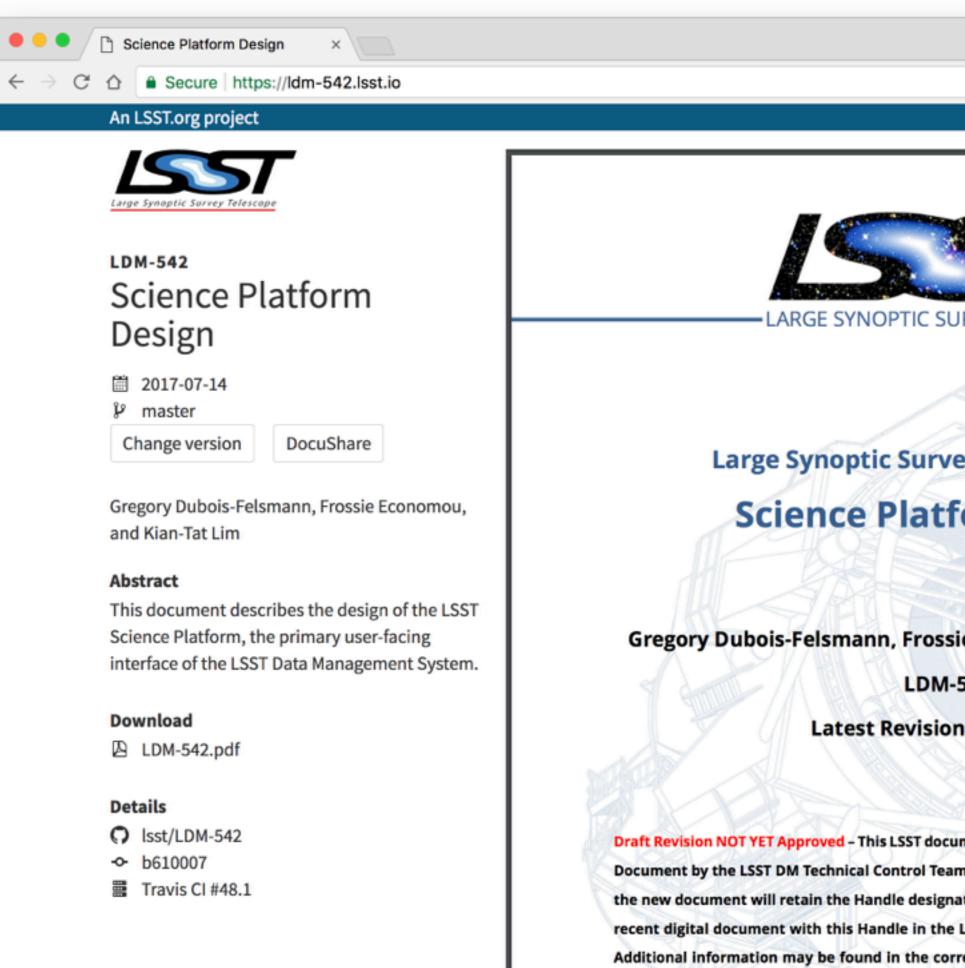
STSCI | SPACE TELESCOPE SCIENCE INSTITUTE **EXPANDING THE FRONTIERS OF SPACE ASTRONOMY**

