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1 Scope of the TESS Instrument Handbook

This Handbook serves as a detailed description of the TESS instrumentation, both as-
designed and as- own. The Handbook includes discussions of the design and predicted
performance of the instrument, including pre-launch calibration. The Handbook also covers
on-orbit performance, including e ects that could not be measured on the ground.

1.1 Intended Audience

The TESS Instrument Handbook (TIH) was written as a guide to observers working with
TESS data. It was written to include general and more detailed descriptions of the
instrumentation to allow analyses of both the processed and raw instrument data. A
companion document, the TESS Data Analysis Handbook (TDAH), will provide insight into
the details of the data processing pipeline. describing how raw pixel data are transformed
into photometric time series, the theoretical basis of the algorithms used to reduce data,
and a description of residual instrument artifacts after Pipeline processing.

1.2 Document Organization

The Handbook begins with an overview of the TESS mission, instrument, spacecraft, and
orbit. The optical and detector assemblies are described in detail ix3 and x4, and the
Data Handling Unit (DHU) is covered in x5. The ground and on-orbit performance of the
detector assemblies are covered in6. The on-orbit camera performance is described ix7.
The quality of TESS observations is discussed ix8. TESS on-orbit operations are discussed
in x9.

1.3 Document Update Plans

Version 0.1 of the TIH is a draft version that will have been distributed with the rst
release of data from Sectors 1 and 2. While the document is relatively complete, there are
sections that will be expanded, and there are analyses in progress that will contribute to the
details of the document. In addition, the Instrument Handbook will be regularly updated
to incorporate results of analyses of on-orbit data. Revisions to the TIH may be made on
a monthly basis during the rst year of the mission: the revised versions will be marked
with their version number and posted at MAST. Any sector-speci ¢ information will be
carried in the Release Notes for that sector.

Comments or questions regarding the contents of this handbook can be sent to the TESS
Help Desk (tesshelp@gsfc.nasa.gov) and/or Roland Vanderspek (roland@space.mit.edu).

1.4 Reference Documents

The following documents will provide further detail into various aspects of TESS operations
and data:

Science Data Product Description Document:
https://archive.stsci.edu/missions/tess/doc/EXP-TESS-ARC-ICD-TM-0014.pdf
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Archive Manual: https://outerspace.stsci.edu/display/TESS/TESS+Archive+Manual
(currently user-restricted)

Data Release Notes:https://archive.stsci.edu/missions/tess/doc/

2 Introduction to TESS

2.1 Mission Overview

The TESS mission (Ricker et al., 2015) is designed to detect transiting planets around the
nearest, brightest stars. The TESS instrument consists of four wide- eld CCD cameras that
can image a region of the sky measuring 24 96 . The cameras are used to measure the
brightness of 15,000-20,000 stars every two minutes for periods of at least 27 and up to
356 days. Simultaneously, 30-minute summed images of the full FOVs of all cameras are
collected continuously.

TESS is deployed in an elliptical, 2:1 lunar synchronous orbit with a period of 13.7 days.
This orbit provides a steady thermal environment for the cameras, allowing for high-
precision measurements of stellar brightnesses.

2.2 Spacecraft

The TESS mission utilizes the Northrop Grumman LEOStar-2/750 Spacecraft. The
Spacecraft is equipped with a three-axis controlled, zero-momentum attitude control system,
consisting of four reaction wheels, two camera head star trackers, an inertial reference unit,
and ten coarse sun sensors. An S-Band transponder with two S-Band omni-directional
antennas is used for Observatory commanding, housekeeping, and ranging activities. A 96
A-hr battery along with a two-wing, 4 panel solar array provides the power needed for the
Observatory during science and housekeeping operations and through long-duration eclipses
(up to 4 hours). A monopropellant (hydrazine) propulsion system, coupled with four 5
Newton and one 22 Newton thruster provides Delta-V capability and attitude maintenance.

Figure 2.1: The TESS Observatory
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