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PREFACE TO THE THIRD EDITION

The Kepler Mission collected four years of data on 208,000 stars from May 13, 2009 until May
11, 2013. The first edition of the Kepler Data Processing Handbook collected together a set of
SPIE papers and other manuscripts documenting the SOC 6.2 codebase, which was the first com-
plete version of the Kepler Science Operations Center Pipeline. At that time, the SOC pipeline
did not search light curves for multiple planets (that capability didn’t arrive until SOC 8.2 in
2012).

Kepler stressed the technologies needed to collect, process and analyze the data and to conduct
follow up observations, pushing the envelope on all fronts. Scientists involved in every step of the
discovery process reported that they had to overhaul and extend their data analysis tools to deal
effectively with the Kepler data and the intriguing Kepler objects. Needless to say, the Kepler
science data processing pipeline underwent significant evolution both during and after the data
collection phase. This volume represents the most current information about the as-built SOC
9.3 algorithms used to generate Kepler’s final legacy archive data products.

This edition marks the third and final version of the KDPH with the completion of Chapter
11, “Data Validation I – Diagnostic Tests,” and the update of Chapter 12, “Data Validation II –
Transit Model Fitting” to reflect the behavior of the DV in the final processing of the four years
of accumulated Kepler primary missiondata.

Since the second edition of the KDPH, Kepler spacecraft ceased operations when the hy-
drazine fuel necessary to maintain pointing ran out, and was then turned off in October 2018.
Although Kepler has fallen silent, her legacy lives on through the rich archive of nearly 10 years
of data collected during the prime mission from May 2009 into May 2013 and then during the
K2 mission from late 2013 through late 2018. Almost 3000 Kepler papers have been published
and many more are certain to follow. Kepler’s legacy also continues through NASA’s Transit-
ing Exoplanet Survey Satellite (TESS), which was launched in March 2018, and began science
observations in July of that year, seeking Earths and super Earths in the solar neighborhood.
Between October 2014 and March 2018, the Kepler SOC pipeline was ported and modified for
TESS. As of today, over 4100 exoplanets have been confirmed or validated outside our own solar
system. Over 2700 of these exoplanets were discovered by Kepler or by K2. The TESS Mis-
sion is just getting started, with 41 confirmed exoplanets, and many more to come given there
are ∼1100 planet candidates from the first year of observations waiting to be confirmed. The
future of exoplanet science is bright and much of the credit must be given to the brilliant Kepler
Mission.

JON M. JENKINS

Mofett Field, CA U.S.A

March 23, 2020
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PART I

OVERVIEW OF KEPLER SCIENCE
OPERATIONS





CHAPTER 1

PHILOSOPHY AND SCOPE

Jon M. Jenkins

NASA Ames Research Center, Moffett Field, CA 94035

1.1 Intended Audience

The Kepler Data Processing Handbook (KDPH) is written for a broad audience: the astrophysics
and exoplanet science communities, archival researchers, peer reviewers of Kepler results sub-
mitted for publication, and also for engineers and scientists who are designing their own science
data processing pipelines for wide-angle transit surveys, such as the upcoming TESS and PLATO
missions. The KDPH presents an overview of the Kepler Science Operations Center (SOC), de-
scribing the architecture and functionality supported by this facility and software codebase. The
KDPH then describes the selection of pixels for storage and downlink from the Kepler spacecraft
for the up to 170,000 target stars that could be acquired at any time on Kepler. These target pixel
datasets are collected by the Flight System as described in the Kepler Instrument Handbook (KIH
– Van Cleve & Caldwell, 2016). The KDPH then describes the transformation of these pixel sets
into photometric time series and the detection and validation of transits in those time series by
the science data processing pipeline. The KDPH provides information about the algorithms, in-
puts, outputs, and performance of target management and pipeline software components, called
Computer Software Configuration Items (CSCIs).

The primary goal of the KDPH is to document the algorithms used to produce the Kepler
legacy archive calibrated pixel and light curve data products at the Mikulski Archive for Space
Telescopes (MAST)1 and the Data Validation (DV) reports and diagnostic information for po-
tential planet candidates, called Threshold Crossing Events (TCEs), archived at the NASA Exo-
planet Archive (Akeson et al., 2013).2 Additional Kepler Mission documentation of interest for
interpreting and analyzing the Kepler data products includes the KIH, the Kepler Archive Manual
(KAM – Thompson et al., 2016), the Kepler Data Characteristics Handbook (KDCH – Van Cleve
et al., 2016), and associated Data Release Notes.3 These and other documentation of potential
interest can be found at https://archive.stsci.edu/kepler/documents.html.
In addition, the Kepler SOC codebase is available as a NASA Open Source project at https:
//github.com/nasa/kepler-pipeline for those researchers who wish to understand

1Available at https://archive.stsci.edu/kepler/.
2Available at http://exoplanetarchive.ipac.caltech.edu/.
3Available at https://archive.stsci.edu/kepler/data_release.html.
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4 PHILOSOPHY AND SCOPE

the algorithms and functionality at the deepest levels by reading the source files, tracing the code
and/or implementing the science algorithms used to manage and produce the Kepler archive
data products, conduct target and photometer management, and/or design commissioning tools.
Together, the KDPH, the SOC codebase, and the Kepler documents listed above supply the in-
formation necessary for understanding and interpreting Kepler results, given the real properties
of the hardware and the as-built data analysis methods.

1.2 Relationship to Other Documents

1.2.1 Kepler Instrument Handbook (KSCI–19033)

The KIH (Van Cleve & Caldwell, 2016) provides information about the design, performance,
and operational constraints of the Kepler hardware as well as an overview of the available pixel
datasets. It presents an overview of the Kepler instrument, and then tracks photons through
the telescope, focal plane, and focal plane electronics. Details regarding targets, the pixels of
interest around them, and operational details are specified, which will be helpful in both planning
observations for the repurposed Kepler Mission, dubbed K2, and for understanding the data
reduction procedures described later in this document.

1.2.2 Kepler Data Characteristics Handbook (KSCI–19040)

The Data Characteristics Handbook (Van Cleve et al., 2016) provides a description of a variety
of phenomena identified within the Kepler data and a discussion of how these phenomena are
handled by the science data processing pipeline.

1.2.3 Kepler Data Release Notes (KSCI–19041 – KSCI–19065)

With each release of data, a set of accompanying notes was created to give Kepler users informa-
tion specific to the time period during which the data was obtained and the details of the pipeline
processing. The notes provide a summary of flight system events that affect the quality of the
data and the performance of the pipeline for each data release. The Data Release Notes, along
with other Kepler documentation, are located at MAST.

1.2.4 Kepler Archive Manual (KDMC–10008)

Data from the Kepler Mission are archived at MAST, which serves as NASA’s primary archive for
ultraviolet and optical space-based data. The Kepler Input Catalog (KIC – Brown et al., 2011),
processed light curves, and target pixel data are all accessed through MAST. The Kepler Archive
Manual describes data products, file formats, and the functionality of Kepler data access. The
archive manual can be accessed from the MAST Kepler page: https://archive.stsci.
edu/kepler/documents.html.

1.2.5 Kepler Input Catalog

While not a document per se, the KIC is an important reference and data source for those analyz-
ing and interpreting data from the Kepler Mission. Prior to launch, the Stellar Classification Pro-
gram (SCP) made multi-color observations of the entire Kepler FOV to determine the basic stellar
properties for use in target selection (Batalha et al., 2010). The results of the SCP effort were col-
lected into the KIC, which also federated information from a number of other existing catalogs.
The KIC contains an assigned ID number, known as the KepID (sometimes KIC #), coordinates,

https://archive.stsci.edu/kepler/documents.html
https://archive.stsci.edu/kepler/documents.html
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photometry and stellar classification parameters. The Stellar Properties Working Group operated
throughout the Kepler Mission to improve the properties of the target stars and other stars in the
FOV and made several updates to the KIC (Huber et al., 2014). The MAST hosts KIC and an
interactive query form at https://archive.stsci.edu/kepler/kic.html.

1.3 Document Organization – From Pixels to Planets

The organization of this document first provides an overview of the SOC and its operations in
Chapter 2, and then in Chapter 3 describes how the pixels are selected for storage and down-
link onboard the Kepler spacecraft for target stars. The remainder of the document follows the
progress of the raw data through the SOC Science Data Processing Pipeline as they are trans-
formed from original pixel measurements to calibrated pixels, light curves and centroids, and ul-
timately searched for transiting planet signatures, also called “threshold crossing events” (TCEs).
These TCEs are subjected to a number of diagnostic tests and are fitted with physical models to
provide metrics and initial planetary parameters to the Threshold Crossing Event Review Team
(TCERT), which then creates Kepler Objects of Interest (KOI) and dispositions them using these
diagnostics as well as other post-pipeline generated diagnostics.

Figure 1.1 Data flow diagram of the Kepler Science Data Processing Pipeline. The journey of the raw
data, from pixels to potential planets, is traced through the several components of the pipeline. See the text
for a full explanation.