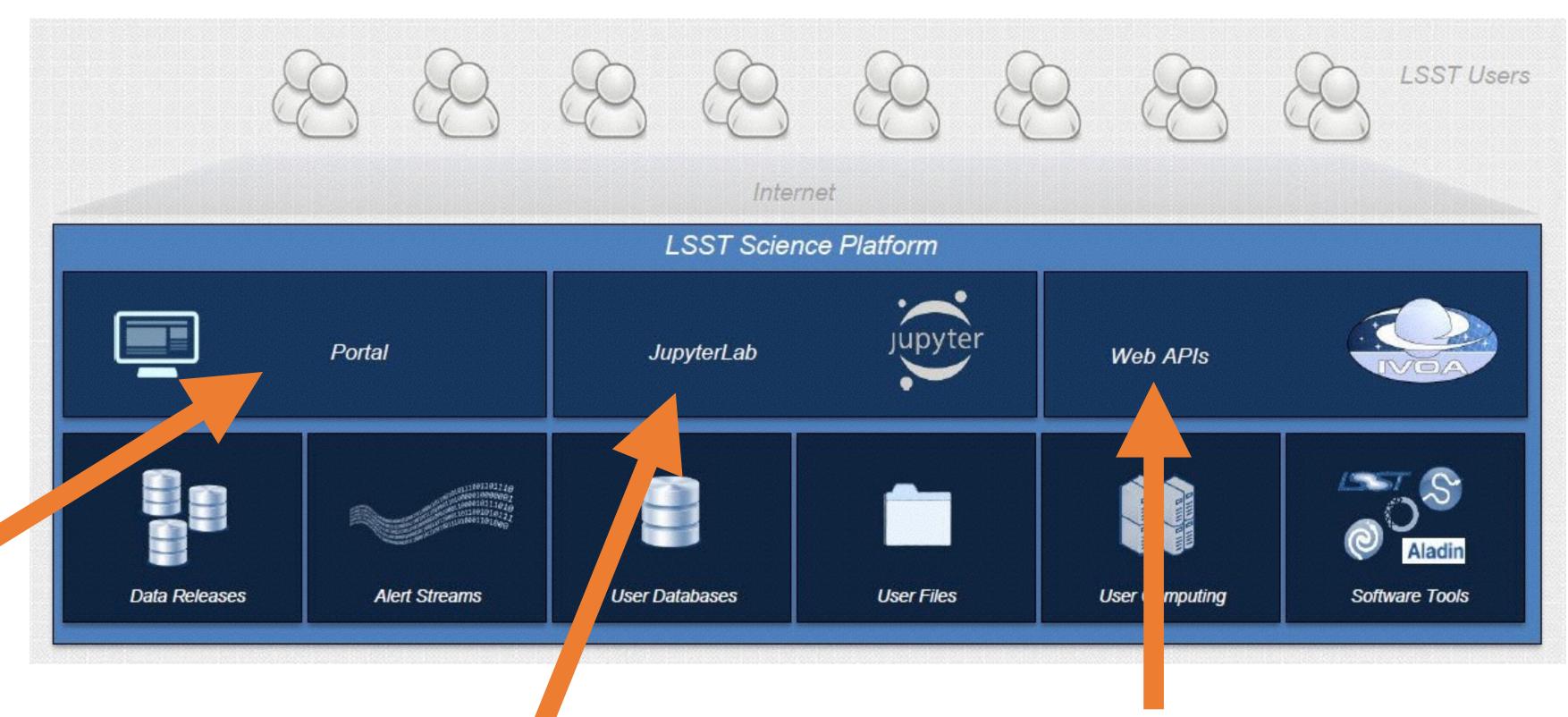
Server - Side Analytics

Sci


orms

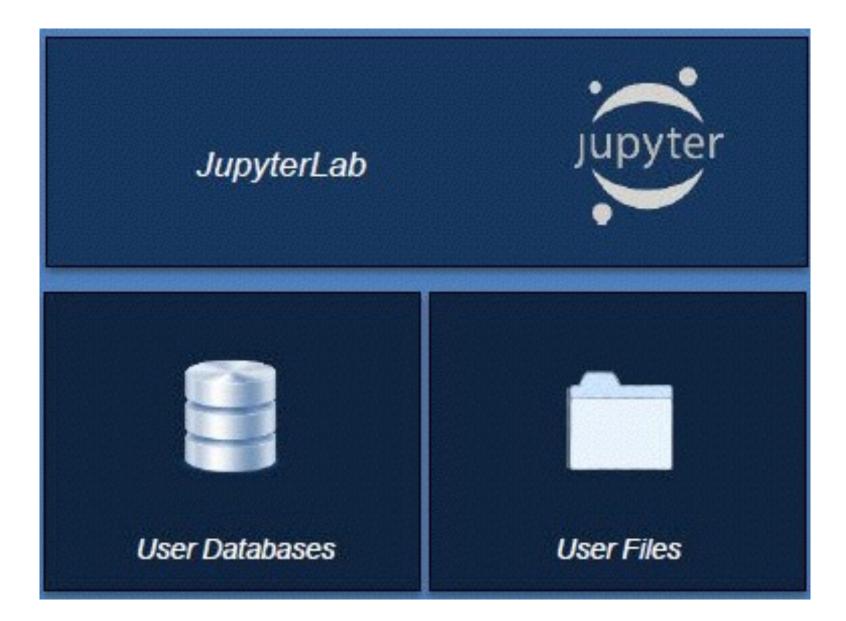
Arfon & Mike

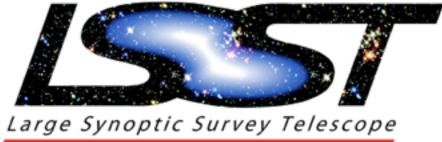
Some definitions

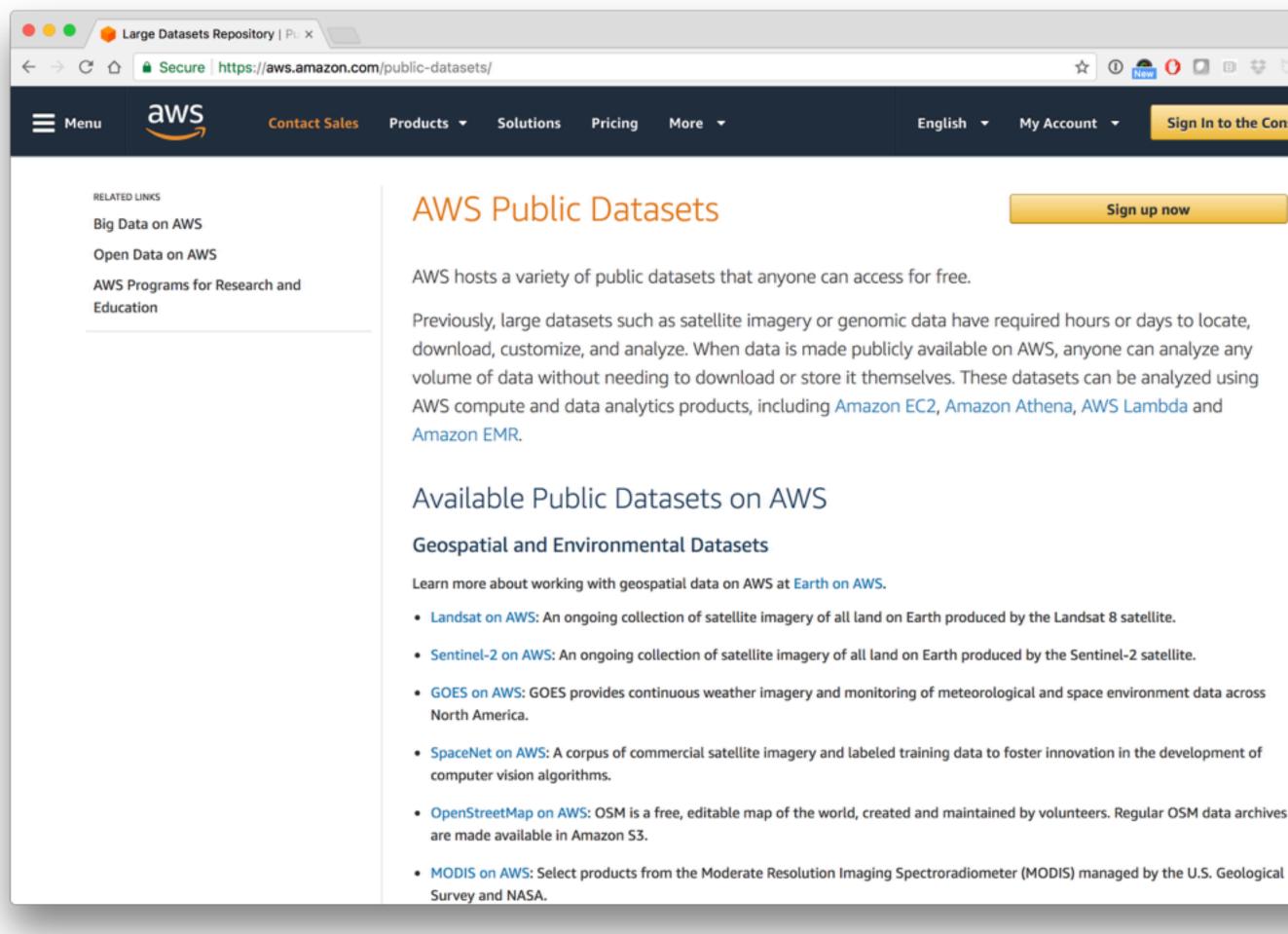

 \mathbb{Y}

							Ar	fon
\$	1	New	0		ç	5	=	:
				 	1			
					L			
LARGE SYNOPTIC SURVEY TELESCOPE					1			
					L			
					L			
Large Synoptic Survey Telescope (LSST)								
Science Platform Design								
Gregory Dubois-Felsmann, Frossie Economou, and Kian-T	ſat	Lim						
LDM-542					L			
Latest Revision: 2017-12-18					L			
