	03.50	17	80	38	+65	47	Н	1	01533	L	0	824PR20	09:00:00	0000:25	PHCAL	402
HD155763	25	03.50	17	08	38	+65	47	Η	1	01532	L	0	82APR20	08:33:00	0000:25	PHCAL	400
HD157451	10	10.60	17	21	47	-43	27	Η	3	16835	L	0	82APR26	03:18:00	0389:00	EA093	243
ROB 162	16	13.30	17	36	48	-53	39	L	2	13092	L	0	82APR28	03:01:00	0008:00	EA170	302
ROB 162	16	13,30	17	36	48	-53	39	L	3	16846	L	0	82APR28	03:13:00	0393:00	EA170	303
HD164284	20	04.80	17	57	47	+04	22	Н	3	16697	S	0	82APR05	09:30:00	0004:30	EA080	701
NGC 6626	16	14.00	18	33	18	-23	58	L	2	13102	L	0	82APR29	09:08:00	0028:00	EA170	002
NVA AQUI	55	13.00	19	20	50	-02	24	L	3	16730	L	0	82APR09	08:13:00	0094:00	VILSP	231
NVA AQUI	55	13.00	19	20	50	-02	24	L	3	16729	L	0	82APR 09	02:52:00	0180:00	VILSP	242
NVA AQUI	55	13,00	19	20	50	-02	24	L	2	12990	L	0	82APR09	06:10:00	0120:00	VILSP	340
NVA AQUI	55	13.00	19	20	50	-02	24	L	2	13063	L	0	82APR22	06:56:00	0167:00	VILSP	105
NVA AQUI	55	13.00	19	20	50	-02	24	L	3	16811	L	0	82APR22	02:44:00	0240:00	VILSP	151
HM SGE	57	11.00	19	39	41	+16	38	H	3	16754	L	0	82APR13	06:25:00	0050:00	EI127	130
HM SGE	57	11.00	19	39	41	+16	38	H	2	13014	L	0	82APR13	07:35:00	0128:00	EI127	264
HM SGE	57	11,00	19	39	41	+16	38	L	2	13013	L	0	82APR13	05:19:00	0060:00	EI127	483
HM SGE	57	11,00	19	39	41	+16	38	L	3	16753	L	0	82APR13	04:01:00	0075:00	EI127	380
HM SGE	57	11.00	19	39	41	+16	38	L	3	16752	L	0	82APR13	03:01:00	0015:00	EI127	26
HM SGE	57	11.00	19	39	41	+16	38	L	2	13012	S	0	82APR13			EI127	363
HM SGE	57	11.00	19	39	41	+16	38	L	2	13012	L	0	82APR13	L BE CA		EI127	233
HBV 475	57	13.00	20	49	03	+35	24	L	3	16760	L	0	82APR14	02:49:00	0050:00	EI167	14(
HBV 475	57	13.00	20	49	03	+35	24	L	2	13020	L	0	82APR14	03:43:00	0065:00	EI167	353
HBV 475	5 57	7 13.00	20	49	03	+35	24	H	3	16761	3 L	0	82APR14	08:48:30	0000:02	EI167	132
HD200120	20	04.70	20	58	07	+47	20	L	3	16696	S	0	82APR05	08:45:13	0000:01	EA080	501
110000100	1 70	0 0 70	20	58	07	+47	20	1	7	16696	II.	0	920PP05	08.48.30	0000.02	EANON	501

									75							
OBJECT	CL	MAG	R.A		DE	C	D	C	IMAGE	A		DATE	EXPOSURE	TIME	PRO	ECC
HD200120 HD200120	20 20	04.70	20 58	07	+47 +47	20	L	222	12952	SL	0	82APR05 82APR05	08:51:33 08:54:35	0000:01	EA080 EA080	402
HD200120 +28 4211 +28 4211 +28 4211	20 20 16 16	04.70 10.50 10.50	20 58 20 58 21 48 21 48 21 48	07 56 56	+47 +28 +28 +28	20 38 38 38	n H L L	3 2 1 1	12951 01530 01529 01529			82APR05 82APR05 82APR20 82APR20 82APR20	07:42:00 07:42:00 06:48:00	0001:30	EA080 PHCAL PHCAL PHCAL	502 403 503 703
HD214680 HD214680	13 13 +++-	04.90 04.90	22 37 22 37	01 01	+38 +38 +++++	47		1	01528 01527	L L F++	0	82APR20 82APR20 ++++++++	05:09:00 04:37:00	0000:36	PHCAL PHCAL	402 503 +++
NULL	00	00,00	00 00	00	+00	00	L	1	01728			82NOV15	10,40,47	0002.04	PHCAL	
CALUV1207 NULL NULL NULLIMAGE ULL2NDREA	00 00 00 00	00.00 00.00 00.00 00.00 00.00	00 00 00 00 00 00 00 00	00 00 00 00 00	+00 +00 +00 +90 +00	00 00 00 00	LLL	11221	01723 01729 14636 14802 01727			82NOV15 82NOV15 82NOV15 82DEC07 82NOV15	16:09:54	0004:08	PHCAL PHCAL PHCAL EE049 PHCAL	
CALUV20% NULL CALUV60% NULL	00 00 00 00	00.00 00.00 00.00 00.00	00 00 00 00 00 00 00 00	00 00 00 00 00	+00 +00 +00 +00	00 00 00 00	L H L	1 2 1 1	01722 14888 01721 01707	L	0	82NOV15 62DEC24 82NOV15 82NOV08	15:36:13 15:01:16	0000; 41 0002:04	PHCAL PHCAL PHCAL EE255	
NULL CALVU160% FLOOD1005 NULLREAD NULL	00 00 00 00 00	00.00 00.00 00.00 00.00 00.00	00 00 00 01 00 00 00 00 00 00	00 00 00 00 00 00	+00 +00 +00 +00 +00	00 00 00 00 00	L L L	1 1 2 2	01720 01726 01725 14632 14635			82N0V15 82N0V15 82N0V15 82N0V15 82N0V15	18:00:29 17:18:28	0005:31 0001:40	PHCAL PHCAL PHCAL PHCAL PHCAL	
FL00D100% 60%CALUV MRK335 MRK335 MRK335	00 00 84 84 84	00.00 00.00 13.80 13.80 13.80	00 00 00 00 00 03 00 03 00 03	00 00 00 00 00 00 00 00 00 00 00 00 00	+00 +00 +19 +19 +19 +19	00 00 55 55 55		223322	14634 14633 18463 18462 14555	L L L	0 0 0	82N0V15 82N0V15 82N0V03 82N0V03 82N0V03	13:19:59 12:54:51 16:37:53 13:13:58 17:23:00	0000:22 0001:51 0040:00 0045:00 0100:00	PHCAL PHCAL EE231 EE231 EE231	351 351 554
MRK335 MRK335 NGC40 NGC40 NGC40	84 84 70 70 70	13.80 13.80 11.00 11.00 11.00	00 03 00 03 00 10 00 1 00 1	3 45 3 45 0 16 0 16 0 16	+19 +19 +72 +72 +72	55 55 14 14 14	LLHLL	23322	14554 18464 19081 15104 15104	LLSL	0 0 0 0	82NOV03 82NOV03 83JAN25 83JAN25 83JAN25	14:04:57 19:14:12 12:11:46 15:18:55 15:39:47	0160:00 0030:00 0180:00 0016:00 0016:00	EE231 EE231 EA165 EA165 EA165	664 351 331 222 342
AKN120 500014+81 HD2151 HD2151	84 85 44 44	09.93 16.50 02.69 02.66	00 1 00 1 00 2 00 2	3 37 4 04 3 09 3 09	-00 +81 -77 -77	12 18 32 32	LLHH	2322	15056 18728 14929 14930	L L L	0 0 0 0	83JAN15 82DEC04 82DEC27 82DEC27	12:13:38 10:49:28 10:33:29 11:13:07	0095:00 0418:00 0015:00 0015:00	SEYFE EE159 EC004 EC004	551 002 752 752