There are six major science modules in the Kepler SOC Science Data Processing Pipeline,
as indicated in Figure 1.1. The Dynablack module (see Chapter 4) analyzes FFIs to identify
rolling band artifacts and to provide updates to thermally-sensitive video crosstalk coefficients
used in the pixel-level calibrations discussed in Chapter 5. The Photometric Analysis (PA) mod-
ule, described in Chapter 6, identifies and removes the background flux and cosmic rays and,
for each target star, sums the background-corrected pixels to formulate a brightness estimate and
also measures the centroid offsets. In SOC 9.3, the optimal apertures provided by the Target and
Aperture Definitions (TAD) module are replaced with optimal apertures that take the measured

https://archive.stsci.edu/kepler/kic.html
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photometric precision and the actual image data into account. These new apertures are pro-
vided by the Create Optimal Apertures (PA-COA) component internal to PA, which is detailed
in Chapter 7. The Pre-search Data Conditioning (PDC) module, detailed in Chapter 8, applies
a multi-bandpass Bayesian maximum a posteriori (MAP) approach to identifying and removing
instrumental signatures and systematic errors from the light curves while preserving intrinsic
stellar photometric variations. These systematic error-corrected light curves are subjected to
an adaptive, wavelet-based matched filter in the Transiting Planet Search (TPS) component (see
Chapter 9) to search for transit-like features. Such features are passed to the Data Validation (DV)
module, which fits limb-darkened transit models to the transit-like features (see Chapter 12) and
constructs a suite of diagnostic tests to make or break confidence in the transit-like features (see
Chapter 11). The statistical bootstrap algorithm, one of the diagnostic tests performed in DV, is
described in Chapter 10.
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CHAPTER 2
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Abstract. The Kepler telescope launched into orbit in March 2009, initiating NASA’s first mis-
sion to discover Earth-size planets orbiting Sun-like stars. Kepler simultaneously collected data
for∼165,000 target stars at a time over its four-year mission, identifying over 4700 planet candi-
dates, over 2300 confirmed or validated planets, and over 2100 eclipsing binaries. While Kepler
was designed to discover exoplanets, the long-term, ultra-high photometric precision measure-
ments it achieved made it a premier observational facility for stellar astrophysics, especially in
the field of asteroseismology, and for variable stars, such as RR Lyrae. The Kepler Science
Operations Center (SOC) was developed at NASA Ames Research Center to process the data
acquired by Kepler from pixel-level calibrations all the way to identifying transiting planet sig-
natures and subjecting them to a suite of diagnostic tests to establish or break confidence in their
planetary nature. Detecting small, rocky planets transiting Sun-like stars presents a variety of
daunting challenges, including achieving an unprecedented photometric precision of ∼20 ppm
on 6.5-hour timescales, and supporting the science operations, management, processing, and
repeated reprocessing of the accumulating data stream. This chapter describes how the design
of the SOC meets these demanding requirements, discusses the architecture of the SOC and
how the Pipeline is operated and run on the NASA Advanced Supercomputing (NAS) Division’s
Pleiades supercomputer, and summarizes the most important pipeline features addressing the
multiple computational, image, and signal processing challenges posed by Kepler.

Keywords: data processing; high performance computing; software architecture; astronomy:
extrasolar planets; astronomy: astrophysics

2.1 Introduction

Until quite recently, the prospect of finding other worlds orbiting stars other than our own Sun
was viewed as the province of science fiction. 51Peg b, the first exoplanet orbiting a normal,
main-sequence hydrogen-burning star was discovered only in 1995, ushering in a new era of
astronomy (Mayor & Queloz, 1995). This “hot Jupiter” was found in its 4.2-day period orbit at
a mean separation of only 0.05 AU from its G2V host star by means of Doppler reflex velocity
observations. In the early days of exoplanets, most were discovered from the ground by such
radial velocity observations, and most were comparable in mass to our solar system’s Jupiter.
Advances in technology and observational strategies have allowed the sensitivity to smaller-
mass planets to improve at an astonishing rate of a factor of ∼2.4 each year as indicated in

7
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Figure 2.1.1 As of October 2016, ∼600 exoplanets have been discovered via radial velocity.2

Despite significant advances in the sensitivity of radial velocity searches, this technique strongly
favors the detection of planets much more massive than Earth in most cases. Exceptions include
small, cool M stars, with masses from 0.06 to 0.6 that of the Sun, for which the radial velocity
signature of near Earth-mass planets is detectable. The most spectacular example is Proxima b
(Anglada-Escudé et al., 2016), a 1.1 Earth-mass planet in an 11-day period orbit of Proxima, a
small, cool M star only ∼12% the size of the Sun and only ∼1.3 parsec from the Earth.

Figure 2.1 A history of exoplanet discoveries plotted in terms of the estimated planetary radius vs.
discovery year. The discovery method is indicated by the color of the points, with blue indicating
planets discovered via radial velocity, green indicating non-Kepler transiting planets, cyan indicating planets
discovered via direct imaging, magenta indicating planets discovered via gravitational microlensing, and
red points indicating Kepler discoveries. Note that the discovery year for each planet has been randomly
dithered to reduce over-plotting.

By contrast, transit photometry searches did not get underway in earnest until after the radial
velocity discovery of the first transiting planet, HD209458b, was made in 2000 (Henry et al.,
2000; Charbonneau et al., 2000). In transit photometry, exoplanets are discovered by measuring
the minute diminution of light that occurs when a planet crosses the face of its star. Transit pho-
tometry has the advantage of being sensitive to the areas of planetary discs relative to their stars,
where the Earth’s projected area is only 121 times smaller than that of Jupiter (compared to the
corresponding mass ratio of 318). Nevertheless, the technical challenges of transit photometry,
coupled with the difficulties of making sufficiently sensitive long-term, continuous observations
from the ground delayed the achievement of the promise of this technique to find small rocky
planets until the Kepler Mission was on orbit.

The Kepler Mission was designed to discover Earth-size planets orbiting Sun-like stars through
transit photometry: observing the small diminution of light that occurs when a planet crosses the
face of its star from the observatory’s point of view (Borucki et al., 2010). The amplitude of the
planetary signal is minute,∼100 ppm, and lasts from∼1 hour to about half a day. This signature
must be recognized against a variety of noise sources that are often much larger in amplitude,
including instrumental effects, such as shot noise and thermally-induced focus and pointing vari-

1For planets with masses greater than Earth, M ≈ R−1.3 (Wolfgang et al., 2016).
2Exoplanet discovery statistics are taken from the online table at http://exoplanetarchive.ipac.caltech.
edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=planets.

http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=planets
http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=planets
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ations, and intrinsic stellar variability, including star spots and granulation noise. The transits
repeat once per orbital period with an unknown phase, necessitating observations that can be
carried out as long and as continuously as possible. In addition, most orbital configurations in-
hibit the observation of transits, as only a small fraction of possible inclination angles allows the
planet to cross the face of the star from our point of view.

The Kepler Mission rose to these challenges with a 0.95-m aperture telescope that launched
into orbit in March 2009 to conduct nearly continuous observations of up to 170,000 stars at a
time in a single 116-square degree field of view (FOV) over a four-year mission. Kepler acquired
data at 29.4-minute intervals for all target stars called long cadence (LC) targets and at 1-min
intervals for up to 512 target stars at any given time called short cadence (SC) targets, and the
resulting flux time series were typically >90% complete. The observations were organized into
seventeen 93-day “quarters” to rotate the telescope by 90◦ every three months in order to keep
the sunshade and the solar arrays properly oriented (Haas et al., 2010).3 As of October 2016,
2679 planets have been discovered via transits, including 2330 planets discovered by Kepler, as
illustrated in Figure 2.2.

Figure 2.2 Radius vs. orbital period for all known exoplanets as of October 2016. The discovery method
is indicated by the color of the points, with blue indicating planets discovered via radial velocity, green
indicating non-Kepler transiting planets, cyan indicating planets discovered via direct imaging, magenta
indicating planets discovered via gravitational microlensing, and red points indicating Kepler discoveries.
Clearly, the most successful exoplanet survey to date in terms of discovering small planets (Rp < 2R⊕) in
the habitable zone of their star is the Kepler Mission.

The characteristics that made Kepler such a successful planet hunter also made it a near perfect
stellar variability observation machine, providing important science results across a diverse set of
stellar phenomena, including asteroseismology, gyrochronology, spot modulation, super flares,
eclipsing binaries, “heartbeat stars,” and relativistic boosting.

Undoubtedly, the success of Kepler was enabled by the exquisite instrument with its 95-
megapixel camera and the benign orbit it occupies. Of equal importance is the Science Data
Processing Pipeline, which needed to keep up with the accumulating data volume, extract pho-

3The first quarter, Q1, was only 34 days long due to the launch date and commissioning period. The last quarter, Q17,
was only 31 days long, due to the mission-ending loss of reaction wheel #4, and contained a 10-day rest period to attempt
to increase the lifetime of this reaction wheel.



10 OVERVIEW OF THE SCIENCE OPERATIONS CENTER

tometry at the 20-ppm level with a raw precision of ∼2%, and permit timely reprocessing of the
dataset as the pipeline evolved and its sensitivity improved.

The 1-min short cadence interval permitted observations of pressure- or p-mode oscillations of
solar-like stars, which have typical oscillation periods much less than a half hour. Despite being
designed exclusively for the purpose of detecting minute drops in brightness corresponding to
transit events, Kepler has proven itself adept at revealing stellar variability over a huge dynamic
range from p-mode oscillations of ∼10 ppm and transit signatures of ∼100 ppm, to oscillations
of RR Lyrae stars, which can nearly double their brightness every half day. Figure 2.3 illustrates
the large dynamic range (105.8) of photometric features identified in Kepler light curves with
SOC 9.3.

a

b

Figure 2.3 a: A Hertzsprung–Russell diagram displaying log luminosity vs. log effective temperature
for 15,000 stars exhibiting p-mode oscillations observed by Kepler (Huber, 2016). The points are colored
by the amplitudes of the stellar oscillations, which vary from 3 ppm to ∼3600 ppm, illustrating that the
amplitudes vary with the mass and size of the star. The inset shows similar results for ∼20 stars obtained
prior to 2008. b: Light curve for the RR Lyr star KIC 7671081 exhibiting amplitude modulation via the
Blazhko effect. The SOC 9.3 pipeline greatly reduces the distortions of the intrinsic astrophysical signals
in the light curves of high amplitude variable stars compared to SOC 7.0 and earlier codebases.