Draft Revision NOT YET Approved – This LSST document has been approved as a Conte	ent-0	Contro	lled		L			
Document by the LSST DM Technical Control Team. If this document is changed or s	supe	rsedeo	đ,		L			
the new document will retain the Handle designation shown above. The control is o	on th	ne mos	st					
recent digital document with this Handle in the LSST digital archive and not printe								
Additional information may be found in the corresponding DM RFC Draft Revision	on N	IOT YE	Т					
Approved								

MAST Portal & MAST 'Classic'


Focus of this presentation MAST APIs





- Cloud-hosted copy of all HST public data
- (Live) JupyterLab environment with some compute/storage
- Collection of Docker containers installed with common tools

							A	rfon
\$	0 詹	0		:	Ŷ	Ų		:
My Account	-	Sig	jn In	to t	he C	onso	le	
	Sign up	o nov	v					

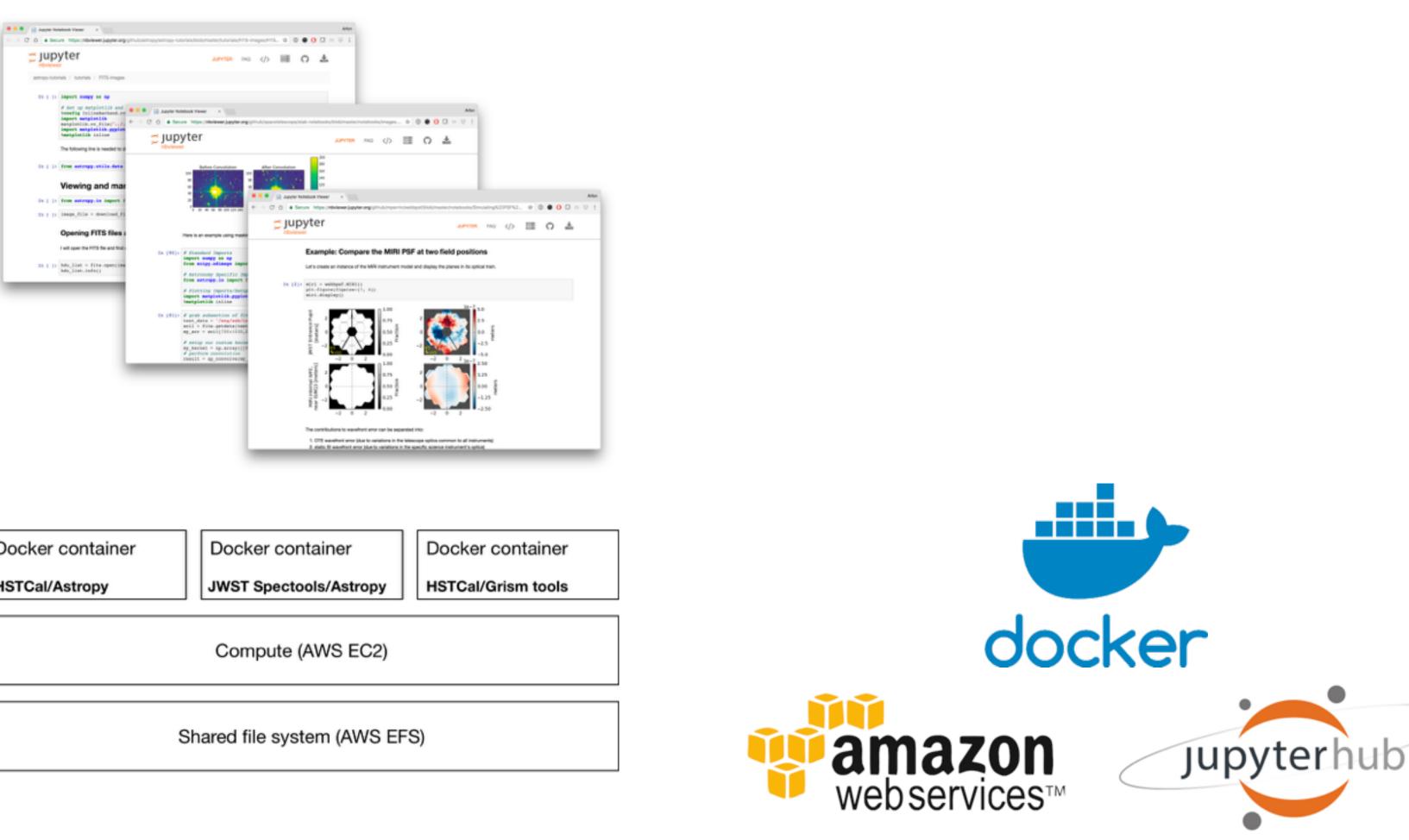
- ~120TB public HST data for ACS, COS, STIS, WFC3, FGS
- Range of high-impact datasets
- Hosted in cloud 'highly available'
- Enable new types of data analyses
- Hosted at no cost to STScI/NASA