	OBJECT	CL	MAG	1	R . A	1	DE	EC	D	С	IMAGE	A		DATE	EXPOSURE	E TIME	PRO	ECC
	HD2151	44	02.68	00	23	09	-77	32	н	2	14931	L	0	82DEC27	11:56:32	0015:00	EC004	752
	HD2151	44	02.69	กก	23	89	-77	32	н	2	14933	L	0	82DEC27	13:15:06	0015:00	EC004	752
	HD2151	44	02.69	00	23	09	-77	32	H	2	14932	L	0	82DEC27	12:35:48	0015:00	EC004	752
	HD2665	45	07.60	00	27	58	+56	47	L	2	14879	S	0	82DEC23	11:42:25	0012:00	EC067	402
	HD2665	45	07.60	00	27	58	+56	47	L	2	14879	L	0	82DEC23	11:59:35	0015:00	EC067	602
	HD2665	45	07.60	00	27	58	+56	47	L	3	18871	L	0	82DEC23	10:23:58	0075:00	EC067	201
	RTSCL	66	10,50	00	33	59	-25	56	L	3	18331	L	0	820CT19	18:08:25	0024:00	EI073	301
•	KISUL CDOOD	20	10.00	00	33	57	-20	20	L	2 2	14445	L	0	8200119	19:26:03	0101.00	ELU/S	500
	35270 SB290	20	10,30	00	40	30 70	-30	24	H	2	19761	1	0	8200120	20:06:20	0101:00	EA115	491
	SB290	28	10,30	00	40	30	-38	24	H	2	14464	Ĺ	0	820CT22	18:47:51	0082:00	EA115	403
	AF-AND	52	14.50	0.0	4 1	48	+40	55	1	2	14756	ī	n	820030	13:53:44	0316:00	FA007	203
	M31	52	14.50	00	40	48	+40	55	L	3	18687	L	0	82N0V29	13:15:58	0391:00	EA007	303
	SK7	24	12.66	00	44	00	-73	56	L	2	14964	L	0	82DEC30	16:58:26	0035:00	EM129	503
	AV-126	23	13.50	00	50	46	-72	55	L	2	14947	L	0	82DEC29	11:38:28	0060:00	EM129	501
	AV-126	23	13.50	00	50	46	-72	55	L	3	18908	L	0	82DEC29	12:42:33	0100:00	EM129	501
	HD5394	26	02.20	00	53	40	+60	26	Н	3	19097	L	0	83JAN27	12:17:15	0000:08	EA080	511
	HD5448	30	04.00	00	53	58	+38	13	H	3	18569	L	0	82N0V16	13:35:31	0010:00	EA115	500
	HD5448	40	04,00	00	53	58	+38	13	H	2	14644	L	0	82N0V16	13:07:34	0005:00	EA115	502
	HU3448	30	04.00	00	00 57	38 50	+38	13	L.	20	14643	5	n	02NUN16	12:01:04	0000:07	EALLD	402
	100440	50	07.00	00	00	50		10	L	F	1-0-0	-	U	ULROVIO	16,67,110	0000.07	LHIIJ	002
	HD5448	30	04.00	00	53	58	+28	13	H	3	18568	S	0	82N0V16	12:37:49	0000:30	EA115	500
	HD5448	30	04.00	00	53	58	+28	13	H	3	18568	L	0	82NOV16	12:34:55	0000:09	EA115	500
	5K/6	23	12.80	00	57	16	-72	48	L.	3	18910	L	0	BZDEC29	17:10:24	0040:00	EM129	501
	AU398	23	13.85	00	04	35	-72	12	L	2	14747	ĩ	ñ	82DEC.30	11:00:49	0110:00	EM129	505
									-	_								
	AV398	23	13.85	01	04	35	-72	12	L	3	18911	L	0	82DEC30	12:53:19	0220:00	EM129	401
	HU0302 UD4502	44	03,90	01	04	55	+04	40	L	20	13138	5	U	83JAN28	12143148	0001:00	STAND	002
	HD6961	31	84,58	01	08	02	+54	53	L	23	18684	L	0	82N0V28	12:40:10	0001100	0 STAND	500
									_	Ī		_		02.107.20				
	OL0109-38	84	14.40	01	69	Ű 9	-38	20	L	3	18374	L	0	820CT23	15:31:36	0375:00	EE258	232
	ULU109-38	84	00.00	01	09	09	~38	20	Ļ	2	14469	F	U	8200123	15131136	0375:00	EE258	118
	SK142	23	13,00	01	07	10	-72	50	L	3	10909	L	U	820EC29	10:10:00	0025:00	EM129	201
	MKN1152	84	15.00	01	11	21	-15	06	Ē	3	18956	L	0	83.TANOS	12:48:27	0174:00	EE266	231
							••			-			-				the first for the	
	FAIRAL9	84	13.20	01	21	51	-59	03	Ļ	3	18506	Ļ	0	82N0V08	13:57:52	0050:00	EE255	361
	FAIKALY	84	13.20	01	21	- 31 - 77	-39	0.5	L	2	14085	L	U	82N0VU8	13:04:24	0020:00	EE200	442
	NULL	00	00,00	01	30	21	+30	19	1	2	14684			82N0U11			EA007	
			~~!~	4				• /	-	-	1 100 1			SERGAT1				

	_					_											
OBJECT	CL	MAG	F	R.A.	,	DE	C	D	С	IMAGE	A		DATE	EXPOSURE	TIME	PRO	ECC
M33VAR83	53	14.30	01	31	21	+30	19	L	1	01718	L	0	82NOV11	13:28:34	0365:00	EA007	402
HD13267	24	05.79	02	07	58	+57	24	L	3	18887	S	0	82DEC25	14:53:47	0005:00	STAN1	700
HD13267	24	05.79	02	07	58	+57	24	L	3	18887	Ĺ	0	82DEC25	15:04:34	0005:33	STAN1	600
HD13267	24	05.87	02	07	58	+57	24	L	2	14906	S	0	82DEC25	15:20:58	0001:00	STAN1	502
HD13267	24	05.87	02	07	58	+57	24	L	2	14906	L	0	82DEC25	15:25:09	0001:25	STAN1	
																	502
HD13841	23	07.39	02	13	15	+56	47	Η	3	18512	L	0	82N0V09	15:12:20	0125:00	EM236	501
HD13866	23	07.49	02	13	27	+56	29	Η	3	18513	L	D	82N0V09	17:55:02	0112:00	EM236	501
HD14422	29	08.50	02	18	17	+57	09	L	2	14769	L	0	82DEC02	17:22:09	0006:20	EI189	602
HD14443A	23	08.50	02	18	27	+56	55	L	2	14766	S	0	82DEC02	13:07:58	0007:00	EI189	402
HD14443A	23	00.00	02	18	27	+56	55	L	2	14766	L	0	82DEC02	13:17:50	0007:00	EI189	702
HD14443	23	08.40	02	18	27	+56	55	L	2	14767	S	0	82DEC02	14:05:05	0006:00	EI189	702
									_			_					112210-01211
HD14443	23	08.40	02	18	27	+56	55	L	2	14767	L	0	82DEC02	14:15:02	0006:00	EI189	802
HD14443	23	08.40	02	18	27	+56	55	L	3	18706	L	0	82DEC02	14:24:22	0004:00	EI189	500
HD14520	29	09.20	02	19	10	+56	51	L	2	14768	S	D	82DEC02	15:10:51	0028:00	EI189	703
HD14520	29	09.20	02	19	10	+56	51	L	2	14768	L	0	82DEC02	15:43:48	0021:00	EI189	80
HD14520	29	09.20	02	19	10	+56	51	L	3	18707	L	0	82DEC02	16:09:18	0025:00	EI189	800
70440	04	17 00	0.2	20	0.2	140	45	ĩ	7	10400		0	0205001	11.40.00	0755.00	00414	707
SCOOD NCC10/0	00	17 (0	02	20	06	196	40	E.	3	10070	L.	0	OCUELUI	10,20,51	0010100	FB014	203
NGCINO	84	13.00	02	40	00	-00	13	÷	Ľ	14040	- L-	0	DONOUOO	18:28:01	0004:00	EE200	303
NPC1098	84	13.70	02	40	07	-00	13	Ļ	3	18008	÷	U	82NUVU8	19:22:15	0023:00	EE200	240
NODANO	84	00.00	02	40	07	-00	10	L	4	14386	-	u n	82NUVU8	18:40:32	0023:00	EECOD	7 4 73
NGC1068	84	13.70	02	40	07	-00	13	L	1	01709	L	U	82NUVU8	18:46:32	0023100	EE200	342
HD17505	12	07.40	02	47	15	+60	12	L	3	18796	S	n	82DEC14	16:59:00	0002:00	FE214	400
HD17505	12	00.00	02	47	15	+60	12	ĩ	3	18796	Ē	0	82DEC14	16:28:15	0001:00	EE214	
HD17505	12	07.40	02	47	15	+60	12	н	2	14835	Ē	n	820FC14	15:15:03	0070:00	FE214	504
HD17505	12	07.40	02	47	15	+60	12	ï	2	14836	ī	n	820FC14	17:04:23	0000:45	EE214	502
BD60/594	12	09.00	02	53	05	+61	12	H	2	14834	Ē	0	82DEC14	10:33:49	0180:00	EE214	404
HD18352	20	07.00	02	55	48	+61	05	Н	3	18795	L	0	82DEC14	14:00:52	0060:00	EE214	500
TWHOR	50	05.60	03	11	17	-57	30	L	2	15115	L	0	83JAN26	10:56:34	0170:00	EC152	335
TW-HOR	50	05.60	03	11	17	-57	30	L	2	14940	L	0	82DEC28	15:06:31	0153:00	EC152	335
NGC1275	84	13.20	03	16	29	+41	19	L	2	14475	L	0	820CT24	15:16:14	0150:00	EE255	344
NGC1276	84	00.00	03	16	29	+41	19	L	3	18384	L	0	820CT24	17:52:30	0232:00	EE255	241
									_			_					
NGC1275	84	13.60	03	16	29	+41	19	L	3	18447	L	0	82N0V01	13:24:04	0145:00	EE255	331
NGC1275	84	13.50	03	16	2.9	+41	19	L	5	18488	L	U	BZNUVU6	12:57:13	0210100	EE200	342
NGC1275	84	13.50	03	16	29	+41	19	Ļ	3	18392	Ļ	0	820CT25	19:23:10	0142:00	EE255	331
HD21291	25	04.03	03	25	00	+37	46	L	5	19998	L	U	BZDEU25	16:33:43	0006:00	STANI	800
HD21291	25	04.00	03	20	UU	+37	46	L	2	14907	5	U	8202020	16:42:38	0002:00	SIANI	000
																	002
HD21291	25	04.05	03	25	00	+59	46	L	2	14907	L	0	82DEC25	16:48:02	0002:34	STAN1	802
HD22928	24	03.00	03	39	21	+47	37	L	2	15103	L	0	83JAN25	11:39:42	0000:01	STAND	502
HD22928	24	02.66	03	39	21	+47	37	L	3	18889	L	0	82DEC25	17:28:43	0000:02	STAN1	501

