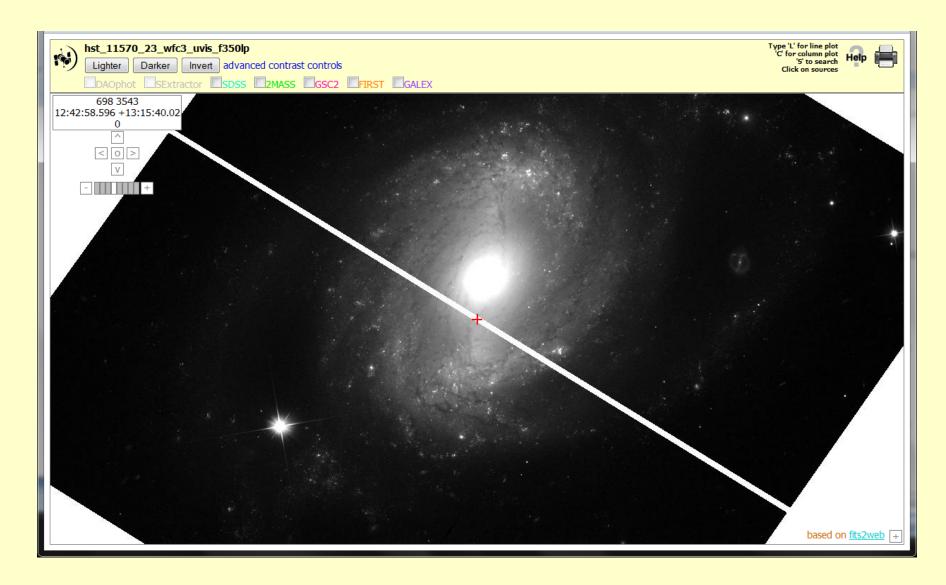

HLA news in the last year

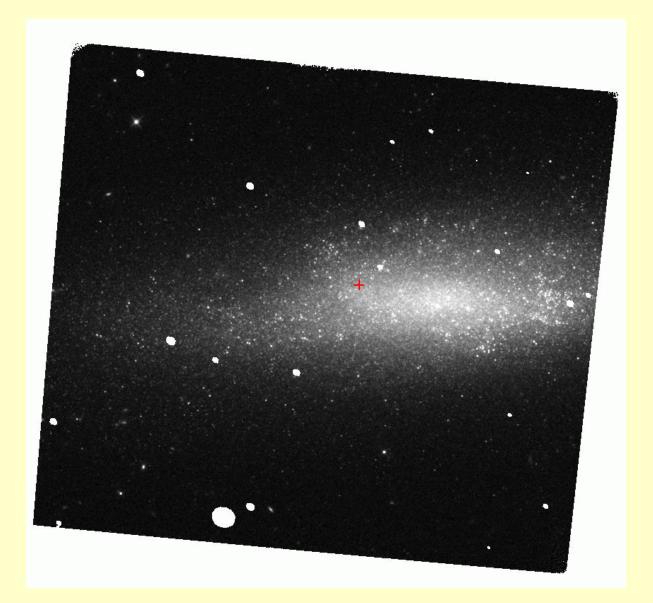
- New interface features and capabilities
- New delivery process
- New data and revamped pipelines
- New data formats
- Prototype spectra
- Outreach and collaborations
- Future plans

New interface capabilities

- Completely redesigned footprint interface
 - -Allows panning, zooming, direct user interactions
 - -Fully integrated with the rest of the interface
 - Selections and filters valid across views
 - Uniform table view
- Clickable sources in image overlay
 - -Brings up table with source properties
- Augmented table of product data
 - -Includes release date, source list availability
- Improved plotting tool
 - -To be interfaced with upcoming spectral data prototypes
- •Source lists stored only in database; files generated on-the-fly
 - -Tables filtered for abnormal values
 - -Enables future user-selected output options
 - -Multi-band source lists now available
 - Collate photometry across filters (for each visit)

New data delivery process


- Incremental deliveries
 - -New data processed as they become available (public)
 - -Releases on a regular (~biweekly) basis
 - -Goal is to make data products available shortly after release
 - -Currently time scales are ~6 months or longer
- Separate instance of database for new data processing
 - New data products are stored separately
 - -Ensures that data processing does not impact database response
 - -Facilitates data review and generation of reports for users
 - -Publication date included in database to identify new deliveries
 - -Database propagation streamlined to minimize user impact
- Approval process instituted
 - -New data products are reviewed to identify processing issues
 - -Products can be approved, slated for reprocessing, or rejected
 - -Once data products are mature, approval becomes automatic
 - -Separate instance of database for data processing
 - -New approval interface undergoing testing with WFC3 data


New data and revamped pipelines

- •The new WFC3 pipeline is complete
 - -Includes both processing and source list generation
 - -Highly modular design; almost all key functions in compact definitions
 - -Pyraf/IRAF dependencies minimized; use Numpy, Pyfits where practical
 - -Over 100 visits processed and ingested, products undergoing internal testing
 - -Designed to be easily modified for other instruments, mosaics
- •Algorithms very similar to ACS, NICMOS pipelines with some significant differences
 - -Sky not subtracted
 - •Sky matching routine ensures continuity in partial overlap regions
 - •Sky adjustment value included in header
 - Avoids discontinuities in regions with diffuse background
 - -Invalid pixels assigned obvious zero value
 - •Previously assigned value from first image per multidrizzle default
 - -Improved registration algorithms
 - •Expected to work even in the presence of heavy cosmic ray contamination
 - •Refinements and tests ongoing
 - Necessary for future expansion to mosaics
 - -New data format