The Kepler SOC was developed at NASA Ames Research Center over a 12-year period of
time beginning in 2004 and continuing through the primary mission and well into the extended
mission. Three principle factors stimulated significant research and development of new algo-
rithmic approaches for virtually every module of the science data processing pipeline: 1) the
stellar variability of the main-sequence stars in Kepler’s FOV proved to be twice as large as ex-
pected, based on long-term observations of the Sun (Gilliland et al., 2011, 2015), 2) instrumental
effects caused both by radiation damage and by electronic image artifacts triggered an overabun-
dance of false alarms and threatened to overwhelm the system (Caldwell et al., 2010; Coughlin
et al., 2014; Mullally et al., 2015), and 3) the interplay of the intrinsic stellar signatures and in-
strumental signatures required the development of more sophisticated approaches to identifying
and removing systematic errors than were available in the original pre-launch pipeline design
(Jenkins et al., 2012).

As the pipeline evolved, the data needed to be reprocessed, and this, too, was a challenge.
While the the 700-node computer cluster used to process the Kepler data was able to keep up
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with the data as it was downlinked every month, it could not reprocess the accumulating data
record in a reasonable amount of time. This motivated the SOC to develop new software in-
frastructure in order to be able to routinely process and reprocess data on the NAS Division’s
Pleiades supercomputer.4

2.2 The Kepler Mission Ground Segment

The Kepler ground system is illustrated in Figure 2.4, and includes the elements necessary to
manage the spacecraft and instrument, collect, analyze, and interpret the science data, and deliver
it to a permanent archive.

Figure 2.4 Organization of the Kepler ground segment, illustrating the flow of science data from the
spacecraft and across the system. This system manages the Kepler science instrument to collect the science
data and the information necessary to carry out the Kepler Mission.

The Kepler spacecraft transmits the compressed, raw science and engineering data through
the Deep Space Network (DSN) on monthly intervals to the Mission Operations Center (MOC)
in Boulder, CO, which collects the necessary ancillary engineering data (AED)5 and forwards
them along with the science data to the Data Management Center (DMC) at the Space Telescope
Science Institute (STScI) in Baltimore, MD. The DMC decompresses the science data and pack-
ages them and the ancillary engineering data into FITS files that are sent to the SOC. The SOC
processes the data and then exports calibrated pixels and flux time series for every target star
to the Mikulski Archive for Space Telescopes (MAST) at STScI. The SOC also exports target
lists, stellar properties used by the pipeline, and focal plane models used in calibrating the data
to the MAST. The SOC sends target definitions that specify the pixels to be stored and down-
linked by the spacecraft for every target star, compression tables, and data collection parameters
to the MOC for uplink to the spacecraft. The results of the planet search are sent to NExScI’s
exoplanet archive (Akeson et al., 2013) in Pasadena, CA. The Science Office at NASA Ames
Research Center supports the data processing at the SOC and provides calibration files, target
lists, and stellar parameter updates to the SOC. The FPC at Ball Aerospace & Technologies
Corporation in Boulder, CO manages the science instrument.

2.3 The Science Operations Center

The SOC processing system consists of several elements: 1) a pipeline infrastructure coded in
Java that ingests the science data, controls the science processing, and writes the archive data
products to files in the archive file format, 2) the science pipeline itself, 3) a target management

4Pleiades currently has 227,808 computer cores and 828 TiB of memory (http://www.nas.nasa.gov/hecc/
resources/pleiades.html).
5AED is a subset of engineering data that bears on the state and performance of the instrument, such as the temperature
of the focal plane and reaction wheel speeds.

http://www.nas.nasa.gov/hecc/resources/pleiades.html
http://www.nas.nasa.gov/hecc/resources/pleiades.html
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system that contains a catalog of target and field stars and their characteristics and that iden-
tifies the pixels of interest for each target star and associated on-chip collateral data, and 4) a
suite of commissioning tools used to obtain or validate various calibration models and pre-flight
instrument characterizations. Figure 2.5 shows the high-level architecture of the SOC software
system.
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Figure 2.5 Architecture diagram of the Kepler Science Operations Center indicating the 23 major
components comprising the science pipeline, target management, commissioning tools, and photometer
management functions.

2.3.1 Software Infrastructure

2.3.1.1 Pipeline Infrastructure (PI) The pipeline infrastructure provides automated distributed
processing of science data and sequencing of modules based on the results of previous modules
(Klaus et al., 2010a,b). Features include a customizable unit-of-work that controls how the data
are distributed across the cluster, a configuration management and versioning system for algo-
rithm parameters and pipeline configurations, and a graphical user interface for the configuration,
execution, and monitoring of pipeline jobs. PI provides scalability for running the pipeline on
a developer workstation, a large cluster of computing nodes, as well as on the NAS Pleiades
supercomputer.

PI is designed to be a generic, reusable platform suitable for developing science processing
and analysis pipelines. PI provides a plug-in architecture for pipeline modules, parameter def-
initions, and unit-of-work definitions, and contains no Kepler-specific code. PI also provides a
generic mechanism for running any pipeline module on large computing clusters that support
the PBS (Portable Batch System) interface. This allows nearly all Kepler science data to be
processed routinely on NASA’s Pleiades system.

2.3.1.2 Data Receipt (DR) This module provides data ingestion and automated pipeline launch
capabilities and is divided into two main components: 1) a generic layer that watches for new
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files, dispatches the proper handler, and launches pipelines and 2) a plug-in layer for specific data
types.

2.3.1.3 Mission Reports (MR) MR provides a web-based interface to a library of reports
concerning the pipeline and its processes that can be generated on the fly. These reports are used
extensively by the operations personnel to help manage the science processing.

2.3.1.4 Data Store (DS) The Kepler DS is a transactional database management system for
arrays, sparse arrays, and binary data (McCauliff et al., 2010). DS consists of a custom array data
base (ADB) and an Oracle database. The data volume of the 4-year Kepler dataset is ∼32 TiB.
The working copies of the Kepler data sets, including intermediate files used for quality analysis
and testing occupy ∼500 TiB, and reside on an NFS server.

2.3.1.5 Archive (AR) AR generates the files in the format archived to MAST and made avail-
able to the science team and greater astronomical community. The Kepler archival products
include calibrated pixels, simple aperture photometry, systematic-error-corrected photometry,
astrometry (centroids), and associated uncertainty estimates. Target pixel files contain the pixel
data, both original and calibrated, for each target organized as image data. These files also in-
clude information about sky background flux and cosmic ray hits detected by the pipeline. The
transit-like features identified by the transit search and the results of DV’s diagnostic tests are
archived as XML files along with PDF reports to the NASA Exoplanet Archive managed by
NASA’s Exoplanet Science Institute. These PDF files contain a wealth of information regarding
each transit-like signature.

2.3.1.6 Support Libraries (SLIB) The PI depends on a set of support libraries that have been
customized and augmented specifically for the SOC. Most of this software is written in Java,
but there is some MATLAB software in this collection to provide, for example, the capability to
retrieve data and model information from the Data Store from an interactive MATLAB session
on a SOC development workstation. Much of this software underlies the automated test suites
that are exercised on a nightly basis to check the codebase integrity.

2.3.1.7 Target Management The Kepler target management functionality consists of two
components:

1) Catalog Management (CM) contains the Kepler Input Catalog (KIC) provided by the Stellar
Classification Program (Brown et al., 2011) and subsequent updates to the catalog (Huber et al.,
2014). CM contains the characteristics of the target stars and background field stars, such as
location (right ascension, declination), effective temperature, surface gravity, radius, mass, and
proper motion, which are necessary to select target stars and to identify the pixels to be used in
measuring the brightness of each target star; and

2) Target and Aperture Definitions (TAD), which formulates the target definitions specifying
which pixels need to be stored and downlinked by the Kepler spacecraft. TAD also formulates
the 1024 mask definitions used to capture the pixels of interest of the ensemble of target stars.
The associated sub-module, Compute Optimal Apertures (COA), predicts the pixels of interest
for extracting photometric measurements from the CCD images for each target star (Bryson
et al., 2010c). Kepler had very tight margins for the pixel data stored onboard and returned to
the ground: only ∼6% of the pixel data could be stored onboard for later downlink. TAD is
described in detail in Chapter 3.

2.3.2 Photometer Management

This suite of software contains the calibration models used by the science pipeline as well as
modules that monitor the performance of the photometer.
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2.3.2.1 Photometer Performance Assessment (PPA) This component assesses the health
and performance of the instrument based on the science data sets collected each month, iden-
tifying out-of-bounds conditions and generating alerts (Li et al., 2010). PPA is implemented
with multiple pipeline modules: PPA Metrics Determination (PMD), PMD Aggregator (PAG),
and PPA Attitude Determination (PAD). Various metrics are generated as the science pipeline
processes the science data, including photometric precision, brightness, black level, background
flux, smear level, dark current, cosmic ray counts, outlier counts, centroids, reconstructed at-
titude, and the difference between the reconstructed and nominal attitudes. These metrics are
tracked and trended by PPA and the results are persisted to the Data Store and are used to gener-
ate a PDF report that is available for review by project personnel. PAD combines the astrometric
data collected for each CCD readout channel to construct a high-fidelity record of the pointing
history for each CCD channel for each 29.4-min data collection interval, comparing them against
the nominal attitudes. The output of PPA is used to identify and set data anomaly flags required
for processing the science data to produce the archive data.