											· · · · ·						
OBJECT	CL	MAG	Ĭ	R.A.		DE	EC	D	C	IMAGE	A		DATE	EXPOSURE	E TIME	PRO	ECC
HD23432		05.80	n3	42	55	+24	23		2	15137	S	0	83.TAN28	11:52:12	0000:30	STAND	702
HD23432	22	05.80	03	42	55	+24	23	L	2	15137	L	Ō	83JAN28	11:46:01	0000:32	STAND	502
NGC1553	80	10.50	04	15	05	-55	54	L	3	18478	L	0	82N0V05	12:25:38	0441:00	EE098	204
N1553BACK	80	10,50	04	15	05	-55	54	L	2	14566	L	0	82N0V05	12:55:18	0037:00	EE098	002
HD28319	40	03.60	04	25	48	+15	45	L	3	18390	S	0	820CT25	16:08:51	0000:40	STAN2	500
HD28319	40	03.60	04	25	48	+15	45	L	3	18390	L	0	8200125	16:01:39	0000:31	STAN2	700
HD28319	40	03.60	04	25	48	+15	45	L	2	14483	S	٥	820CT25	15:44:20	0000:10	STAN2	452
HD28319	40	03.60	04	25	48	+15	45	L	2	14483	L	0	820CT25	15:34:07	0000:09	STAN2	702
NGU1667	81	13.70	04	46	10	-06	24	L	3	18771	Ļ	0	82DEC10	11:57:17	0389:00	EE276	304
AB-AUK	54	07.00	04	52	34	+30	28	Н	3	18987	Ľ	U	BSJAN11	09:39:00	0367:00	EA107	412
HD-HUK	34	07.00	04	32	34	430	28	n	2	12038	Ļ	U	BODANII	08:01:08	0043:00	EMI07	400
ABAUR	34	07.20	04	52	34	+30	28	Η	2	14497	L	0	820CT26	14:36:57	0045:00	EA100	453
ABAUR	34	07.20	04	52	34	+30	28	L	3	18405	Ł	0	820CT26	16:46:33	0003:00	EA100	501
ABAUR	34	07.20	04	52	34	+30	28	L	3	18406	L	0	820CT26	18:20:44	0003:00	EA100	501
ABAUR	34	07.20	04	52	34	+30	28	Н	2	14498	L	0	820CT26	15:57:29	0045:00	EA100	553
ABAUK	34	07.20	04	52	34	+30	28	Н	2	14500	L	0	820CT26	18:52:41	0045:00	EA100	453
ABAUR	34	07.20	04	52	34	+30	28	Η	2	14501	L	٥	820CT26	20:14:55	0045:00	EA100	553
ABAUR	34	07.20	04	52	34	+30	28	L	3	18404	L	0	820CT26	15:26:06	0003:00	EA100	501
ABAUR	34	07.20	04	52	34	+30	28	L	3	18408	L	0	820CT26	21:03:58	0003:00	EA100	500
AB-AUK	34	07.00	04	52	34	+30	28	L	2	15039	Ļ	U	83JAN11	10:08:55	0300:00	EA107	000
AD AUK	34	07.20	04	52	34	+30	28	n	2	14499	ì.	U	8206126	17131:41	0043:00	EAIUU	004
ABAUR	34	07.20	64	52	34	+30	28	L	3	18407	L	٥	820CT26	19:42:01	0003:00	EA100	501
EPSAUR	40	03.60	04	58	22	+43	45	Н	2	14646	L	0	82NOV16	16:05:23	0050:00	E1039	743
EP SAUR	40	03,60	04	58	22	+43	45	Η	3	18571	L	0	82N0V16	16:59:21	0055:00	EI039	331
EPSAUR	40	03.60	04	58	22	+43	45	Ł	3	18570	S	0	82NOV16	15:49:04	0010:00	EI039	431
EPSAUR	40	03,60	04	58	22	+43	45	L	3	18570	L	0	82N0V16	15:04:17	0040:00	EI039	731
EPSAUR	40	03.60	04	58	22	+43	45	Н	2	14645	L	0	82N0V16	14:42:42	0015:00	EI039	402
HD31964	33	03.65	04	58	22	+43	45	Н	2	15127	L	0	83JAN27	13:04:06	0060:00	EM242	713
HD31964	33	04.00	04	58	22	+43	45	Н	2	15128	L	0	83JAN27	15:20:49	0020:00	EM242	512
HD31964	33	04.00	04	58	22	+43	45	H	3	19098	L	0	83JAN27	14:07:19	0070:00	EM242	331
HD32630	21	03.30	05	03	00	+41	10	L	3	18721	L	0	82DEC03	17:24:11	0000:01	PHCAL	500
HD32630	21	03.30	05	03	00	+41	10	H	3	18720	L	0	82DEC03	16:57:37	0000:35	PHCAL	701
HD32630	21	03.30	05	03	00	+41	10	Н	2	14778	L	0	82DEC03	16:43:12	0000:23	PHCAL	502
HD32630	21	03.30	05	03	80	+41	10	L	2	14777	L	0	82DEC03	16:14:35		PHCAL	502
AKN120	84	13.30	05	13	36	-00	12	L	3	18784	L	0	82DEC12	16:37:56	0070:00	EE252	341
AKN120	84	15.30	05	13	36	-00	12	L	2	14825	Ł	U	820EC12	15:34:11	0050:00	EE222	453
AKN120	84	08.89	05	13	37	-00	12	L	2	15055	L	0	83JAN15	01:51:58	0100:00	SEYFE	002
AKN120	84	12,80	05	13	37	-00	12	L	2	14869	L	0	82DEC22	12:36:08	0070:00	SEYFE	441
AKN120	84	12.80	05	13	37	-00	12	L	3	18855	L	0	82DEC22	10:52:11	0100:00	SEYFE	350

										79)						
OBJECT	CL	MAG	R	.Α.		DE	C	D	С	IMAGE	A		DATE	EXPOSURE	TIME	PRO	ECC
AKN120 AKN120	84 84	12.50 12.80	05 05	13 13	37 39	+00 -00	12 12	L	3 3	19004 18856	LS	0	83JAN15 82DEC22	13:53:02 13:50:36	0115:00 0110:00	SEYFE SEYFE	351 341
HD36521 GSL1-12 GSL1-12 GSL1-12 ANORI	10 13 13 13 58	12.30 12.60 12.60 12.60 12.60 11.80	05 05 05 05 05	26 26 26 26 30	47 57 57 57 47	-68 -68 -68 -68 -68 -68	52 52 52 52 32	HLLL	33322	19059 19060 19060 15090 15013	L S L L	0 0 0 0	83JAN22 83JAN22 83JAN22 83JAN22 83JAN22 83JAN07	10:06:46 15:25:30 14:48:42 14:15:08 08:45:48	0240:00 0023:00 0032:00 0030:00 0030:00	EM162 EM162 EM162 EM162 EC279	332 400 700 602 332
ANORI P1404 P1404 HD37043 HD37043	58 58 58 14 14	11.80 12.40 12.41 02.80 02.80	05 05 05 05 05	30 31 31 32 32	47 49 49 59 59	-05 -05 -05 -05 -05	32 38 38 56 56	LLL	3 3 2 2 3	18962 18963 15014 15102 19080	LLLL	0 0 0 0	83JAN07 83JAN07 83JAN07 83JAN25 83JAN25	08:22:58 12:16:49 11:43:20 10:24:11 10:15:10	0120:00 0190:00 0030:00	EC279 EC279 EC279 STAND STAND	331 231 331 502 601
N63A N63A R127 R127 R 127	75 75 510 510 510	00.00 00.00 1.00 0.1.00 0.1.00	05 05 05 05 05	35 35 36 36 37	40 40 54 54 06	-66 -66 -69 -69 -69	03 03 31 31 32	HLLLH	33232	18545 18546 14713 18649 14712	LLSLL	0 0 0 0	82NOV13 82NOV13 82NOV24 82NOV24 82NOV24 82NOV24	13:11:16 14:16:48 19:35:37 19:04:49 12:47:10	0045:00 0330:00 0010:00 0005:00 0372:22	EM126 EM126 EI012 EI012 EI012 EI012	121 152 503 300 508
R127 R127 R127 R127 R127 MKN492	52 52 52 52 88	00.00 00.00 00.00 00.00 15.00	05 05 05 05 05	37 37 37 37 37 41	09 09 09 09 22	-69 -69 -69 -69 +23	31 31 31 31 22	LLHL	223333	14830 14829 18790 18789 18816	L L L L	0 0 0 0	82DEC13 82DEC13 82DEC13 82DEC13 82DEC13 82DEC18	14:50:48 12:04:48 15:04:28 11:44:08 10:38:40	0005:30 0010:00 0163:00 0015:00 0429:00	EA025 EA025 EA025 EA025 EA025 EE251	501 701 303 501 103
CNORI CNORI OMET1969I OMET1969I OMET1969I	54 54 90 06 06	12.60 12.60 00.00 12.50 12.50	05 05 06 06 06	49 49 07 07 07	40 40 14 14 32	-05 -05 +26 +26 +26	25 25 22 22 22 22		23323	14680 18611 18497 14579 18498			82NOV20 82NOV20 82NOV07 82NOV07 82NOV07 82NOV07	19:12:20 19:40:58 14:34:41 16:11:51 16:56:33	0020:00 0007:00 0015:00 0040:00 0007:30	E1079 E1079 ES284 ES284 ES284	401 301 000 222 030
SSAUR SSAUR HD46703 HD46703 HD46703	54 54 41 41	11.40 11.40 08.90 08.90 08.90	06 06 06 06 06	09 09 33 33 33	35 35 49 49 49	+47 +47 +53 +53 +53	45 45 33 33 33	LLLLL	23322	14679 18610 18872 14880 14880	L L S L	0 0 0 0 0	82NOV20 82NOV20 82DEC23 82DEC23 82DEC23	17:05:00 17:33:09 12:52:40 13:35:48 13:59:32	0020:00 0026:00 0040:00 0010:00 0015:00	EI079 EI079 EC067 EC067 EC067	601 701 201 302 402
HD 47432 HD 47432 HD 47432 HD 47432 HD 47432 HD 48097	20 20 20 20 30	06.20 06.20 06.20 06.20 05.20	06 06 06 06 06	36 36 36 36 39	02 02 02 02 29	+01 +01 +01 +01 +17	39 39 39 39 41		22333	15136 15136 19110 19110 18572	S L S L L	0 0 0 0	83JAN28 83JAN28 83JAN28 83JAN28 83JAN28 82NOV16	10:55:39 10:50:04 10:23:05 10:16:04 18:42:16	0000:18 0000:20 0001:00 0000:51 0018:00	STAND STAND STAND STAND EI039	502 502 701 501 500
HD48097 HD48097	30 30	05.20 05.20	06 06	39 39	29 29	+17 +17	41 41	HL	22	14648 14647	Լ Լ	0 0	82NOV16 82NDV16	19:12:53 18:39:43	0013:00 0000:12	EI039 E1039	502 502