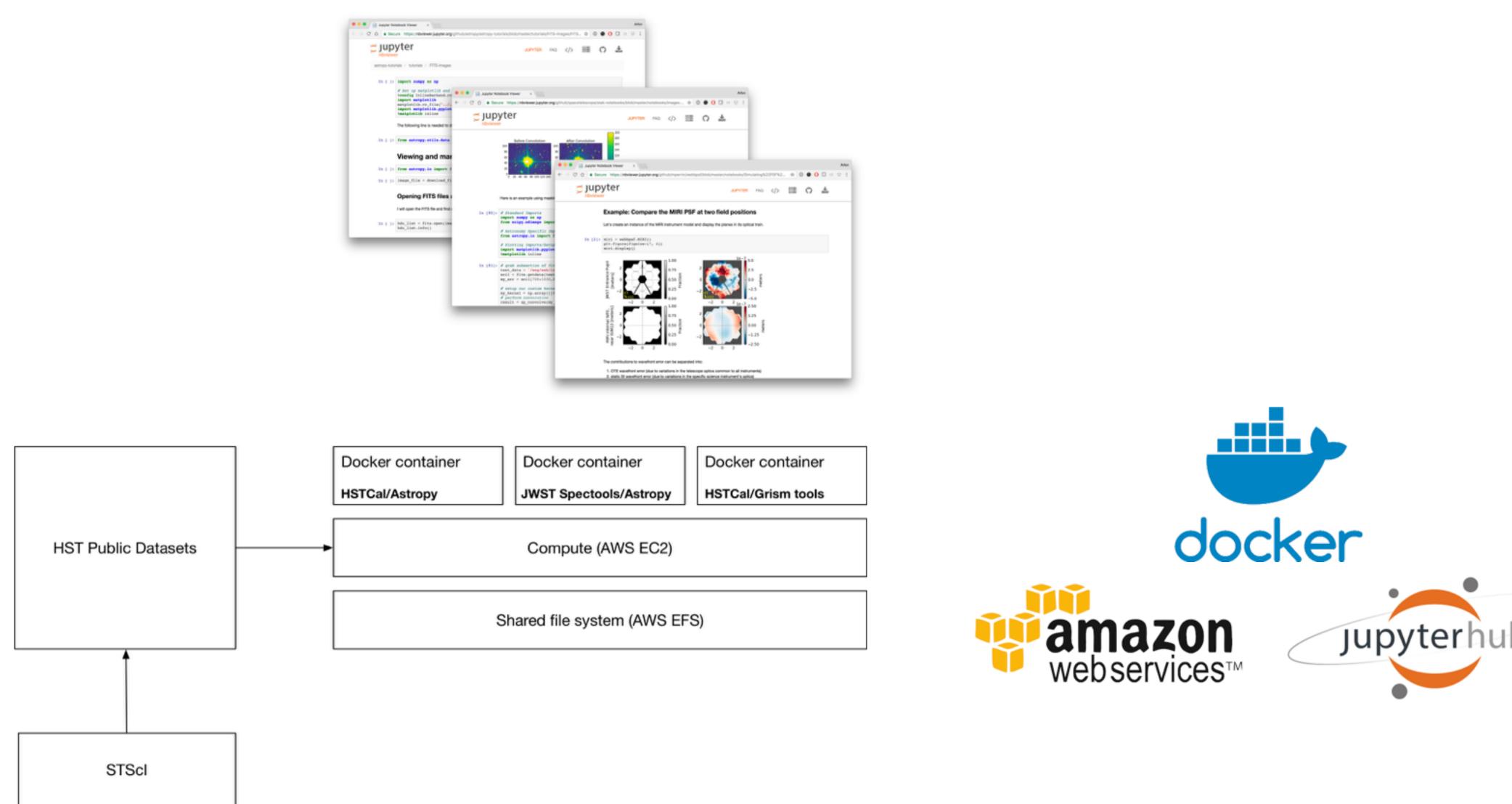


- Data is hosted in an S3 region (for 'free')
- Conditions of inclusion in program: make the data useful:
 - An AMI with a demonstration of how to use the public dataset must be provided
 - AWS recover costs by making access to the data free from AWS services (EC2), making it cost effective for researchers to buy AWS computing time
 - Enables new types of analyses