2.3.2.2 Photometer Data Quality (PDQ) PDQ provides a quick look assessment of the health
and performance of the instrument through data downlinked at X-band twice-weekly called “ref-
erence pixels” (Chandrasekaran et al., 2010). A small amount of Kepler science data consisting
of no more than 96,000 Long Cadence (LC) pixels (∼200 target stars) are collected once per day
and stored in non-volatile memory for downlink at the twice-weekly X-band contacts with the
DSN. This provides frequent updates on the status and health of the photometer and assesses the
validity of the spacecraft’s attitude for science operations following a return to science attitude.
If any of the target stars are more than 0.1 pixels (∼0.4′′) from their desired location in the first
reference pixel file, the SO authorizes a pointing tweak to correct the pointing. PDQ tracks and
trends various aspects of the photometer and provided the first indication of the loss of module 3
failure in January 2010.

2.3.2.3 End-To-End Model (ETEM) ETEM is a suite of software that generates synthetic
flight-like data for Kepler with a high degree of fidelity, including matching the formats of the
science data at each ground segment interface, from the solid state recorder (SSR) onboard the
spacecraft, through the MOC and the DMC (Jenkins et al., 2004; Bryson et al., 2010a). ETEM
was indispensable in testing the entire Kepler ground segment as well as for designing, imple-
menting, and testing the SOC. ETEM simulates the astrophysics of planetary transits, stellar
variability, background and foreground eclipsing binaries, cosmic rays, and other phenomena.

2.3.2.4 Focal Plane Characterization (FC) This module consists of a set of database tables,
persistence classes, and associated handling code that manages the calibration models used to
process data and manage target definitions (Allen et al., 2010). These include the 2-D black (bias
voltage) image, the pixel-level gain model, and the pixel response function (PRF). One of the
most critical model sets maintained in FC is the model describing the mapping from celestial
coordinates to focal plane coordinates (pixels) called RaDec2Pix.

2.3.2.5 Compression (COMP) Pixel data compression tables are generated by two compo-
nents named the Huffman Generator (HGN) and the Huffman Aggregator (HAG) modules. The
data compression scheme involves three steps: 1) re-quantizing the data so that the quantiza-
tion noise is approximately a fixed fraction of the intrinsic measurement uncertainty (which is
dominated by shot noise for bright pixels), 2) taking the difference between each re-quantized
pixel value and a baseline value that was updated once per day, and 3) entropic encoding via a
length-limited Huffman table (Jenkins & Dunnuck, 2011). The compression scheme compressed
the original 23-bit words to typical lengths of 4.5-5 bits per pixel measurement on average for a
compression ratio of ∼5:1. This level of compression allowed for >66 days of data to be stored
on the SSR, thereby decreasing the time required for DSN contacts and increasing robustness
against missed DSN passes.
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2.3.3 Science Pipeline

The Science Pipeline calibrates the original data from Kepler and produces the archival data
products. It conducts the transit search and constructs diagnostics used to prioritize and rank the
planetary candidates for follow-up observations.

2.3.3.1 Calibration (CAL) This module operates on original spacecraft pixel data to remove
instrumental artifacts such as smear from the shutterless readout. Traditional CCD data reduction
is performed (removal of instrument/detector effects such as bias, dark current and flat field),
in addition to Kepler-specific pixel-level calibrations, such as the Local Detector Electronics
(LDE) undershoot correction (Quintana et al., 2010). The associated Dynablack (DYN) module
analyzes Full Frame Images (FFIs – normally acquired once per month) to identify rolling band
artifacts that can trigger false positives and to update thermally sensitive Fine Guidance Sensor
(FGS) crosstalk coefficients used in pixel-level calibrations by CAL. CAL operates on both SC
and LC data to produce calibrated pixel flux time series, associated uncertainties, and metrics
that are used in subsequent pipeline modules. See Chapter 4 and Chapter 5 for details of the
DYN and CAL modules.

2.3.3.2 Target and Aperture Definitions (TAD) In the context of the science pipeline, TAD
updates the photometric apertures based on the reconstructed pointing history obtained by cen-
troiding a fiducial set of bright, unsaturated targets on each 29.4-min cadence.

2.3.3.3 Photometric Analysis (PA) PA measures the brightness of each target star on each
frame. It also fits and removes background flux due to zodiacal light and the diffuse stellar back-
ground, identifies and removes cosmic rays from all target star apertures, and measures the pho-
tocenter or centroid of each target star on each frame. PA uses PRF-fitting to measure precisely
the location of ∼200 bright, unsaturated target stars on each CCD channel in order to establish
the pointing and focus of the photometer. This information is used along with image data to up-
date the photometric apertures (Smith et al., 2016) using a new SOC 9.3 sub-component called
Create Optimal Apertures (PA-COA), detailed in Chapter 7. The architecture and algorithms of
PA are presented in Chapter 6.

2.3.3.4 Presearch Data Conditioning (PDC) PDC performs a critical set of corrections to the
light curves produced by PA, including the identification and removal of instrumental signatures
caused by changes in focus or pointing and of step discontinuities that result occasionally from
radiation events in the CCD detectors. PDC also identifies and removes isolated outliers and
corrects the flux time series for crowding effects and for the fact that not all the light from a star
can be captured by a finite aperture (Stumpe et al., 2014; Smith et al., 2012). PDC employs a
multi-scale maximum a posteriori (MAP) approach to identify and remove systematic errors, al-
lowing it to retain important astrophysical signals in the face of much larger instrumental effects,
as illustrated by Figure 2.6. The architecture and algorithms of PDC are presented in detail in
Chapter 8.

Figure 2.7 illustrates the results of analyzing light curves produced by PDC-MAP to measure
the rotation periods of a set of stars in the open cluster NGC 6811, permitting the calibration of
the theory of gyrochronology to ∼1 Gyr-old stars (Meibom et al., 2011).

2.3.3.5 Transiting Planet Search (TPS) TPS implements a wavelet-based, adaptive matched
filter algorithm to detect signatures of transiting planets (Jenkins, 2002; Jenkins et al., 2010).
TPS stitches the quarterly light curves together prior to searching for planets. TPS also provides
estimates of combined differential photometric precision (CDPP), a key performance diagnostic
for transit survey missions on the timescales of transits (Christiansen et al., 2012). This metric,
used for both the Kepler Mission and the upcoming TESS Mission (Ricker et al., 2015), is neces-
sary for estimating the completeness of a transit survey and for extrapolating the results to infer
the intrinsic frequency of planets in the star sample. TPS is described in detail in Chapter 9.
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a

b

Figure 2.6 a. The original simple aperture photometry light curve for Kepler-20, a star hosting five
transiting planets, including the first Earth-size planet discovered by Kepler (Gautier et al., 2012). b.
The systematic error-corrected light curve produced by PDC using a MAP-based approach, showing good
preservation of the transit signatures and rotational modulation of the star’s brightness by star spots. The
vertical scales of these two panels are notably different: the vertical scale of the bottom panel is ∼10×
smaller than that of the top panel.

Figure 2.7 Stellar rotation periods measured for 71 dwarf stars in the ∼1-Gyr-old open cluster NGC
6811 as a function of color, illustrating the strong relationship between color and rotation period for stars of
the same age. PDC-MAP reliably preserves intrinsic variations on timescales <20 days. From Figure 4a in
Meibom et al. (2011).



THE SCIENCE OPERATIONS CENTER 17

2.3.3.6 Data Validation (DV) This component performs a suite of diagnostic tests on each
transiting planet signature identified by TPS to make or break confidence in its planetary nature,
as detailed in Chapter 11. These include a comparison of the depth of the even transits to the
odd transits, an examination of the correlation of changes in the photocenter (centroid) of the
target star to the photometric transit signature, a statistical bootstrap to assess confidence in
the detection (see Chapter 10), difference image centroiding to rule out background sources
of confusion, and a ghost diagnostic test to rule out optical ghosts of bright eclipsing binaries
as the source of the transit-like features. These tests can determine if the transit signature is
likely to be due to a background eclipsing binary whose diluted eclipses are masquerading as
transits of a planetary body. DV also calls TPS to search the residual light curve for evidence
of additional transiting bodies after fitting and removing the first planetary transit signature (see
Chapter 12). This process is repeated until TPS fails to identify another transit signature or hits
a programmable upper limit (9 in the run of SOC 9.3 for DR25).

2.3.4 Commissioning Tools

Several tools were developed and deployed specifically for the commissioning phase of the Ke-
pler Mission.

2.3.4.1 Focal Plane Geometry (FPG) and Pixel Response Function (PRF) FPG and PRF
were used to determine the detailed sky to pixel mapping coefficients and the shape of the point
spread function (PSF), respectively, across each of the 84 individual CCD readout channels. The
FPG coefficients include terms for pincushion distortion (Tenenbaum & Jenkins, 2010). PRF
constructed five individual PRFs for each CCD readout area in order to capture non-uniformity
in the focus and PSF (Bryson et al., 2010b). PRF models at intermediate locations are obtained
by interpolation. The pipeline uses these model waveforms to select target apertures and to mon-
itor the locations of the brightest, unsaturated 200 stars on each channel in order to reconstruct
pointing and capture distortion due to focus changes.

2.3.4.2 Pixel Overlay On FFIs (POOF) This tool allows the user to retrieve Kepler FFIs and
overlay the aperture masks from target tables on the images as well as information about the
stellar targets themselves. This enabled the validation of target definition tables early in the
Kepler Mission via manual inspection of the degree to which the selected target masks covered
the target star images, and also identified deficiencies in the KIC, such as outdated celestial
coordinates for the Lepine stars (Lépine et al., 2013). POOF is a tool that is still used to examine
the FFIs to diagnose issues with time series pixel data.

2.3.4.3 Data Goodness (DG) The DG tool allows the user to examine diagnostic statistics
on Kepler FFIs that were collected during commissioning but were not fully analyzed at the
time. This tool is still in use to verify the quality of Kepler FFIs collected during normal science
operations.

