$$R_c = (0.079 \pm 0.004)$$
$$R_\star = (1.73 \pm 0.107) R_\odot$$
$$M_\star = (1.25 \pm 0.186) M_\odot$$
$$T_{\text{eff}} = (6322 \pm 143) \text{ K}$$

$$\frac{R_c}{R_\star} = (0.232 \pm 0.125) \text{ g cm}^{-3}$$
$$\rho_c = (0.242 \pm 0.064) \text{ g cm}^{-3}$$
$$T = 11.3155$$
$$N_{\nu} = 7$$

$$T_c = (1493.149659 \pm 0.001571)$$
$$\mu = (0.306 \pm 0)$$
$$R_\mu = (1.36 \pm 0.146) R_\odot$$

$$R = 5.111 \text{ km s}^{-1}$$
$$e = 1.148 \text{ km s}^{-1}$$

$$\text{SN}_c = 30.386885$$
$$\text{SN}_\odot = 0.0009055$$
$$\text{SDE} = 6.529099$$

$$\text{SN}_c = 1.059897$$
$$\text{SN}_\odot = 0.002173$$
$$\text{SDE}_c = 3.920288$$

$$\text{SN}_\odot = 0.007581$$
$$\text{SN}_{\text{corr}} = 0$$

$$\text{Phase}_0 = (1.299)$$
$$\text{Aperture} = 1 \text{ pix}$$

$$\frac{R_c}{R_\star} = (4.933 \pm 0.755)$$
$$\frac{R_c}{R_\star} = (0.789 \pm 0.028)$$

$$\text{Prob.}_\text{RF} = 100\%$$
$$\text{Prob.}_\eta = 66.93\%$$

$$I = (80.802 \pm 1.986)$$

$$\Delta P = 0.071 \sigma$$
$$\text{Cont.} = 3.66\%$$

$$P_{2P} = 1.014767$$
$$P_{2P} = 1.000188$$

$$q = 0.034394$$

$$r = 0.001$$

$$\text{ast.}_\text{gof.} = 13.706$$
$$\text{ast.}_\text{exc} = 0$$

$$\text{ast.}_\text{exc.}_\text{sig} = 0$$