JupyterLab environment

Interrupt Kernel New Julia 0.4.5 console New Python 2 console New Python 3 console New R console Switch Kernel EDITOR Close all files Line Numbers Line Wrap Match Brackets Save File Vim Mode Vim Mode Off FILE OPERATIONS Close All Close Document New Notebook Ctri-Si	Inal Console Help Untitled.ipynt X Terminal 1 X Python 3 (1) X ? -> Introduction and overview of IPython's features. %quickref -> Quick reference. help -> Python's own help system. object? -> Details about 'object', use 'object??' for extra details. In [1]: %matplotlib inline from numpy.random import beta import matplotlib.pyplot as plt plt.style.use('bmh')	Launcher X mri_with_eeg.py X 1 #!/usr/bin/env python 2 3 """ 4 This now uses the imshow co 5 faster* 6 """ 7 fromfuture import divi 8 9 import numpy as np 10
CONSOLE Clear Cells Execute Cell Shift-I Interrupt Kernel Shift-I New Julia 0.4.5 console New Python 2 console New Python 2 console New Python 3 console New Python 3 console New R console Switch Kernel EDITOR Close all files Line Numbers Line Wrap Match Brackets Save File Vim Mode Vim Mode Off FILE OPERATIONS Close Document C New Notebook Ctrl-Sil	<pre>? -> Introduction and overview of IPython's features. %quickref -> Quick reference. help -> Python's own help system. object? -> Details about 'object', use 'object??' for extra details. In [1]: %matplotlib inline from numpy.random import beta import matplotlib.pyplot as plt</pre>	1 #!/usr/bin/env python 2 3 """ 4 This now uses the imshow co 5 faster* 6 """ 7 fromfuture import divi 8 9 import numpy as np 10
CONSOLE Clear Cells Execute Cell Shift-I Interrupt Kernel Shift-I New Julia 0.4.5 console New Python 2 console New Python 2 console New Python 3 console New Python 3 console New R console Switch Kernel EDITOR Close all files Line Numbers Line Wrap Match Brackets Save File Vim Mode Vim Mode Off FILE OPERATIONS Close Document C New Notebook Ctrl-Sil	Shift-Enter Aquickref -> Quick reference. help -> Python's own help system. object? -> Details about 'object', use 'object??' for extra details. In [1]: %matplotlib inline from numpy.random import beta import matplotlib.pyplot as plt	2 3 4 This now uses the imshow co 5 faster* 6 """ 7 fromfuture import div: 8 9 import numpy as np 10
Execute CellShift-IInterrupt KernelNew Julia 0.4.5 consoleNew Python 2 consoleNew Python 3 consoleNew Python 3 consoleSwitch KernelEDITOREDITORClose all filesLine NumbersLine WrapMatch BracketsSave FileVim ModeVim Mode OffFILE OPERATIONSClose AllCtrl-StClose DocumentCNew NotebookCtrl-St	Shift-Enter object? -> Details about 'object', use 'object??' for extra details. In [1]: %matplotlib inline from numpy.random import beta import matplotlib.pyplot as plt	4 This now uses the imshow of 5 faster* 6 """ 7 fromfuture import div 8 9 import numpy as np 10