2.3.4.4 BART, TCAT, and CDQ These tools were designed specifically to monitor the behav-
ior of certain electronic artifacts discovered pre-launch. The 2-D Black and Artifact Removal
Tool (BART) detects and models temperature-dependent image artifacts in pixel data. BART
provides insight into whether the photometer data are consistent with pre-launch expectations re-
garding temperature variations. The Temperature Coefficient Analysis Tool (TCAT) investigates
the thermal variations of pixels affected by crosstalk caused by the Fine Guidance Sensors (FGS)
used to control the spacecraft pointing. FGS Crosstalk is a significant source of Kepler instru-
ment noise. Check Data Quality (CDQ) checks and analyzes the rms of data-fitting residuals and
thermal coefficients produced by BART for the pixels in the collateral regions of the photometer.
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2.3.4.5 Sandbox Tools (SBT) The sandbox tools allow Kepler personnel to make queries
against the ADB on their own workstations.

2.3.5 Hardware

This section describes the hardware used to support the pipeline.

2.3.5.1 Cluster Worker Machine Cluster worker machines are used to serialize data inputs
for MATLAB executables that run on Pleiades and to parse the outputs generated from those
pipeline modules. Worker machines can run these MATLAB executables locally, but at a much
smaller scale. This is done for less numerically intensive modules such as PPA and AR where
the additional complexity of running on Pleiades is not warranted.

Cluster worker machines can be moved between different clusters in order to provide for some
redundancy. We procured worker machines with 24 cores (48 including hyper threads) and 768
GiB of RAM. Temporary task file storage is on a local NFS. This means local storage on the
worker machine is not a bottleneck for either storage capacity, performance, or availability. Two
10 GiB Ethernet network interfaces are present on the worker machines.

2.3.6 Cluster Datastore Machine

Each cluster also has a dedicated datastore machine that has a similar specification to the cluster
worker machines with the addition of two 8 GiB fiber channel host bus adapters. Oracle and ADB
share this machine. The Kepler Storage Area Network (SAN) has a storage capacity of ∼500
TiB and a theoretical transfer rate limit of 2 GiB sec−1, which is sufficient to copy the entire
contents of the storage array in about 10 minutes. Practically, other parts of the architecture are
the limiting factor as the number of concurrent I/O operations is limited by the number of disks
rather than by the network.

ADB is allocated 64 GiB of RAM with Oracle using the remainder. The version of ADB
used by Kepler uses most of its memory to cache b-tree indices and for temporary buffers. Index
blocks are used to locate array blocks on disk; this scales with the number of independent arrays
in working memory, which is typically largest during processing for CAL. The total memory
required for Kepler is ∼32 GiB but 64 GiB is available. Oracle tends to be bottlenecked on disk
I/O rather than processor power.

2.3.6.1 Data Storage Data storage is handled via a SAN, a dedicated network for the trans-
mission of blocks of data to and from datastore machines. We use a storage array with∼200 7.2k
RPM hard disks. The storage array presents the view of one or more virtual block devices to each
host known as volumes or logical unit numbers (LUN). Each volume is in fact a combination of
disks placed in a RAID 6+0 configuration. This allows for each LUN to be striped across all
the drives in the array and so each can access the full number of I/O operations. The storage
array can provide approximately 15k I/O operations per second. A volume can also be snapshot,
which is a point-in-time copy of a base volume. Modifications to snapshots have a copy-on-write
feature, which means space is only allocated for modifications. Failed disks can be replaced with
reserve space on the remaining working disks. At a minimum, two disks can fail without a loss
of data. In practice, many more disks have failed without data loss.

2.4 Running the Pipeline

The SOC Science Processing Pipeline is actually configured as multiple pipeline segments based
on the dataset types that they process and the frequency at which they run, as indicated in the
typical pipelines depicted in Figure 2.8. Each pipeline is a directed graph of pipeline modules.
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Science Processing Pipelines
Long Cadence Photometry Pipeline

Transit Search 
Pipeline

TPS DV

CAL PA PDC PAD

FFI Pipeline

CAL PA

PPA

DYN TAD

Short Cadence Pipeline

CAL PA PDC

PMD PAG

Figure 2.8 There are four major Kepler pipelines. Top panel: The photometry pipeline for LC data
indicating that TAD is run twice, once before the pointing is reconstructed by PA and once afterwards.
Only LC data are processed by PPA for attitude determination (PAD), for metic determination (PMD) and
for aggregation of the metrics (PAG) and generation of the reports. Left bottom panel: The transit search
pipeline for the LC data, indicating that DV can call TPS multiple times. Middle bottom panel: The FFI
pipeline. Right bottom panel: The SC data pipeline.

Organizing these processing steps as separate pipelines provides flexibility without compli-
cating the pipeline configuration. This flexibility also allows other scenarios to be implemented.
The set of pipeline segments and the modules they contain are completely configurable using the
pipeline GUI. The set of available modules (the module library) is also configurable. This ar-
chitecture enables modules to be easily updated, added, or removed without code changes (other
than to the modules themselves).

2.4.1 Unit of Work

Because the pipeline algorithms can be very computationally intensive and due to the large data
volumes involved, the pipeline can be run on multiple machines. To this end, the pipeline can
run on a cluster of local worker machines or a set of remote machines on the NAS Pleiades
supercomputer. When a new pipeline is launched, the work is divided into units that can then
be distributed to individual worker machines. The unit-of-work (UOW) can be configured to bin
the input data by cadence, CCD output, and/or target. The design goal is to use the UOW as a
tuning knob to maximize concurrency. This knob is adjusted based on how many machines are
available and how long a UOW takes to process.

For execution on Pleiades, a UOW is further broken into subtasks so that work can be dis-
tributed across the tens of thousands of nodes and cores in Pleiades. Additional tuning parameters
control how many subtasks can execute on each node so as to best take advantage of the memory
and cores present in each node. Table 2.1 lists units of work and subtasks for several pipeline
modules.

2.4.2 Coordination of Work

2.4.2.1 Local Cluster When a new pipeline is launched, a pipeline task is created for each
UOW for each module in the pipeline. Pipeline tasks are scheduled for asynchronous execution
using a distributed message queue also known as Message Oriented Middleware (MOM). At the
start of execution, a message is placed on the queue for each pipeline task. Once the messages
are on the MOM queue, the next available worker machine will pull the next message off the
MOM queue and execute the pipeline task corresponding to that message. Any worker is able to
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Table 2.1 Units of work to the subtask level for various pipeline modules.

Pipeline
Module Binned by
CAL cadence interval, CCD output, CCD row(s)
PA month (SC) or quarter (LC), CCD output, individual targets
PDC month (SC) or quarter (LC), CCD output
TPS individual targets
DV individual targets

execute any pipeline task because each worker machine has access to all of the science modules
and the pipeline infrastructure services. This design allows worker machines to be easily added
for increased processing throughput.

2.4.3 Remote Execution

Remote execution is distinguished from local execution by the use of third-party authentication
and connection tools in order to execute pipeline tasks on Pleiades. In this case the pipeline
worker processes remain local and files are transmitted over secure shell (ssh) via the Multi Mis-
sion Operations Center
(MMOC) network. A remote queuing system (RMOM) allocates super computer nodes to sub-
tasks. Pipeline modules can generate a dependency graph that expresses the dependencies be-
tween subtasks, such as the fact that the image motion information needs to be generated by PA
prior to assigning the final photometric apertures via TAD. The RMOM obeys this dependency
graph and so as many independent subtasks are run on at least as many available processing
nodes (Figure 2.9). There are additional parameters that determine the number of concurrent
subtasks that can execute on a processing node. This is usually limited by the memory-to-core
ratio of the type of subtask being executed.

<<Deployment Descriptor>>
SOC Pleiades Front End

<<device>>
Storage Area Network

{link layer = Fibre Channel}

<<device>>
Pleiades Compute Node

<<device>>
Storage

Array

ADB Server MOM Oracle

<<device>>
Pleiades Node

"Compiled" 
  MATLAB

Science 
Algorithm

 
PI::RemoteSubTaskExecutor

<<device>>
Pleiades Node

 RMOM

<<device>>
Gateway Machine

<<device>>
MMOC 
Network

NFS

<<device>>
SPOC Network

{link layer = 10GiB Ethernet}

<<device>>
Storage Area Network

{link layer = Fibre Channel}
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Worker Machine
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Worker

[waiting for message]

object: PI::Worker 
Name

Figure 2.9 Pipeline deployed on Pleiades. In this deployment, the local cluster is used to generate
inputs and outputs for subtasks on Pleiades. Remote processes manage the execution of science algorithm
implementations. This can scale up to tens of thousands of independent subtasks.
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2.4.4 Triggers

New pipeline instances are launched using pipeline triggers that associate pipeline parameters
with specific pipeline instances. These triggers are part of the pipeline configuration and are
created by the pipeline operator using the pipeline GUI. Triggers can also be used to launch
pipelines manually, as in the case of reprocessing, or automatically on a particular schedule or
when the input data become available. These data-available triggers allow the various pipeline
types to be chained together so that complete, end-to-end science processing can be automated.
For example, the photometry pipeline can be configured to run when new data are delivered from
the spacecraft.

2.4.5 Data Accountability

Data accountability is an integral and crosscutting feature of the SOC design and is designed into
the pipeline infrastructure, datastore, data receipt, and each science pipeline module. Tracked
data are assigned a unique originator ID that determines its origin. PI manages the sets of pa-
rameters used for each pipeline module. These parameter sets are locked into an immutable state
once a pipeline trigger has been fired. Pipeline instance IDs ensure the actual parameter values
used to process any piece of data are recorded and recoverable.

Figure 2.10 The SOC operations cluster architecture.