										80)						
OBJECT	CL	MAG	1	R.A		DI	EC	D	С	IMAGE	A		DATE	EXPOSURI	TIME	PRO	E
UD40007	70	05 00	04	70	20	1 4 77	A 4		7	40577	1	0	0010047	10.70.01	0000.40	C7070	
HD4607/	30	02.20	00	37	60	+1/	41	1	3	10075	L	U O	BZNUV16	19:38:01	0000:40	E1037	1
HD50896	11	06,90	06	52	08	-23	51	L	3	18835	L	0 0	82DEC20	11:33:34	0000:02	EA143	
				0.7 144								-				priz tu	
HD50896	11	06.90	06	52	08	-23	51	Н	2	14855	L	٥	82DEC20	11:06:12	0004:00	EA143	4
HD50896	11	06.90	06	52	08	-23	51	н	3	18836	L	0	82DEC20	12:30:29	0001:00	EA143	
HD50896	11	06.90	06	52	08	-23	51	H	3	18834	L	0	82DEC20	10:39:01	0005:00	EA143	
HD57061	13	04.40	07	16	37	-24	51	L	3	19079	S	0	83JAN25	08:50:45	0000:01	STAND	
HD57061	13	04,40	07	16	37	-24	51	L	3	19079	L	0	83JAN25	08:50:45	0000:01	STAND	
HD57061	13	04.40	07	16	37	-24	51	L	2	15101	L	0	83JAN25	08:58:09	0000:01	STAND	1
HD64414	26	05.00	07	31	30	-14	24	H	3	18980	L	0	83JAN10	11:42:24	0030:00	PHCAL	
HD64414	26	05.00	07	31	30	-14	24	L	3	18979	S	0	83JAN10	10:12:35	0004:00	PHCAL	
HD64414	26	05.00	07	31	30	-14	24	L	3	18979	L	0	83JAN10	10:08:27	0000:20	PHCAL	
HD64414	26	05.00	07	31	30	-14	24	L	1	01765	L	0	83JAN10	12:17:44	0000:15	PHCAL	
HD64414	26	05.00	07	31	30	-14	24	1	2	15070	1	п	97 TAN1 0	10.50.57	0000-19	PHCAL	
NIII	0.0	99 99	07	31	30	-14	24	H	2	15032	1	ñ	RTAN10	07107107	000010	PHCAL	
HDSAALA	26	05.00	07	31	30	-14	24	н	2	15031	ĩ	n	83.TAN10	19.39.21	0020:00	PHCAL	
HD64414	26	05.00	07	31	30	-14	24	H	3	18978	1	ñ	83.TAN10	09:04:13	0030:00	PHCAL	
HD64414	26	05.00	07	31	30	-14	24	Н	1	01764	L	0	83JAN10	11:08:19	0020:00	PHCAL	
10.0057	24	0/ 70	07	70	07	EO	20		4	01705	0	0	07741171	00.50.45	0000.40	DUCAL	
HD60/03	21	06.70	07	36	07	-50	20	L.	1	01/03	5	0	DJJHNJ1	00:02:40	0000:10	PHCAL	
ND60733	21	00.70	07	20	07	-00	20	1	1	01703	-	0	00JMR01	17.14.70	0000100	PHEML	
HD60/03	21	00.07	07	36	00	-30	20	PI	17	10000	E C	0	DODECOD	14,20,10	0010:00	PHCAL	
HD60753	21	05.95	07	32	08	-50	28	L	3	18898	D	0	82DEC27	14:27:10	0000:30	PHCAL	
					2.5												
NULL	00	00.00	07	32	08	-50	28	Н	3	18717			82DEC03			PHCAL	
HD60753	5 21	06.70	07	32	08	-50	28	L	3	18714	S	0	82DEC03	11:53:42	0000:30	PHCAL	
HD60753	21	06.70	07	32	08	-50	28	L	3	18714	L	0	82DEC03	11:49:53	0000:10	PHCAL	
HD60753	\$ 21	06.70	07	32	08	-50	28	L	2	14775	L	0	82DEC03	11:18:46	0000:03	PHCAL	
HD60753	21	06.70	07	32	08	-50	28	L	2	14774	S	0	82DEC03	10:46:52	0000:21	PHCAL	
HD60753	21	06.70	07	32	08	-50	28	L	2	14774	L	0	82DEC03	10:40:59	0000:07	PHCAL	
HD60753	5 21	06.70	07	32	08	-50	28	H	3	18716	L	0	82DEC03	12:52:38	0010:00	PHCAL	
HD60753	21	06.70	07	32	08	-50	28	н	2	14776	L	0	82DEC03	12:25:54	0010:30	PHCAL	
HD60753	3 21	05.95	07	32	08	-50	28	L	2	14934	S	0	82DEC27	14:39:49	0000:21	PHCAL	
HD60753	21	05.95	07	32	08	-50	28	L	2	14934	L	0	82DEC27	14:43:57	0000:03	PHCAL	
CALLIVART		00.00	07	32	08	-50	28	н	3	18718			82DFC03			PHCAL	
FLODD1007	00	00.00	07	32	08	-50	28	H	3	18719			82DEC03			PHCAL	
HD60757	1 21	06.70	07	32	08	-50	28	1	3	18715	l.	0	B2DEC03	12:19:17	0000:04	PHCAL	
L745-46	41	300.00	07	38	00	-17	17	L	2	14719	L	ō	82N0V25	13:11:43	0100:00	EA014	
BD+75325	5 16	08.81	08	04	43	+75	06	L	2	14936	L	0	82DEC27	17:28:31	0000:24	PHCAL	

						-		-		-	-					Mary state
OBJECT	CL	MAG	R.	Α.	DI	EC	D	С	IMAGE	A		DATE	EXPOSURE	TIME	PRO	ECC
BD+75325 BD+75D325 BD+75325 BD+75325 BD+75325 BD+75325	16 16 16 16	08.83 9.50 08.75 08.82 08.82	08 0 08 0 08 0 08 0	14 43 14 43 14 43 14 43	+75 +75 +75 +75 +75	06 06 06 06	HLLH	32323	18883 15153 18900 14890 19141		000000	82DEC24 83JAN30 82DEC27 82DEC24 83TAN30	17:32:11 12:20:05 17:25:08 17:29:41 12:12:25	0000;14 0001:14 0000:14 0000:24	PHCAL FA183 PHCAL PHCAL FA183	000 442 500 000 440
HD67594 HD67594 HD67594 HD67594 NGC2537	45 45 45 45 82	04.40 04.40 04.40 04.40 12.00	08 0 08 0 08 0 08 0 08 0	16 04 06 04 06 04 06 04 06 04	-02 -02 -02 -02 +46	50 50 50 50 50		22223	15134 15134 15135 15135 18927	SLSLL	000000	83JAN28 83JAN28 83JAN28 83JAN28 83JAN28 83JAN28	08:37:37 08:24:28 09:07:55 09:07:55 09:22:15	0001:30 0000:25 0002:00 0002:00 0385:00	STAND STAND STAND STAND STAND EE169	402 302 502 702 302
PD-481577 PD-481577 PD-481577 PD-481577 PD-481577 PD-481577	52 52 52 52 52 52	09.80 09.80 09.80 09.80 09.80	08 1 08 1 08 1 08 1 08 1	13 49 13 49 13 49 13 49 13 49	-49 -49 -49 -49 -49 -49	04 04 04 04 04	HLLLH	23233	14656 18580 14657 18578 18579		000000	82N0V17 82N0V17 82N0V17 82N0V17 82N0V17 82N0V17	16:27:34 19:00:49 19:00:49 12:51:31 13:23:59	0150:00 0002:00 0002:00 0002:30 0002:30 0180:00	EI075 EI075 EI075 EI075 EI075	605 600 502 600 602
PD-481577 ZCAM ZCAM ZCAM ZCAM CDS99	52 54 54 54 70	09.80 11.50 11.50 11.50 11.50 10.40	08 1 08 1 08 1 08 1 08 1	13 49 15 41 15 41 15 41 15 41) -49) +73) +73) +73) -36	04 16 16 16 03		223322	14655 14678 18608 18609 15089	レレレレレ	000000	82N0V17 82N0V20 82N0V20 82N0V20 83JAN22	12:57:15 15:09:25 14:52:10 15:47:47 08:53:44	0001:30 0019:00 0012:00 0040:00 0015:00	EI075 EI079 EI079 EI079 EM162	502 501 301 501 112
COS99 TFLOOD TFLOOD MK392 MK392	70 00 00 37 37	10.40 99.99 99.99 15.20 15.20	08 08 08 08 08	19 00 53 5 56 10 56 1 56 1) -36 1 +33) +33) +33) +33) +33	03 06 08 08 08	LHHLL	2 2 2 2 2 2	19058 19139 15151 19140 15152			83JAN22 83JAN30 83JAN30 83JAN30 83JAN30	08:33:58 09:44:02 10:54:23	0015:00 0060:00 0024:00	EM162 FA183 FA183 FA183 FA183	110 21 331
HD77581 HD77581 IC2448 IC2448 IC2448	59 59 70 70 70	06.90 06.90 12.50 12.50 12.50	09 09 09 09 09 09	00 1: 00 1 06 3 06 3 06 3	5 -40 3 -40 7 -69 7 -69 7 -69	21 21 44 44		23233	14852 18823 15096 19067 19068	LLLS	000000000000000000000000000000000000000	82DEC19 82DEC19 83JAN23 83JAN23 83JAN23 83JAN23	13:46:13 11:13:10 11:32:31 08:28:48 15:27:02	0000:40 0150:00 0230:00 0180:00 0020:00	EA087 EA087 EM162 EM162 EM162 EM162	502 501 235 271 330
GC2784BAC NGC2784 HD80081 HD80081 HD80081	80 80 36 36 36	11.50 11.50 03.78 03.78 03.78	09 09 09 09 09	10 0 10 0 15 4 15 4 15 4	5 -23 5 -23 3 +37 3 +37 3 +37 3 +37	58 58 01 01		M M M M M	14561 18471 18354 18354 18353	LLSLS	000000000000000000000000000000000000000	82N0V04 82N0V04 820CT21 820CT21 820CT21	14:35:48 14:16:05 16:00:51 15:53:14 15:07:11	0280:00 0331:00 0000:45 0000:15 0000:35	EE098 EE098 EA115 EA115 EA115	002 103 700 700 501
HD80081 HD80081 HD80081 HD80081 HD80081 HD80081	36 36 36 30 30	03.78 03.78 03.78 03.80 03.80	09 09 09 09 09	15 4 15 4 15 4 15 4 15 4	3 +37 3 +37 3 +37 4 +37 4 +37	01 01 05 05	LLLHH	NGNNG	18353 14456 14456 19127 15145	LSLL		820CT21 820CT21 820CT21 83JAN29 83JAN29	15:02:58 15:15:22 15:11:20 12:50:25 12:42:15	0000:06 0000:05 0000:05 0006:20 0004:30	EA115 EA115 EA115 FA179 FA179	501 602 402 501 602