EDITOR Close all files Line Numbers Line Wrap Match Brackets Save File Vim Mode Vim Mode Off FILE OPERATIONS Close All Close Document New Notebook Ctrl-Sil		11 from matplotlib.pyplot imp
Line Numbers Line Wrap Match Brackets Save File Vim Mode Vim Mode Off FILE OPERATIONS Close All Close Document New Notebook Ctri-Si	<pre>def plot_beta_hist(a, b): plt.hist(beta(a, b, size=10000), histtype="stepfilled",</pre>	12 from matplotlib.collection 13 import matplotlib.cbook as 14 # I use if 1 to break up t
Close Document C New Notebook Ctri-Si	bins=25, alpha=0.8, normed=True) return plot_beta_hist(10, 10) plot_beta_hist(4, 12) plot_beta_hist(50, 12) plot_beta_hist(6, 55)	<pre>15 16 if 1: # load the data 17 # data are 256x256 16 H 18 dfile = cbook.get_samp 19 im = np.fromstring(dfil 20 im.shape = 256, 256 21 22 if 1: # plot the MRI in po 23 subplot(221) 24 imshow(im, cmap=cm.gray 25 axis('off') 26</pre>
Revert Document	Ctrl-Shift-Q Ctrl-Q Ctrl-O Ctrl-O Cmd-S	<pre>27 if 1: # plot the histogram 28 subplot(222) 29 im = np.ravel(im) 30 im = im[np.nonzero(im) 31 im = im/(2.0**15) # n 32 hist(im, 100) 33 xticks([-1,5, 0, .5 34 yticks([]) 35 xlabel('intensity') 36 ylabel('MRI density')</pre>
About JupyterLab FAQ IPython Reference JupyterLab Launcher Markdown Reference Matplotlib Reference Notebook Tutorial Numpy Reference Pandas Reference Pandas Reference Python Reference Scipy Lecture Notes Scipy Reference SymPy Reference IMAGE WIDGET Reset Zoom Zoom In	<pre>In [2]: %run ~/Downloads/mri_with_eeg.py loading eeg /Users/fperez/usr/conda/lib/python3.5/site-packages/mat plotlib/mpl-data/sample_data/eeg.dat</pre>	<pre>37 38 if 1: # plot the EEG 39 # load the data 40 41 numSamples, numRows = 3 42 eegfile = cbook.get_sai 43 print('loading eeg %s' 44 data = np.fromstring(o; 45 data.shape = numSample 46 t = 10.0 * np.arange(n; 47 ticklocs = [] 48 ax = subplot(212) 49 xlim(0, 10) 50 xticks(np.arange(10)) 51 dmin = data.min() 52 dmax = data.max() 53 dr = (dmax - dmin)*0.7 54 y0 = dmin 55 y1 = (numRows - 1) * d 57 58 segs = [] </pre>

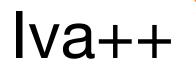



- Interactive computing environment
- Where most development work is going from the core Jupyter team
- Works with community tools (e.g. Astropy)

STScI | SPACE TELESCOPE SCIENCE INSTITUTE

STScI | SPACE TELESCOPE SCIENCE INSTITUTE

- JupyterHub, a multi-user Hub, spawns, manages, and proxies multiple instances of the single-user Jupyter notebook server.
- JupyterLab frontend provides notebook server, file management, and a terminal shell
- Using Docker to containerize science environments, allows a verified computing environment to be instantiated rapidly.
 Containers are versioned providing precise reproducibility
- Containers are versioned provid of the research environment
- AWS computing resources scale with user load, providing good cost efficiency
- Container orchestration provides high availability, healing the cluster when there are hardware failures