New data and revamped pipelines (2)

- Updated and/or completed processing for ACS, NICMOS, WFPC2
 - -All WFPC2 science images reprocessed at CADC with latest calibration
 - -NICMOS images now include SAAClean correction
 - -ACS processing brought up to date
 - -Source lists generated for ACS and WFPC2 images
- Migrated ACS, NICMOS grism products to STScI
 - -ST-ECF shutdown 12/31/2010
 - -Pipeline software migrated for archival purposes
 - •Currently no specific plan to run on additional data
 - •May form basis for future WFC3 grism processing software
 - -Data files served from STScI HLA servers
 - -Database loaded in local database
 - -Web content ported to STScI servers
 - •One remaining web page being ported, currently accesses ESO servers
 - •Functionality transparent to users
 - -HLA search uses local grism data

Combined WFC3_IR image of NGC 4562 (F160W). Note the areas with invalid pixels.

New data formats

- •The WFC3 data products are in the modified data format agreed upon in 2010
 - -Adds an exposure time extension to improve the noise model fidelity
 - -With inverse variance, both background and shot noise are included
 - -Removes many header keywords derived from input images
 - -Only keywords applicable to combined image should remain in the header
 - -Replaces the cumbersome MultiDrizzle mechanism to store input image parameters
 - •MultiDrizzle stores input image properties as DXXXYYYY keywords in the primary header
 - •XXX is the input image number (001 to 999), YYYY a short keyword name
 - •Requires each keyword name to be explicitly translated
 - •Primary header can become very large for mosaics
 - •The new format uses a table extension with one row per input image
 - •Keyword names are preserved, and much more information can be stored
 - Retrieval is straightforward
 - •Same mechanism is used to record processing information (e.g., shifts)
- Eventually the new format (with the new pipeline) will be used for other instruments
 - -Limiting the transition to WFC3 minimizes confusion and unwanted impacts
 - -Time scale for transition for other instruments will depend on user feedback
 - -Transition timed to coincide with other major changes? (e.g., CTE-corrected ACS products)

Prototype Spectral Data

- Prototype combined spectral data from COS and STIS
 - -Goals:
 - Provide spectroscopy archival researchers with HLA data products
 - Prototypes expected to generate comments and suggestions
 - •Respond to desire to enhance spectral data presence within HLA
- Obtained IDT-processed COS data from Science Team to be ingested as HLSP
- •Add STIS HLSP data (STARCAT spectral library, others)
 - -Format need to be modified for consistency with VO standard (Spectral Container)
 - -Data displayed with new Plotting Tool
 - -Previews will be available; naming changes may be required for consistency
 - -Test page available with ~10 products
 - Load times long for large spectral files
 - •Some interface changes needed before spectra can be released
 - •Goal is to include ~100 spectra at first release
- •On longer term, motivate the development of enhanced HLA pipelines for spectra

HLA Outreach and Collaborations

- •AAS Winter 2011 (Seattle)/ Summer 2011 (Boston)
 - -MAST/HLA presence :
 - •~ 40 interactions per meeting
 - Education centric interest (High School and above)
 - Over all excellent
 - Slated to attend 2012 meetings
- •ADASS 2010/2011(November)
 - -Held meeting with HLA tripartite ST,CADC and EFC to review work status and future work.
 - -Will do demonstrations and poster at the November meeting
- •HLA footprint work with Chandra
 - -Chandra used our footprint service to display their own data http://exc.cfa.harvard.edu/cda/footprint/
 - -Chandra visited ST (T. Dower) to collaborate on service and new technologies (html5)

HLA - Future Plans

- Current and future baseline product generation:
 - -Process all public WFC3 data
 - -Extend new pipeline and data formats to other imaging instruments
 - -Develop robust mosaic pipeline
 - -Produce mosaics for more pointings, instruments
 - -Retrofit absolute astrometry enhancement to pre-Cycle 15 data
 - -Develop source lists and produce uniform metadata for HLSP
 - -Enhance presence of spectral data in HLA
 - Include more existing products
 - •Encourage teams to provide HLSP whenever possible
 - Foster development of spectral pipeline
 - -Consider feasibility of WFC3 grism analysis tools
 - -Revisit ACS products in light of CTE, bias striping corrections
 - -Develop tools to combine moving-target images

HLA - Future Plans (2)

- Other products and features
 - -Produce all-sky HST catalog
 - -Develop tools to investigate time-domain data
 - -Search for solar system targets
 - -Expand capabilities of image display
 - -Further enhance plotting tool capabilities
 - -Integrate HLA interface into upcoming MAST portal
 - •Enable user-specific preferences
 - Facilitate operations that require validation
 - •Common look-and-feel for seamless navigation
 - Adopt VO tools where possible