OBJECT	CL	MAG	R.A		DE	C	D	C	IMAGE	A		DATE	EXPOSURE	TIME	PRO	ECC
ana kan mali pan din oni pat ana ana a			4											and the late are true and last or	, (and beek and now age and a	
HD83754 HD83754 HD83754 HD83754 HD83754	21 21 21 21	04.34 04.34 04.33 04.33	09 37 09 37 09 37 09 37 09 37	54 54 54 54 54	-14 -14 -14 -14	06 06 06 06		3322	18884 18884 14903 14903	SLSL	0000	82DEC25 82DEC25 82DEC25 82DEC25 82DEC25	10:47:30 10:52:30 10:58:42 11:02:36	0000:08 0000:09 0000:04 0000:05	STAN1 STAN1 STAN1 STAN1	601 501 502 502
HD84937	40	08.20	09 46	12	+13	59	L	2	14881	S	٥	82DEC23	16:12:02	0007:00	EC067	502
HD84937 HD84937 NULL 00957+56	40 40 00	08.20 07.78 00.00	09 46 09 46 09 57	12 12 57 57	+13 +13 +56	59 59 08		2321	14881 18873 14839 01744	LLL	0000	82DEC23 82DEC23 82DEC15 82DEC15	15:55:16 15:12:01	0010:00 0040:00	EC067 EC067 EE251 EE251	702 701
ULL IMAGE	00	99.99	10 16	59	+20	06	L	2	15046	-	0	83JAN13	11,11,70	00/0/00	EE208	076
UV1032+40 UV1032+40 UV1032+40 UV1032+40 UV1032+40 NGC3351	20 20 20 20 812	11.50 11.50 11.50 11.50 2.5.00	10 32 10 32 10 32 10 32 10 32	2 18 2 18 2 18 2 18 2 18 19	+40 +40 +40 +40 +11	36 36 36 36 58	HLLHL	22222	18355 18356 18356 14457 18628	LSLL	000000000000000000000000000000000000000	820CT21 820CT21 820CT21 820CT21 820CT21 82NOV22	16:56:21 21:32:28 21:26:14 19:11:02 15:03:00	0130:00 0003:00 0001:40 0130:00 0284:00	EA115 EA115 EA115 EA115 EA115 EE130	402 400 400 304 302
NGC3351 HD93521 HD93521 HD93521 HD93521 NULL	81 12 12 12 79	2.5.00 07.30 07.00 07.00 07.00	10 41 10 45 10 45 10 45 10 50	19 5 34 5 34 5 34 5 34 5 34) 23	+11 +37 +37 +37 +04	58 50 50 50 53	LLLH	2 1 1 3	14695 01789 01788 01788 18806	LLSL	00000	82NOV22 83JAN31 83JAN31 83JAN31 82DEC16	12:48:33 12:28:13 11:58:08 11:53:34 10:25:20	0130:00 0000:11 0000:09 0000:03 0012:00	EE130 PHCAL PHCAL PHCAL EE251	306 242 502 602
1050+04 1050+04 HD94848 CD-347151 P1103-006 HD96548	80 88 26 58 85 11	13.50 15.00 08.70 10.40 16.50 00.00	10 50 10 50 10 50 10 50 11 00 11 00) 28 3 28 3 58 9 30 3 58 4 18	+04 +04 -60 -34 -00 -65	53 53 07 26 36 14		312332	18807 01769 14625 18967 19048 14857	LLLLS	0000000	82DEC16 83JAN13 82NOV14 83JAN08 83JAN20 82DEC20	11:25:24 10:08:05 16:27:14 09:02:58 09:27:45 15:30:35	0382:00 0333:00 0003:01 0404:00 0380:00 0000:45	EE251 EE208 EI203 EC279 EE044 EA143	413 405 502 163 343 551
HD96548 HD96548 HD96548 HD96548 HD96548 HD96548	11 11 11 11 11	00.00 07.90 07.90 07.90 07.90	11 04 11 04 11 04 11 04 11 04	4 18 4 18 4 18 4 18 4 18 4 18	-65 -65 -65 -65 -15	14 14 14 14	L H H H H	23233	14857 18838 14856 18837 18851		000000	82DEC20 82DEC20 82DEC20 82DEC21 82DEC21 82DEC21	15:30:28 14:35:33 14:00:16 13:15:33 16:57:06	0000:20 0033:00 0025:00 0040:00 0050:00	EA143 EA143 EA143 EA143 EA143 EA143	551 451 441 451 471
HD96548 HD96548 HD98922 HD98922 HD98922	11 25 26 25	07.90 07.90 07.20 07.20 07.20	11 04 11 0 11 20 11 2 11 2	4 18 4 18 0 13 0 13 0 13	-65 -65 -53 -53 -53	14 14 05 05	H H L H L	32233	18850 14865 14624 18554 18553		000000	82DEC21 82DEC21 82NOV14 82NOV14 82NOV14	15:24:44 16:09:26 12:45:15 13:35:31 12:45:15	0040:00 0030:00 0001:00 0120:00 0003:00	EA143 EA143 EI203 EI203 EI203	451 452 602 541 550
NGC3690 HD99946 HD99946	82 66 66	12.00 07.10 07.10	11 2 11 2 11 2	5 41 7 25 7 25	+58 +30 +30	50 14 14	L L L	333	18935 19031 19030	L L L	000	83JAN02 83JAN18 83JAN18	08:57:33 14:47:30 12:53:02	0410:00 0060:00 0090:00	EE169 EI240 EI240	403 731 731

and some output and the same set of the last			-		-		-	-	-			-					
OBJECT	CL	MAG	R	.A.		DE	C	D	C	IMAGE	A		DATE	EXPOSURE	TIME	PRO	ECC
		n Mar ann aid ain				-					-	-		n and the later of this and any 199 An			
HD99946	66	07.10	11	27	25	+30	14	L	3	19028	L	0	83JAN18	09:00:00	0090:00	EI240	731
HD99946	66	07.10	11	27	25	+30	14	L	3	19029	L	0	83JAN18	10:59:00	0090:00	EI240	731
HD99946	66	07.30	11	27	26	+30	14	L	3	19011	L	0	83JAN16	14:18:22	0090:00	EI240	831
HD99946	66	07,10	11	27	26	+30	14	L	3	19008	L	0	B3JAN16	08:32:30	0090:00	EI240	831
HD99946	66	07.30	11	27	26	+30	14	L	3	19010	L	0	83JAN16	12:22:48	0090:00	EI240	831
HD99946	66	07.30	11	27	26	+30	14	L	3	19009	L	0	83JAN16	10:28:14	0090:00	EI240	831
NGC3783	84	00.00	11	36	33	-37	27	L	2	14921	L	0	82DEC26	14:30:57	0090:00	EE252	464
NGC3783	84	00.00	11	36	33	-37	2 7	L	3	18894	L	0	82DEC26	16:05:53	0101:00	EE252	351
BHCEN	66	10.60	11	36	49	-63	08	L	2	14444	L	0	820CT19	21:20:30	0006:00	E1073	502
BHCEN	66	10.70	11	36	49	-63	08	L	3	18332	L	0	820CT19	20:43:16	0008:30	EI073	401
HD105058	36	08.80	12	03	11	+49	57	L	2	15147	L	0	83JAN29	15:25:14	0004:30	FA179	502
HD105058	36	08.80	12	03	11	+49	57	L	3	19129	L	0	83JAN29	15:34:21	0013:00	FA179	400
01206+459	85	15.80	12	06	26	+45	57	L	3	19074	L	0	83JAN24	09:17:27	0390:00	EE257	202
NGC4151	84	12.00	12	08	00	+39	41	L	2	14574	L	0	82N0V06	18:18:17	0040:00	EE255	563
NGC4151	84	12.00	12	08	00	+39	41	L	3	18490	L	0	82N0V06	19:02:06	0045:00	EE255	351
NGC4151	84	12.00	12	08	00	+39	41	L	3	18489	L	0	82N0V06	17:41:23	0025:00	EE255	350
NGC4151	84	12.00	12	08	00	+39	41	L	2	14573	L	٥	82N0V06	17:07:53	0030:00	EE255	452
HZ21	17	14.20	12	11	25	+33	13	L	2	15154	L	0	83JAN30	14:24:04	0040:00	FA183	443
HZ21	17	14.20	12	11	25	+33	13	-	3	19142	L	0	83JAN30	13:52:52	0025:00	FA183	550
HZ21	00	10.67	12	11	25	+33	13	L	3	19143	L	0	83JAN30	15:10:35	0037:00	FA183	550
NGC4314	81	3.1.00	12	20	01	+30	10	L	2	14704	L	0	82N0V23	13:14:40	0120:00	EE130	305
NGC4314	813	3.1.00	12	20	01	+30	10	L	3	18637	L	0	82N0V23	15:19:47	0047:00	EE130	201
NGC4314	813	3,1,00	12	20	01	+30	10	L	2	14705	L	0	82N0V23	16:11:28	0213:00	EE130	307
HD108767	22	02.64	12	27	16	-16	14	L	2	14904	L	0	82DEC25	12:18:52	0000:02	STAN1	502
HD108767	22	02,62	12	27	16	-16	14	L	3	18885	L	0	82DEC25	12:11:50	0000:04	STAN1	500
HD110411	30	05.00	12	39	21	+10	30	L	2	15143	S	0	83JAN29	09:56:33	0000:13	FA179	502
HD110411	30	05,00	12	39	21	+10	30	L	2	15143	L	0	83JAN29	09:52:44	0000:05	FA179	502
HD110411	30	05.00	12	39	21	÷10	30	L	3	19125	S	0	83JAN29	10:09:06	0000:35	FA179	600
HD110411	30	05.00	12	39	21	+10	30	L	3	19125	L	0	83JAN29	09:59:56	0000:13	FA179	500
HD11786	30	06.20	12	49	17	-26	28	L	3	19124	S	0	83JAN29	08:40:09	0005:00	FA179	700
06.20786	30	06,20	12	49	17	-26	28	L	3	19124	L	0	83JAN29	08:35:01	0001:25	FA179	500
06.20481	23	08.40	12	54	43	-49	30	Η	3	18918	L	0	82DEC31	12:32:34	0195:00	EC004	601
HD111786	30	06.20	12	91	72	-26	28	L	2	15142	S	0	83JAN29	08:29:05	0001:00	FA179	562
HD111786	30	06.20	12	91	72	-26	28	L	2	15142	L	0	83JAN29	08:25:23	0000:20	FA179	452
DMET1982G	06	14.00	13	04	16	+32	54	L	3	18499	L	0	82N0V07	18:01:59	0015:00	ES284	030
06.2082G	90	00.00	13	04	16	+32	54	L	3	18500	L	0	82N0V07	19:27:38	0015:00	ES284	020
OMET1982G	06	14.00	13	04	16	+32	54	L	2	14580	L	0	82NOV07	18:28:46	0055:00	ES284	043
HD135421B	66	08.60	13	22	42	-37	30	L	3	19022	L	0	83JAN17	09:13:44	0394:00	EI240	303
MKN266	84	14.50	13	36	14	+48	31	L	3	18736	L	0	82DEC05	01:50:04	0418:00	EE189	342