- Creating containers with pipeline/common software stacks Managing the cloud environment well:
- - User quotas (storage, compute etc.)
 - User storage (home directories), backups
 - Scalable, highly-available infrastructure (with cost caps/alerts)
- Relatively few large-scale JupyterHub deployments on AWS Inexperience of STScI with commercial cloud

Community coordination (ii)

spacetelescope/science-platfo ×						
$\leftarrow \ \ni \ \texttt{C} \ \texttt{\dot{O}}$	GitHub, Inc. [US] https://github.com/spacetelescope/science-platforms-workshop					
	III README.md					

Science Platforms/Server-Side Analytics Workshop

What

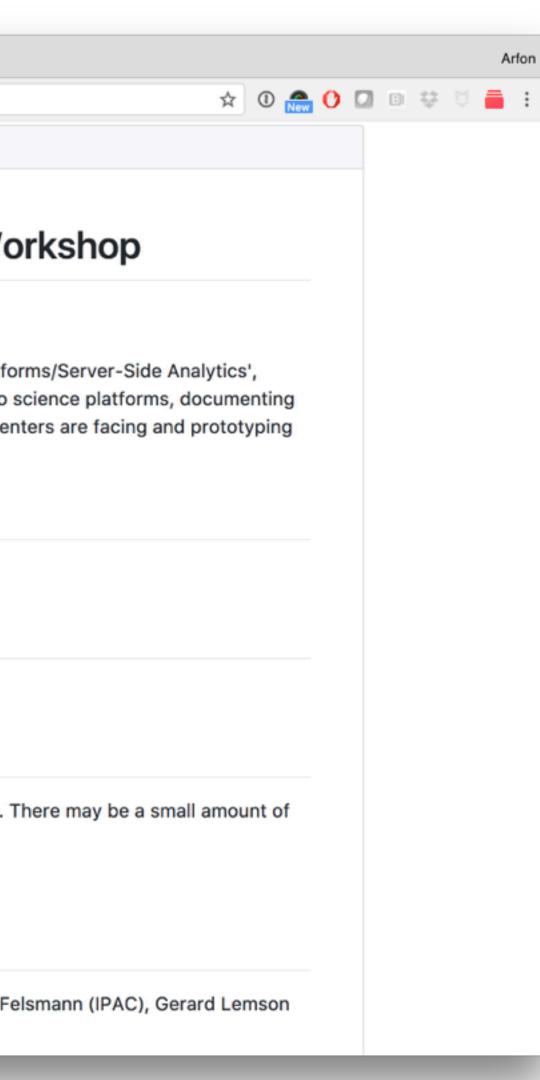
Building upon the strong interest of the community at ADASS 2017 in 'Science Platforms/Server-Side Analytics', STScl is hosting 2.5 day meeting with a focus on sharing community approaches to science platforms, documenting common data analysis patterns/workflows, identifying challenges different implementers are facing and prototyping solutions to address these challenges.

When

26--28 February 2018

Where

STScI in Baltimore, MD.


Registration

Registration will be ~\$100. This charge will cover catering costs for the three days. There may be a small amount of travel support available upon request.

Registration will open early in 2018 and will be on a first-come first-served basis.

Organizers

Arfon Smith (STScI), Wil O'Mullane (LSST), Adam Bolton (NOAO), Gregory Dubois-Felsmann (IPAC), Gerard Lemson (JHU)

- What problems do you foresee with our approach?
 - Who is this useful for?
 - What are sensible defaults for a service like this?
 - proposition as a NASA archive?
 - lower the barrier to entry?

Does staging data in commercial cloud confuse our value

Is asking the community to use AWS a problem? How can we

- What extensions should we be thinking about?
 - Other missions (TESS?)
 - Other functionality? (e.g. batch processing) Joint processing? (LSST/WFIRST/Euclid/JWST)

 - Accelerating JWST Early Release Science?
 - User support environment?
 - GO data delivery & archive proposals?
 - WFIRST (re)processing in the High Level Processing Partition