2.4.6 Operating the Pipeline

The data processing tasks are distributed over four operations clusters: Flight Ops, Quarterly
Ops, Monthly Ops, and Archive, and two test clusters: TEST and LAB. Note that all data are
stored in the SAN, which is partitioned to support all six clusters. All original spacecraft science
and engineering data, models, algorithm parameters and configuration settings used for archival
tasks are stored in the Flight Ops and Quarterly Ops partitions. Flight Ops runs PDQ and TAD to
furnish pointing tweaks and target tables, which are uplinked to the spacecraft and shared with the
other clusters as needed. The original data are “snapshotted” (i.e., copied on write) to Monthly
Ops from Quarterly Ops to support the first pass processing on each monthly dataset, whose
results are used to set parameters for the archive processing on Quarterly Ops. The results from
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Quarterly Ops are snapshotted to the Archive cluster for export formatting and writing to disc,
freeing up Quarterly Ops to continue processing other quarters during reprocessing activities.
TEST and LAB are test clusters used for algorithm and code development and for running science
analyses, respectively. The SOC operations cluster architecture is shown in Figure 2.10.

Figure 2.11 The quarterly operations workflow for Keplerfor a single quarter. The purpose of this
processing flow is to generate the calibrated pixel and light curve products for a single quarter of data.

Figure 2.11 shows the operational workflow for processing each quarterly dataset to generate
the calibrated pixel and light curve products. The operational environment is updated as nec-
essary to accommodate modifications in code, software parameters, and/or data anomaly flags,
which specify which cadences to ignore in processing and for what reason. For this scenario,
preliminary processing of the data has already been performed and the results reviewed to iden-
tify updates to anomaly flags, etc. Next, triggers are updated and the LC pipeline is kicked off to
calibrate the pixels, extract the photometry, correct the light curves for systematic errors, monitor
the performance of the instrument and characterize the photometric precision of each light curve.
The triggers are updated and the SC pipeline is kicked off. After the SC processing is completed,
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the triggers are updated and the FFI pipeline is fired. As the pipelines complete and return their
data to the Data Store, the data are made available to the Science Office and the Data Analysis
Working Group (DAWG) for the purpose of monitoring the performance of the instrument and
the pipeline, and for assessing the quality of the resulting data products to inform the generation
of Data Release notes accompanying the archival data products.

Figure 2.12 shows the operational workflow for searching multiple quarters of data for transit-
like features and fitting models and constructing diagnostic tests for each one found. The oper-
ational environment is updated as necessary to accommodate modifications in code, software
parameters, and supporting tables. The triggers are updated and the TPS+DV pipeline is fired.
Once the processing is complete, the data are made available to the Science Office and the Data
Analysis Working Group (DAWG) to assess the performance of the planet search pipeline and
to facilitate the identification of KOIs. The results of the planet search were delivered to the
Science Analysis System (SAS) during the primary mission for access by the Science Team. In
the extended mission, however, the SAS was decommissioned and the planet search results have
been archived to the NASA Exoplanet Archive hosted by the NASA Exoplanet Science Institute
(NExScI) for access by everyone.

Figure 2.12 The multiple quarter operations workflow for Kepler. The purpose of this processing flow
is to search for planets and generate diagnostics and limb-darkened model fits for each transit-like feature
identified in the search.

2.5 Conclusions

The Kepler Mission led to the discovery of over 2300 confirmed or validated planets, another
2400 planet candidates, and over 2100 eclipsing binaries. As stunning as the exoplanet discov-
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eries have been, the richness of the astrophysics enabled by Kepler is just as breathtaking and
enduring. From the detection of asteroseismic pressure mode oscillations in over 15,000 stars,
the detection of mixed gravity and pressure modes in red giants, the study of classical variable
stars such as Gamma Doradus stars and Delta Scuti stars and hybrids, to novel astrophysics such
as highly eccentric “heartbeat” stars and relativistic boosting (van Kerkwijk et al., 2010), the
science has been extremely diverse.

The Kepler SOC has played a principal role in generating the science data enabling these
high impact science results. Developing the SOC was fraught with technical challenges both in
terms of dealing with the data volume and in terms of the image and signal processing algorithms
implemented in the pipeline. These challenges were met with a flexible pipeline infrastructure
and transactional database along with important algorithmic innovations, such as the multi-scale
MAP approach to identifying and correcting instrumental systematic errors while retaining in-
trinsic astrophysical signals to the greatest degree possible. The transiting planet search com-
ponents of the pipeline saw important innovations, too, enabling exoplanetary science results,
including the implementation of an over-complete wavelet transform-based adaptive matched
filter that was coupled with χ2 statistical vetoes to increase the discriminatory power against
instrumental and non-exoplanetary transients in the flux time series data. The success of Kepler
and the SOC has spurred other missions such as ESA’s PLATO Mission and NASA’s Transiting
Exoplanet Survey Satellite (TESS) Mission. In fact, the Kepler SOC is being retooled for use on
the TESS Mission to generate the light curves and search for Earth’s nearest neighbors starting
in 2018 (Ricker et al., 2015).
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Anglada-Escudé, G., Amado, P. J., Barnes, J., et al., 2016. “A Terrestrial Planet Candidate in a
Temperate Orbit around Proxima Centauri,” Nature, 536, 437

Borucki, W. J., Koch, D., Basri, G., et al., 2010. “Kepler Planet-Detection Mission: Introduction
and First Results,” Science, 327, 977

Brown, T. M., Latham, D. W., Everett, M. E., & Esquerdo, G. A., 2011. “Kepler Input Catalog:
Photometric Calibration and Stellar Classification,” AJ, 142, 112

Bryson, S. T., Jenkins, J. M., Peters, D. J., et al. 2010a. “The Kepler End-to-End Model: Cre-
ating High-Fidelity Simulations to Test Kepler Ground Processing,” in Proc. SPIE, Vol. 7738,
Modeling, Systems Engineering, and Project Management for Astronomy IV, 773808

Bryson, S. T., Tenenbaum, P., Jenkins, J. M., et al., 2010. “The Kepler Pixel Response Function,”
ApJL, 713, L97

Bryson, S. T., Jenkins, J. M., Klaus, T. C., et al. 2010c. “Selecting Pixels for Kepler Downlink,”
in Proc. SPIE, Vol. 7740, Software and Cyberinfrastructure for Astronomy, 77401D

Caldwell, D. A., van Cleve, J. E., Jenkins, J. M., et al. 2010. “Kepler Instrument Performance:
An In-Flight Update,” in Proc. SPIE, Vol. 7731, Space Telescopes and Instrumentation 2010:
Optical, Infrared, and Millimeter Wave, 773117

http://iopscience.iop.org/article/10.1086/672273/pdf
http://iopscience.iop.org/article/10.1086/672273/pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180007752.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180007752.pdf
https://arxiv.org/abs/1609.03449
https://arxiv.org/abs/1609.03449
http://science.sciencemag.org/content/327/5968/977.full
http://science.sciencemag.org/content/327/5968/977.full
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011AJ....142..112B&link_type=PREPRINT&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011AJ....142..112B&link_type=PREPRINT&db_key=AST
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100037971.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100037971.pdf
http://iopscience.iop.org/article/10.1088/2041-8205/713/2/L97/pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110010910.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190028937.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190028937.pdf


BIBLIOGRAPHY 25

Chandrasekaran, H., Jenkins, J. M., Li, J., et al. 2010. “Semi-Weekly Monitoring of the Per-
formance and Attitude of Kepler Using a Sparse Set of Targets,” in Proc. SPIE, Vol. 7740,
Software and Cyberinfrastructure for Astronomy, 77401B

Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M., 2000. “Detection of Planetary
Transits Across a Sun-like Star,” ApJL, 529, L45

Christiansen, J. L., Jenkins, J. M., Caldwell, D. A., et al., 2012. “The Derivation, Properties, and
Value of Kepler’s Combined Differential Photometric Precision,” PASP, 124, 1279

Coughlin, J. L., Thompson, S. E., Bryson, S. T., et al., 2014. “Contamination in the Kepler Field.
Identification of 685 KOIs as False Positives via Ephemeris Matching Based on Q1-Q12 Data,”
AJ, 147, 119

Gautier, III, T. N., Charbonneau, D., Rowe, J. F., et al., 2012. “Kepler-20: A Sun-like Star with
Three Sub-Neptune Exoplanets and Two Earth-size Candidates,” ApJ, 749, 15

Gilliland, R. L., Chaplin, W. J., Jenkins, J. M., Ramsey, L. W., & Smith, J. C., 2015. “Kepler
Mission Stellar and Instrument Noise Properties Revisited,” AJ, 150, 133

Gilliland, R. L., Chaplin, W. J., Dunham, E. W., et al., 2011. “Kepler Mission Stellar and Instru-
ment Noise Properties,” ApJS, 197, 6

Haas, M. R., Batalha, N. M., Bryson, S. T., et al., 2010. “Kepler Science Operations,” ApJL, 713,
L115

Henry, G. W., Marcy, G. W., Butler, R. P., & Vogt, S. S., 2000. “A Transiting “51 Peg-like”
Planet,” ApJL, 529, L41

Huber, D., 2016. “Precision Stellar Astrophysics in the Kepler Era,” ArXiv e-prints,
arXiv:1604.07442

Huber, D., Silva Aguirre, V., Matthews, J. M., et al., 2014. “Revised Stellar Properties of Kepler
Targets for the Quarter 1-16 Transit Detection Run,” ApJS, 211, 2

Jenkins, J. M., 2002. “The Impact of Solar-like Variability on the Detectability of Transiting
Terrestrial Planets,” ApJ, 575, 493

Jenkins, J. M., & Dunnuck, J. 2011. “The Little Photometer that Could: Technical Challenges
and Science Results from the Kepler Mission,” in Proc. SPIE, Vol. 8146, Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series, 814602