OBJECT	CL	MAG	R	.A.		DE	C	D	С	IMAGE	A		DATE	EXPOSURE	TIME	PRO	ECC
HD119069 HD119069 HD120315 HD120315	23 23 21	08.40 08.40 01.48	13 13 13	38 38 45	53 53 34	-45 -45 +49	35 35 33	HHH	332	18919 18917 14889		000	82DEC31 82DEC31 82DEC24	16:26:56 10:54:52 16:12:31	0040:00 0055:00 0000:06	EC004 EC004 PHCAL	501 701 501
HD120315 1350-00 PG1351+64 PG1351+64	21 80 85 85	01.48 15.00 14.80 14.80	13 13 13 13	45 50 51 51	34 10 46 46	+49 +00 +64 +64	33 22 00 00	HLLL	1333333	18882 18997 18457 18975			82DEC24 83JAN14 82NOV02 83JAN09	16:18:21 10:18:37 17:07:13 08:53:50	0000:05 0325:00 0160:00 0200:00	PHCAL EE208 EE253 EE252	501 221 342 362
NGC5548 NGC5548 NGC5548 NGC5548 NGC5548	84 84 84 84	12.90 13.20 13.00 00.00 00.00	14 14 14 14	15 15 15 15	43 43 43 43 43	+25 +25 +25 +25 +25	22 22 22 22 22 22		32323	18857 15025 18782 14920 18892		00000	82DEC22 83JAN09 82DEC12 82DEC26 82DEC26	17:17:18 12:47:14 10:46:02 11:46:21 10:39:10	0030:00 0060:00 0030:00 0060:00 0060:00	SEYFE EE252 EE252 EE252 EE252 EE252	330 452 330 453 351
NGC5548 NGC5548 NGC5548 A1422+48 A1422+48	84 84 84 84	00.00 13.20 13.20 15.00 15.00	14 14 14 14 14	15 15 15 19 19	43 43 43 38 38	+25 +25 +25 +48 +48	22 22 22 01 01		33313	18893 18976 18976 01760 18951	SSLLL	000000	82DEC26 83JAN09 83JAN09 83JAN06 83JAN05	12:51:06 15:07:33 13:52:34 09:17:30 08:55:09	0060:00 0040:00 0070:00 0150:00 0180:00	EE252 EE252 EE252 EE266 EE266	331 23 351 331 331
HD128167 HD128167 HD128167 HD128167 HD128167 P1510-089	40 40 40 40 85	04.33 04.33 04.32 04.32 16.50	14 14 14 14 14	32 32 32 32 10	30 30 30 30 08	+29 +29 +29 +29 -08	57 57 57 57 57 54		33223	18874 18874 14882 14882 19054	SLSLL		82DEC23 82DEC23 82DEC23 82DEC23 82DEC23 83JAN21	17:27:08 17:23:30 17:34:02 17:31:33 08:59:08	0002:00 0000:35 0000:10 0000:15 0408:00	EC067 EC067 EC067 EC067 EC067 EE044	401 401 402 702 232
SO141-455 HD138749 HD138749 HD138749 HD138749 HD139195	84 26 26 26 46	13.50 04.20 04.20 04.20 61230	15 15 15 15 15	16 30 30 30 30	57 54 54 54 05	-58 +31 +31 +31 +31 +10	45 31 31 31 10	L H H H L	32332	18455 15125 19095 18824 15113			82NOV02 83JAN27 83JAN27 82DEC19 83JAN26	12:56:40 10:21:51 09:50:26 14:48:42 08:29:08	0060:00 0001:15 0001:45 0001:45 0001:45	EE253 EA080 EA080 EA080 EC152	340 512 510 501 512
AFETYREAD ECONDREAD HD147394 HD147394 HZ-HER	99 99 21 21 59	00.00 00.00 03.49 03.64 14.00	15 15 16 16 16	56 56 18 18 56	38 38 14 14 01	+26 +26 +46 +46 +35	57 57 25 25 25	HHLLL	44323	01174 01175 18886 14905 18425		000000000000000000000000000000000000000	82DEC14 82DEC14 82DEC25 82DEC25 82DEC25 820CT29	13:35:00 13:41:28 15:37:04	0000:03 0000:01 0075:00	EE214 EE214 STAN1 STAN1 EI020	500 502 331
HZHER HZ-HER HZ-HER HZ-HER HZHER	59 59 59 59 59	14.30 14.00 14.00 14.00 14.30	16 16 16 16	56 56 56 56 56	01 01 01 01 01	+35 +35 +35 +35 +35	25 25 25 25 25		33223	18524 18426 14517 14518 18525		000000	82NOV10 820CT29 820CT29 820CT29 820CT29 82NOV10	13:48:25 19:55:05 16:57:32 21:13:08 17:35:02	0040:00 0075:00 0174:00 0030:00 0075:00	EI020 EI020 EI020 EI020 EI020 EI020	200 331 335 303 201
HZHER	59	14.30	16	56	01	+35	25	L	3	18526	Ĺ	0	82N0V10	19:12:21	0035:00	E1020	200

- · · · · · · · · · · · · · ·

OBJECT	CL	MAG	R	.A.		DE	C	D	С	IMAGE	A		DATE	EXPOSURE	TIME	PRO	ECC
HZHER HD156074 HD156074 HD159561	59 50 50 31	14.30 07.50 07.60 02.20	16 17 17 17	56 11 11 32	01 56 56 36	+35 +42 +42 +12	25 09 09 35	L L L	2222	14598 15114 14938 14482	L L L L	0000	82NOV10 83JAN26 82DEC28 820CT25	14:34:54 09:31:16 10:34:10 14:28:19	0175:00 0030:00 0070:00 0000:02	EI020 EC152 EC152 STAN2	305 512 453 452
HD162732 HD162732 HD162732 NULL READUV160	26 26 26 00	06.40 06.40 06.40 00.00 09.80	17 17 17 18 18	48 48 48 31 31	44 44 32 33	+48 +48 +48 -26 -26	24 24 24 28 28	HHHLL	332222	18825 19094 15124 14529 14538		00000	82DEC19 83JAN27 83JAN27 820CT31 820CT31	15:28:59 08:27:57 08:56:29 19:26:52	0025:00 0025:00 0022:00	EA080 EA080 EA080 PHCAL PHCAL	501 511 513
UV160 NVASGR82 NULL UV60 V20	00 55 00 00	09.80 09.80 09.80 09.80 09.80	18 18 18 18 18	31 31 31 31 31	33 33 33 33 33 33	-26 -26 -26 -26 -26	28 28 28 28 28 28		NNNNN	14537 14531 14532 14533 14534		00000	820CT31 820CT31 820CT31 820CT31 820CT31	20:26:39 16:51:42 17:15:46 18:45:56	0005:01 0005:00 0001:53 0038:00	PHCAL PHCAL PHCAL PHCAL PHCAL	562
UV120 UV60 NVASGR82 NVASGR82 NVASGR82	00 00 55 55 55	09.80 09.80 09.80 09.80 09.80 09.80	18 18 18 18 18	31 31 31 31 31	33 33 33 33 33 33	-26 -26 -26 -26 -26	28 28 28 28 28 28		5 2 2 2 2 2 3 5 3 3 3 3 3 3 3 3 3 3 3 3	14535 14536 18439 14530 18440		000000	820CT31 820CT31 820CT31 820CT31 820CT31	19:26:52 19:57:39 15:08:06 15:42:26 16:16:40	0003:46 0001:53 0030:00 0030:00 0060:00	PHCAL PHCAL PHCAL PHCAL PHCAL	450 793 560
NOVAHONDA NOVAHONDA NOVAHONDA NOVAHONDA OMET-BOWE	55 55 55 55 06	09.50 09.50 09.50 09.50 14.50	18 18 18 18 18	31 31 31 31 31	33 33 33 33 51	-26 -26 -26 -26 -22	28 28 28 28 35		33221	18330 18329 14442 14441 01719	レレレレレ	00000	820CT19 820CT19 820CT19 820CT19 820CT19 82NOV12	16:25:23 15:10:14 16:58:36 15:57:15 13:35:39	0030:00 0040:00 0006:00 0025:00 0362:00	EI073 EI073 EI073 EI073 ES058	451 551 562 792 202
AFETYREAD S0141-G55 S0141-G55 HD181470 HD181470	00 84 84 32 32	00.00 13.70 13.70 06.20 06.20	19 19 19 19 19	10 16 16 17 17	52 57 57 15	-22 -58 -58 +37 +37	33 45 45 21 21		21322	14609 01708 18507 15144 15144	LLSL	00000	82NOV12 82NOV08 82NOV08 83JAN29 83JAN29	16:06:49 17:00:23 11:36:14 11:32:19	0050:00 0050:00 0000:40 0000:15	ES058 EE255 EE255 FA179 FA179	452 341 602 502
HD181470 HD181470 HD181470 HD181470 HD181470 NULL	32 32 32 32 00	06.20 06.20 06.20 06.20 06.20	19 19 19 19 19	17 17 17 18 45	15 15 15 15 35	+37 +37 +37 +37 +27	21 21 21 21 21 11	LLHHL	33233	19126 19126 15146 19128 18587	SLLL	00000	83JAN29 83JAN29 83JAN29 83JAN29 83JAN29 82NOV18	11:17:31 11:24:00 13:37:28 14:09:17	0001:40 0000:30 0025:00 0030:00	FA179 FA179 FA179 FA179 FA179 EI075	700 500 503 501
CALUV60% CALUV20% CALUV120% CALUV60% CALUV60%	00 00 00 00	00.00 00.00 00.00 00.00 00.00	19 19 19 19 19	45 45 45 45 45	35 35 35 35 35 35	+27 +27 +27 +27 +27 +27	11 11 11 11 11		NNNNN	18588 18589 18590 18591 18592			82N0V18 82N0V18 82N0V18 82N0V18 82N0V18 82N0V18			EI075 EI075 EI075 EI075 EI075	

.

OBJECT	CL	MA	G	I	A. 5	5.76	DE	C	D	C	IMAGE	A		DATE	EXPOSURE	TIME	PRO	ECC
มกับว่	0.0	0.0	0.0	10	AF	75	107			7	10507			02000010	5 0 1 10	-5 5 3	CT075	
NULL	00	00.	00	19	43	20	127	11	1	2	10070			92NDU19			E1075	
CKVIII	55	19.	0.0	19	45	35	+27	11	ĩ	3 3	18586	1	0	82N0U18	13:16:37	0160:00	E1075	002
NULL	00	00.	00	19	45	35	+27	11	L	3	18595	-		B2NOV18	1011010/	0100100	E1075	
HD188728	36	05.	23	19	53	52	+11	17	Н	2	14449	L	0	820CT20	14:24:52	0015:00	EA115	702
V1016CYG	51(.8.	00	19	55	19	+39	41	L	3	18668	s	0	82N0V27	12:54:33	0002:00	EA024	71
V1016CYG	51	0,8,	00	19	55	19	+39	41	L	3	18668	L	0	82NDV27	12:59:17	0007:00	EA024	151
V1016CYG	57	10.	80	19	55	19	+39	41	L	2	14736	L	0	82N0V27	19:35:02	0005:00	EA024	361
V1016CYG	51	0,8,	00	19	55	19	+39	41	L	3	18669	L	0	82N0V27	13:58:41	0025:00	EA024	382
V1016CYG	51().8.	00	19	55	19	+39	41	L	2	14733	S	0	82N0V27	13:20:46	0003:00	EA024	571
V1016CYG	511	.8.	00	19	55	19	+39	41	L	2	14733	L	0	82N0V27	13:28:29	0025:00	EA024	341
V1016CYG	57	10.	80	19	55	19	+39	41	н	3	18671	L	0	82N0V27	17:00:34	0150:00	EA024	272
V1016CYG	57	10,	80	19	55	19	+39	41	H	2	14735	L	0	82N0V27	15:30:56	0085:00	EA024	265
V1016CYG	57	10.	80	19	55	19	+39	41	Н	3	18670	L	0	82N0V27	15:00:29	0015:00	EA024	151
1016CYGNI	57	10.	80	19	55	19	+39	41	H	2	14734	F	0	82N0V27	14:29:30	0025:00	EA024	052
NGC6853	70	00.	00	19	57	24	+22	35	H	3	18340	L	0	820CT20	15:05:37	0150:00	EA115	131
HD1921163	11	07.	70	20	10	17	+38	12	H	2	14858	Ŀ	0	B2DEC20	17:02:50	0020:00	EA143	451
HD192163	11	07.	70	20	10	17	+38	12	1	2	14864	5	0	82DEC21	14:13:26	0000125	EA145	462
HD172163	11	07.	70	20	10	17	+38	12	L	20	14864	1	0	BEDECEL	14:08:07	0000120	EH143	332
NV172103		07.	10	20	10	1/	+30	12	n	2	14865	-	U	BEDECEI	12:10:12	0030:00	CAI43	452
HD192163	11	07.	70	20	10	17	+38	12	Η	2	14862	L	۵	82DEC21	11:05:10	0020:00	EA143	352
HD192163	11	07.	70	20	10	17	+38	12	L	3	18848	S	0	82DEC21	12:58:38	0000:30	EA143	481
HD192163	11	07.	71	20	10	17	+38	12	L	3	18848	L	٥	82DEC21	12:54:21	0000:50	EA143	361
HD192163	11	07.	70	20	10	17	+38	12	H	3	18849	L	0	82DEC21	13:24:58	0020:00	EA143	360
HD192163	11	07.	70	20	10	17	+38	12	Н	3	18847	L	0	B2DEC21	11:33:01	0040:00	EA143	471
HD192163	11	07.	79	20	10	17	+38	12	Н	3	18846	L	0	82DEC21	10:38:47	0020:00	EA143	350
HD192163	11	07.	70	20	10	17	+38	12	H	3	18840	L	0	82DEC20	17:31:40	0015:00	EA143	351
HD192163	11	07.	70	20	10	17	+38	12	н	5	18839	Ļ	U	B2DEC20	15:28:40	0020:00	EA145	361
HU173443	14	07	24	20	17	01	+38	0/	H	3	18311	1	U	82NUVU9	12:30:33	0113:00	EM236	401
NGLOYUD	70	15.	00	20	20	09	+19	58	н	٢	18366	+	U	8200122	14139115	0200:00	LAIID	242
V1329CYG	51	2.5.	00	20	49	02	+35	23	L	2	14725	L,	0	82N0V26	16:53:51	0085;00	EA024	564
V1329CYG	51	2,5.	00	20	49	02	+35	23	H	3	18660	÷Ľ,	0	82N0V26	13:48:46	0180:00	EA024	142
V1329CYG	51	2,5.	00	20	49	02	+35	23	L	3	18659	L	0	82N0V26	12:39:51	0030:00	EA024	251
V1329CYG	51	2.5.	00	20	49	02	+35	23	L	2	14724	L	0	82N0V26	13:13:21	0030:00	EA024	343
V1329CYG	57	00.	00	20	49	02	+35	23	L	3	18661	L	0	82N0V26	18:22:53	0085:00	EA024	361
D200120	26	04.	70	20	58	07	+47	19	L	3	18827	L	0	82DEC19	17:22:20	0000:01	EA080	500
HD200120	26	04	70	20	58	07	+47	19	H	3	19096	L	0	83JAN27	10:55:21	0001:30	EA080	511
HD200120	26	04.	70	20	58	07	+47	19	H	2	15126	L	0	83JAN27	11:26:25	0001:30	EA080	512
HD200120	26	04	70	20	58	07	+47	19	H	3	18826	L	0	82DEC19	16:50:24	0001:30	EA080	501
HD200120	26	04.	70	20	58	07	+47	19	Н	2	14853	L	0	82DEC19	16:56:02	0001:30	EA080	602