Jenkins, J. M., Peters, D. J., & Murphy, D. W. 2004. “An Efficient End-to-End Model for
the Kepler Photometer,” in Proc. SPIE, Vol. 5497, Modeling and Systems Engineering for
Astronomy, ed. S. C. Craig & M. J. Cullum, 202–212

Jenkins, J. M., Smith, J. C., Tenenbaum, P., Twicken, J. D., & Van Cleve, J. 2012. “Planet Detec-
tion: The Kepler Mission,” in Advances in Machine Learning and Data Mining for Astronomy,
ed. M. J. Way, J. D. Scargle, K. M. Ali, & A. N. Srivastava (Chapman and Hall, CRC Press),
355–381

Jenkins, J. M., Chandrasekaran, H., McCauliff, S. D., et al. 2010. “Transiting Planet Search in the
Kepler Pipeline,” in Proc. SPIE, Vol. 7740, Software and Cyberinfrastructure for Astronomy,
77400D

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190002636.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190002636.pdf
http://iopscience.iop.org/article/10.1086/312457/pdf
http://iopscience.iop.org/article/10.1086/312457/pdf
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012PASP..124.1279C&link_type=PREPRINT&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012PASP..124.1279C&link_type=PREPRINT&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014AJ....147..119C&link_type=PREPRINT&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014AJ....147..119C&link_type=PREPRINT&db_key=AST
https://arxiv.org/abs/1112.4514
https://arxiv.org/abs/1112.4514
http://iopscience.iop.org/article/10.1088/0004-6256/150/4/133/pdf
http://iopscience.iop.org/article/10.1088/0004-6256/150/4/133/pdf
http://iopscience.iop.org/article/10.1088/0067-0049/197/1/6/pdf
http://iopscience.iop.org/article/10.1088/0067-0049/197/1/6/pdf
http://iopscience.iop.org/article/10.1088/2041-8205/713/2/L115/pdf
http://iopscience.iop.org/article/10.1086/312458/pdf
http://iopscience.iop.org/article/10.1086/312458/pdf
https://arxiv.org/abs/1604.07442
http://iopscience.iop.org/article/10.1088/0067-0049/211/1/2/pdf
http://iopscience.iop.org/article/10.1088/0067-0049/211/1/2/pdf
http://adsabs.harvard.edu/abs/2002ApJ...575..493J
http://adsabs.harvard.edu/abs/2002ApJ...575..493J
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190002637.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190002637.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190000813.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190000813.pdf
http://adsabs.harvard.edu/abs/2012amld.book..355J
http://adsabs.harvard.edu/abs/2012amld.book..355J
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110010911.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110010911.pdf


26 BIBLIOGRAPHY

Klaus, T. C., McCauliff, S., Cote, M. T., et al. 2010a. “Kepler Science Operations Center
Pipeline Framework,” in Proc. SPIE, Vol. 7740, Software and Cyberinfrastructure for As-
tronomy, 774017

Klaus, T. C., Cote, M. T., McCauliff, S., et al. 2010b. “The Kepler Science Operations Center
Pipeline Framework Extensions,” in Proc. SPIE, Vol. 7740, Software and Cyberinfrastructure
for Astronomy, 774018
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Abstract. The Kepler Mission monitors ∼165,000 stellar targets using 42 2200 × 1024 pixel
CCDs. Onboard storage and bandwidth constraints preclude the storage and downlink of all 96
million pixels per 30-minute cadence, so the Kepler spacecraft downlinks a specified collection
of pixels for each target. These pixels are selected by considering the object brightness, back-
ground, and the signal-to-noise ration (SNR) in each pixel, and maximizing the signal-to-noise
ratio of the target. This paper describes pixel selection, creation of 772 spacecraft apertures that
efficiently capture selected pixels, and aperture assignment to a target. Engineering apertures,
short cadence targets, and custom-specified shapes are discussed. This chapter is largely based
on an updated version of Bryson et al. (2010b).

Keywords: Kepler, exoplanet, transit, pixel selection

3.1 Introduction

The Kepler Mission nearly continuously observes ∼165,000 target stars in Kepler’s 116-square-
degree Field of View (FOV) seeking to discover Earth-size planets transiting solar-like stars by
detecting photometric signatures of transits (Borucki et al., 2010; Koch et al., 2010). Data is
collected and stored for monthly downlink, and the data is processed in the Science Operations
Center (SOC – Middour et al., 2010; Haas et al., 2010). Only a limited amount of pixel data can
be stored onboard for later downlink to the ground, necessitating the creation of target masks to
capture “postage stamps” in the focal plane containing the pixels of interest for each the target
stars. The Target and Aperture Definitions (TAD) pipeline module identifies the pixels required
to extract photometric measurements for each target star, and also creates and assigns masks used
by the flight software to choose which pixel data are stored onboard on the solid state recorder
(SSR) during science observations.

Every observed target is readout every 6.52 seconds and co-added 270 times into 29.4-minute
observations, referred to as Long Cadence (LC) data. A smaller number of targets, at most 512,
is co-added 9 times into 58.8 second Short Cadence (SC) observations. These data are collected
nearly continuously for about 30 days and downlinked via high-bandwidth Ka-band transmis-
sions. However, onboard storage is not sufficient to store 30 days of 96 million pixels taken at
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LC (in addition to the SC and engineering data and FFIs). Moreover, bandwidth constraints of
the Ka-band transmission limits the amount of data that may be downlinked, making it impossi-
ble to downlink all 96 million pixel values that are collected with each 29.4-min LC observation.
It is therefore required to identify the pixels that provide the best data for the target stars and
select these pixels for storage and downlink.1 This paper describes the method by which the
required pixels for each target are determined. Kepler was placed in an Earth-trailing solar orbit
on March 6, 2009. Every ∼93 days the spacecraft rotates 90 degrees, referred to as a quarterly
roll, which changes what stars are on which CCD. Every quarter the pixel selection process is
repeated with a new collection of targets2 (Haas et al., 2010).

Figure 3.1 shows the TAD module in the context of the Kepler Science Pipeline. The TAD
component was used to define target definition tables that were uploaded to the Kepler spacecraft,
and determine which pixels are downlinked. In addition to target definitions, the algorithms
described in this paper determine which pixels are optimal for aperture photometry. After the
data is collected and processed, it can be used to refine optimal aperture selection, for example
as described below for saturated targets, or using the techniques described in Chapter 7.
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Figure 3.1 Target and Aperture Definitions (TAD) in the context of the architecture of the SOC. TAD
models the sky and the Kepler instrument and spacecraft in order to determine which pixels need to be
collected to facilitate the ultra high-precision photometry (∼20 ppm) required to fulfill Kepler’s Mission.
TAD was run prior to each quarter’s observation using pointing predicts. It was also run after the data were
collected using reconstructed pointing information generated by the photometric pipeline in order to provide
updated optimal apertures for the photometric measurements.

1The onboard data compression scheme allows ∼65 days of data to be stored, providing robustness against missed Deep
Space Network contacts.
2Many of the SC targets were changed for each monthly observation, and these target definitions were set up as the same
time as for the LC targets.
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One of the primary goals of pixel selection is to identify pixels that are optimal for aperture
photometry, as described in Section 3.2. The high quality of the Kepler photometric data (Cald-
well et al., 2010) indicates that such pixel selection has been basically successful.

3.1.1 The Kepler Focal Plane

The Kepler focal plane science sensors consist of 42 2200-column-by-1044-row CCDs mounted
on 21 electronic modules (Figure 3.2) with an image scale of 3.98′′ per pixel. The first 20 rows of
each CCD are masked with aluminum and are not exposed to the sky in order to provide calibra-
tion and diagnostic data as described below. Each CCD is divided into two 1100 × 1044 output
channels. Each output channel is supplemented by 26 trailing virtual rows, 12 leading serial
register columns and 20 trailing virtual columns, giving each output channel 1132 × 1070 ad-
dressable pixels. The 12 leading serial register columns and 20 trailing virtual columns are used
to collect black level data for each row. Kepler’s lack of a shutter means that pixels are exposed
to the sky during readout, which causes image smear along columns. The leading 20 masked and
26 trailing virtual columns measure this smear data. The black level and smear data are called
collateral data and are used to calibrate the pixel data during ground processing (Quintana et al.,
2010). The pair of CCDs on each module provide a contiguous 2200 × 2048 pixel image of a
portion of the Kepler FOV.

Figure 3.2 Left: The CCD array on the Kepler focal plane, showing the 21 modules, each of which
has two 2200× 2048 pixel CCDs. Each CCD is read out via two output channels. Smaller CCDs used as
fine guidance sensors are also shown in each corner, but are not discussed in this paper. Right: The pixel
arrangement of each output channel. From Figure 1 of Bryson et al. (2010b).

3.1.2 Target and Aperture Definitions Task Flow

Kepler’s on-board flight system software does not allow specification of arbitrary collections of
pixels for each target. A table of 1024 aperture masks is loaded onto the spacecraft and the pixels
associated with a target are collected with one of these masks. Efficient design of these masks
is required to gather the desired pixels without too many excess pixels. This requirement is a
primary concern of the work described in this paper.

The pixel selection workflow proceeds along the following lines:

1. For each target required pixels are identified (Section 3.2).
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2. A mask table is created to best match the set of selected pixels for all targets (Subsec-
tion 3.3.2).

3. Each target’s required pixels are assigned to the smallest mask that contains all required
pixels (Subsection 3.3.3).

A single target, particularly a very bright stellar target, may be assigned to more than one mask.
The resulting mask assignment for each target is collected into target definitions that include

the index in the aperture mask table of the selected aperture mask and the location on the focal
plane (module, output, row, column) of that mask.