OBJECT	CL	MAG	R	.A.		DE	C	D	C	IMAGE	A		DATE	EXPOSURE	TIME	PRO	ECC
																NH NG D	
KS2135-14	85	15.50	21	35	01	-14	46	L	3	18741	L	0	82DEC06	12:28:59	0318:00	EE049	332
KS2135-14	85	15,50	21	35	01	-14	46	L	1	01739	Ł	0	82DEC07	11:49:58	0352:00	EE049	313
NULLIMAGE	00	00.00	21	40	20	-14	37		1	01738			82DEC07			EE049	
BD+284211	16	09.79	21	48	56	+28	37	L	2	14935	S	0	82DEC27	16:18:22	0003:00	PHCAL	602
BD+284211	16	09.79	21	48	56	+28	37	L	2	14935	L	0	82DEC27	16:14:23	0001:00	PHCAL	502
BD+284211	16	09.79	21	48	56	+28	37	L	2	14887	S	0	82DEC24	10:57:44	0003:00	PHCAL	700
BD+284211	16	09.79	21	48	56	+28	37	L	2	14887	L	0	82DEC24	10:53:47	0001:00	PHCAL	600
BD+284211	16	10.53	21	48	56	+28	37	Η	1	01767	L	0	83JAN10	14:32:09	0068:00	PHCAL	501
BD+284211	16	09.79	21	48	56	+28	37	Н	3	18880	L	0	82DEC24	11:03:48	0045:00	PHCAL	501
BD+284211	16	09,74	21	48	56	+28	37	L	1	01750	S	0	82DEC24	14:24:49	0002:30	PHCAL	501
BD+284211	16	09.74	21	49	56	+28	37	I.	1	01750	1	n	82DEC24	14.41.49	0000.50	PHCAL	501
BD+284211	16	09.82	21	48	56	+28	37	H	1	01749	E.	ñ	S2DEC24	12:19:24	0065:00	PHCAL	503
BD+284211	16	09.80	21	48	56	+28	37	i	3	18881	S	n	82DEC24	13:31:46	0001:18	PHCAL	600
BD+284211	16	09.80	21	48	56	+28	37	ī.	3	18881	ĩ	0	820FC24	13:31:46	0000:26	PHCAL	500
BD+284211	16	09.79	21	48	56	+28	37	L	3	18899	S	0	82DEC27	16:10:40	0001:20	PHCAL	701
										0.7.7.1		-					
BD+284211	16	09.79	21	48	56	+28	37	L	3	18899	L	0	B2DEC27	16:07:26	0000:26	PHCAL	501
HD209481	12	05.60	22	00	23	+57	45	H	3	19113	L	0	83JAN28	15:35:42	0006:00	STAND	501
HD209481	12	05.60	22	00	23	+57	45	L	2	15140	S	0	83JAN28	15:10:43	0000:06	STAND	502
HD209481	12	05.60	22	00	23	+57	45	L	2	15140	L	0	83JAN28	15:06:08	0000:08	STAND	502
HD209481	12	05,60	22	00	23	+57	45	L	3	19112	S	0	83JAN28	15:02:24	0000:14	STAND	660
HD209481	12	05.60	22	00	23	+57	45	L	3	19112	L	0	83JAN28	14:57:32	0000:18	STAND	550
HD210221	32	06.60	22	05	34	+53	03	L	3	18682	L	0	82N0V28	17:57:36	0004:00	STAND	300
HD210221	32	06.60	22	05	34	+53	03	L	3	18683	L	0	82N0V28	18:35:21	0012:00	STAND	500
HD210221	30	06.80	22	05	34	+53	03	L	3	18391	S	0	820CT25	17:30:19	0000:33	STAN2	211
HD210221	30	06.80	22	05	34	+53	03	L	3	18391	L	0	820CT25	17:35:08	0001:45	STAN2	111
HD210221	32	06.60	22	05	34	+53	03	L	2	14744	L	0	82N0V28	18:04:22	0004:02	STAND	702
HD210221	30	06.80	22	05	34	+53	03	L	2	14484	L	0	820CT25	17:58:40	0000:51	STAN2	332
HD210221	32	06.60	22	05	34	+53	03	L	2	14745	L	0	82N0V28	19:05:21	0002:00	STAND	502
HD210839	15	07,60	22	09	48	+59	10	L	2	15139	S	0	83JAN28	13:50:17	0000:09	STAND	602
HD210839	15	07.60	22	09	48	+59	10	L	2	15139	L	٥	83JAN28	13:45:07	0000:09	STAND	502
HD210839	15	07.60	22	09	48	+59	10	L	3	19111	S	0	83JAN28	13:40:44	0000:18	STAND	770
HD210839	15	07.60	22	09	48	+59	10	L	3	19111	L	0	83JAN28	13:35:23	0000:24	STAND	550
L119-34	43	14.40	22	16	10	-65	44	L	2	14743	L	0	82N0V28	13:08:14	0230:00	EA014	306
HD214680	13	04,90	22	37	00	+38	47	L	1	01786	L	0	83JAN31	10:20:55	0000:02	PHCAL	502
HD214680	13	04.98	22	37	01	+38	47	Н	1	01787	L	0	83JAN31	11:05:52	0000:36	PHCAL	502
HD94878	26	08,70	22	44	53	+57	49	L	3	18555	L	0	B2NOV14	16:50:24	0010:00	E1203	601
HD215835	5 26	08.60	22	44	54	+57	49	H	3	18556	L	0	82N0V14	17:58:17	0109:00	EI203	401
HD216598	3 66	08.80	22	51	22	+37	40	L	3	19035	iL	0	83JAN19	08:45:51	0422:00	EI240	233
NGC7475	84	13.10	23	00	44	+08	36	L	2	14550	L	0	82N0V02	15:26:36	0030:00	EE253	343

OBJECT	CL	NAG	F	₹.A	•	DI	EC	D	С	IMAGE	A		DATE	EXPOSURE	TIME	PRU	ECC
NGC7469	84	13.10	23	00	44	+08	36	L	3	18456	L	0	82NOV02	14:42:42	0040:00	EE253	330
NGC7469	84	13.00	23	00	44	+08	36	L	3	18783	L	0	82DEC12	13:06:29	0100:00	EE252	531
NGC7469	84	13.00	23	00	44	+08	36	L	2	14824	L	0	82DEC12	12:03:22	0060:00	EE252	453
CG-2-58-2	84	14.00	23	02	07	-08	57	L	3	18952	L	0	83JAN05	14:09:27	0078:00	EE266	350
CG2-58-22	84	14.00	23	02	07	-08	57	L	2	15001	L	0	83JAN05	12:32:15	0090:00	EE266	334
GC7590NUC	81	13.00	23	16	08	-42	30	L	3	18764	L	0	82DEC09	10:53:48	0413:00	EE276	304
NGC7590	80	13.50	23	16	08	-42	30	L	2	14821	L	0	82DEC11	10:49:39	0412:00	EE276	209
ZAND	57	10.30	23	31	15	+48	32	L	3	18601	S	0	82NOV19	13:16:59	0025:00	EI099	571
ZAND	57	10.30	23	31	15	+48	32	L	3	18601	L	0	82N0V19	12:33:01	0040:00	EI099	361
ZAND	57	10.30	23	31	15	+48	32	L	2	14669	L	0	82NOV19	13:41:31	0020:00	EI099	561
TXPSC	50	05.00	23	43	50	+03	12	L	2	15116	L	0	83JAN26	14:40:31	0065:00	EC152	333
TX-PSC	50	05.00	23	43	50	+03	12	L	2	14939	S	0	82DEC28	14:07:12	0010:00	EC152	102
TX-PSC	50	05.00	23	43	50	+03	12	L	2	14939	L	0	82DEC28	12:45:35	0080:00	EC152	342
SB939	28	10.40	23	57	48	-39	40	H	3	18367	L	0	820CT22	20:36:43	0071:00	EA115	300
			i i i				100 3.7										

ALMAN (2.4 D 1 ... (4) MAN (2.4 D 2 ... (4)

₹°.,

MALL OF CALL

IAU Colloquium No. 81 on the "Local Interstellar Medium"

IAU Colloquium No. 81 on the "Local Interstellar Medium" will be held on 1984 June 4, 5 and 6 (Monday through Wednesday) at the University of Wisconsin, Madison, Wisconsin.

The Scientific Organizing Committee for this conference consists of A. Boksenberg, A. A. Boyarchuk, F. C. Bruhweiler (Co-Chairman), A. D. Code, M. Grewing, Y. Kondo (Chairman), W. Kraushaar, D. C. Morton, M. Oda, M. Peimbert and A. Vidal-Madjar.

The Local Organizing Committee comprises D. McCammon and B. D. Savage (Chairman).

Those interested in participating in this IAU Colloquium are invited to write Y. Kondo at Laboratory for Astronomy and Solar Physics, Goddard Space Flight Center, Greenbelt, MD 20771.

Third NASA IUE Symposium

The third NASA International Ultraviolet Explorer (IUE) Symposium, marking the completion of the first 6 years of the IUE guest observer program, will be held on 1984 April 3, 4 and 5 (Tuesday through Thursday) at Goddard Space Flight Center in Greenbelt, Maryland.

The Scientific Organizing Committee for this meeting consists of T. R. Ayres, R. D. Chapman (Co-Chairman), A. P. Cowley, R. Giacconi, Y. Kondo (Chairman), B. Margon, R. M. Nelson, J. B. Oke, J. C. Raymond, B. D. Savage, G. A. Wegner, and E. J. Weiler (ex-officio).

The Local Organizing Committee comprises S. R. Heap, J. N. Heckathorn, A. V. Holm, J. K. Kalinowski, J. M. Mead (Chairman) and R. J. Panek.

Further plans for this symposium will be announced in the IUE Newsletter. Those who do not currently receive the IUE Newsletter but are interested in participating in this meeting are invited to write R. D. Chapman at Laboratory for Astronomy and Solar Physics, Goddard Space Flight Center, Greenbelt, MD 20771.

ERRORS IN FOREGOING VILSPA LOG

Please inform us by post of all errors or omissions in the log reproduced in this issue. Detach this page, fold and staple it leaving the mailing address (verso) visible.

CAMERA & IMAGE	DISPERSION	APERTURE	TARGET	DATE OF OBSERVATION	WRONG FIELD CONTENTS	CORRECT INFORMATION
					t.	

Dr. A.W. Harris

UK Resident Astronomer

Villafranca Satellite Tracking Station

Apartado 54065

Madrid, <u>Spain</u>

QUESTIONNAIRE FOR NEWSLETTER CIRCULATION

- There is a misprint in my name/address on the present mailing label; the correct version appears below.
- Having become acquainted with the <u>ESA IUE Newsletter</u> through a colleague/library, I would like to be placed on the regular mailing list. My name and address, including the post code, are given below.
- Please delete my name and address (printed below) from the Newsletter distribution list.

NAME:

ADDRESS:

Now tear off this last page and return it to ESA, Paris, in the convenient posting format provided. Simply fold and staple leaving the mailing address (verso) visible. JUESTIONWAIRE FOR NEWSLETTER LIRCULATION

misprint in my nomeladdress on the serf mailing labels the correct viritor appears

v ng bocome acquainted with the LSA LUE Newsletter routh a colloague/library, i would like to be the regular malling list. My name and

delete my "ime and address (printed be

Mrs. S. Babayan European Space Agency 8-10 rue Mario-Nikis 75738 Paris Cedex 15 France

realist posting format provides - limplified and leaving the mating address