3.1.3 Kepler Pixel and Target Types

Kepler pixels are collected for several types of targets:

Stellar Targets: Point-like sources (Batalha et al., 2010) whose pixels are selected to maximize
the SNR (Subsection 3.2.2). Stellar targets are specified by a Kepler ID, which is used to
look up pertinent data in the Kepler Input Catalog (KIC – Latham et al., 2005; Brown et al.,
2011). Stellar targets may be either LC or SC.

Custom Targets: Explicitly specified collections of pixels. Custom targets are defined by a
reference pixel position and a set of offsets, one for each pixel, from that reference position.
Custom targets are used for non-stellar sources and diagnostic collections of pixels, and
may be either SC or LC.

Background Targets: Small (nominally 2× 2) sets of pixels that sample the background signal
in long cadence. These pixels are selected to support a 2-D polynomial representation of
the background (Subsection 3.2.3).

Reference Pixel (RP) Targets: Special stellar targets used for managing the science attitude
and other diagnostics whose pixels are downlinked bi-weekly via low-bandwidth X-band
communications (Chandrasekaran et al., 2010). RP targets are designed to include sufficient
information for calibration and analysis (Section 3.4) and are treated separately by the flight
system software with their own memory allocation. RP stellar targets share a mask table
with LC and SC and also appear on the LC target list. Custom masks are created for RP
background targets and the associated collateral data (black and smear).

3.1.4 Pixel Selection Requirements

Memory, bandwidth, and flight software design impose several constraints on the final set of
pixels selected for downlink:

Long Cadence (LC): There may be no more than 170,000 target definitions with no more than
10,000 per output channel and no more than 5.44 million pixels across the FOV. This implies
an average of ≤ 32 pixels per target definition.

Short Cadence (SC): There may be no more than 512 target definitions and no more than
43,520 pixels or an average of ≤ 85 pixels per target if 512 targets.

Background: There may be no more than 1125 target definitions and no more than 4500 pixels,
or an average of 4 pixels per target, for each of the 84 output channels.

Reference Pixels (RP): At the beginning of the Kepler Mission, there were no more than 96,000
pixels in a set of RP targets across the entire focal plane. As Kepler drifted away from Earth,
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bandwidth degradation reduced the number of RP that could be downlinked in a bi-weekly
contact. By the end of the Kepler Mission, only 161 stars were collected as reference pixel
targets, using 24,277 pixels.

Aperture Mask Table: Up to 1024 aperture masks may be defined, using no more than 87,040
pixels. This implies an average of 85 pixels per mask for 1024 masks.

For reasons described in Section 3.4, 252 entries in the aperture mask table are dedicated to
supporting RP observations, leaving 772 aperture masks for LC and SC targets.

Basic Kepler Mission requirements specify the capability to observe stars with magnitudes
between 9 and 15. Simultaneously meeting the above constraints while providing efficient mask
assignment for a wide range of stellar magnitudes is a significant challenge. Observation of stars
brighter than magnitude Kp = 9 is allowed with the understanding that tiling efficiency will be
significantly degraded, so these observations can use a very large number of pixels.

3.2 Pixel Selection

Pixels for stellar targets are selected to maximize the SNR for that target, while background pixels
are selected to facilitate the construction of 2-D polynomial representation of the background.
Both pixel types are selected based on a model of the signal seen by Kepler CCDs created from
observed characteristics of the sky (via the KIC and its updates (Huber et al., 2014)) and the
Kepler photometer, including optical and electronic properties. This model is used to create a
synthetic sky image, which is analyzed to determine the desired pixels. The basic strategy for
optimal pixel selection is to create two synthetic images: one with all stars in the region of the
target star and another with all stars except the target star itself. These images are then used to
compare the signal from the target star with the noise from the target star, stellar background,
and the instrument.

The techniques in this section are based on techniques developed for creating Kepler test
data (Jenkins et al., 2004).

3.2.1 Synthetic Image Creation

The synthetic image is created using the following elements:

Kepler Input Catalog (KIC), providing J2000 right ascension (RA, α), declination (Dec, δ),
and magnitude (Kp) in the Kepler bandpass of stellar targets in the Kepler field.

Pixel Response Function (PRF) (Bryson et al., 2010a) Model, an observation-based super-resolution
model of how light from a star falls on Kepler pixels at different locations in the focal plane.
There is one PRF model for each output channel, and this model contains five PRFs that
are linearly interpolated to capture intra-channel PRF variations. The observations behind
the PRF model were taken at a 15-minute cadence, sufficient to capture the LC behavior of
spacecraft pointing jitter. The PRF model includes intra-pixel variability.

Focal Plane Geometry (FPG) and Pointing Model (Allen et al., 2010), which includes mea-
surements of the locations of the CCDs in the Kepler focal plane, models of the Kepler
optics, and models of differential velocity aberrations (DVA). These models are used to de-
termine the pixel location of the central ray of each stellar target. DVA can move a star at
the edges of the FOV as much as 0.6 pixels during an observational quarter.

Saturation Model (Allen et al., 2010), which includes information about the well depth of each
output channel.
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Zodiacal Light Model, represented as a mesh of magnitude values on the sky.

Read Noise Model (Allen et al., 2010), observed values of read noise for each output channel.

Charge Transfer Efficiency (CTE) Model, which describes how much flux is lost with each
charge transfer during readout.

The synthetic image used for pixel selection models the signal in calibrated pixels, so smear due
to the lack of a shutter and other instrumental effects is not included. The pixels selected for
optimal photometry in Subsection 3.2.2 are used for an entire quarter of ∼93 days, so for every
star the pointing model is used to smear the PRF along the path taken by that star due to DVA
during that quarter.

The synthetic image for each output channel is generated star by star. For each star in the KIC
that falls on the output channel:

1. The star’s pixel position on the channel is computed from the star’s RA and Dec in the KIC,
using the FPG and pointing model (including sub-pixel position).

2. The PRF at the star’s position is evaluated along the path taken by the star due to DVA,
creating a smeared PRF covering the entire quarter.

3. The pixels capturing the star’s PRF are normalized to sum to the flux of the star derived
from the Kepler magnitude in the KIC. The resulting target-only image is saved for each
target for use in Subsection 3.2.2.

4. The normalized pixels are added to the synthetic image at the appropriate pixel location.

At this point the synthetic image represents the collection of stars in the KIC as they would
appear on the CCD without any saturation or zodiacal light background. A copy of the synthetic
image, called the background image, is made for use in the optimal pixel selection described in
Subsection 3.2.2. The zodiacal light is interpolated onto each pixel and added to the synthetic
image. Saturation is then iteratively spilled along columns by moving flux that exceeds the well
depth up and down the column, with the fraction of flux moving up vs. down being controlled by
an input parameter. Finally the CTE model is applied. A comparison of the resulting synthetic
image and the in-flight image of the same pixels is shown in Figure 3.3.

There are several sources of error in the generation of the synthetic image, which can result
in compromised photometrically-optimal apertures:

PRF Errors: Each PRF model is computed as an average of several observed stars without
consideration of color. The actual PRF of individual stars will differ because the optical
PSF underlying the PRF has minor color dependence. The PRF varies within a channel,
with stronger variation near the edge of the FOV, and this variation is only approximately
modeled by the linear interpolation included in the PRF model.

KIC Errors: The KIC contains several artifacts that do not correspond to objects in the real
sky. Such artifacts can be see in Figure 3.3 around the bright star at (520, 580), where there
is a faint diagonal line of stars extending from the lower left to the upper right through the
core of the star. This is likely a diffraction spike misidentified as faint stars, and it does not
appear in the flight image. The KIC does not reflect stellar variability, which is unknown for
many stars in the Kepler field (for stars whose variability is known the brightest magnitude
is used). An example of such magnitude errors can be seen in the star at (540, 570) of
Figure 3.3, which is brighter in the synthetic image than in the flight image. When a KIC
underestimate of a target’s magnitude has been identified, there is a mechanism to provide
corrected magnitudes to the pixel selection process. The Stellar Properties Working Group
(SPWG) updated the stellar properties in the KIC based on observations of Kepler target
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Figure 3.3 A comparison of a synthetic image (left) with the actual flight image of the same region of
the sky (right), near the edge of the Kepler where the PRF is large. For purposes of comparison with the
sky image, the synthetic image is computed for a short time interval for the time of the flight image so that
the PRF are not smeared. From Figure 2 of Bryson et al. (2010b).

stars and planetary hosts conducted by the Kepler Follow up Observation Program (Huber
et al., 2014).

Saturation Model: The current saturation model provides the well depth per output channel,
assuming that the well depth does not vary within the channel and that the spill up and down
a column is symmetric. Both of these assumptions are strongly violated, with variations
in both well depth and symmetry. These variations have a higher spatial frequency than
could be measured with the bright stars in the Kepler FOV. To provide margin against this
uncertainty in saturation spill asymmetry, the simulated saturation is extended by 50% in
both directions. An approach of explicitly providing the saturation spill per bright star based
on observation is described in Subsubsection 3.2.1.1.

Changing Focus: The focus of the Kepler photometer has been observed to undergo seasonal
changes as the Sun angle varies throughout the Kepler orbit. In addition, smaller high-
frequency focus changes have been observed that are highly correlated with various heaters
operating on the spacecraft. These focus changes create PRF changes not captured in the
current static synthetic image. Focus changes also induce plate scale variations, so the stars
are not placed in the correct positions in the synthetic images.

Because some of these errors were anticipated, the mask assignment process places a one-to-
four-pixel halo around the optimal aperture described in Subsection 3.2.2 prior to aperture mask
fitting, as described in Section 3.3.

3.2.1.1 Saturated Targets During early Kepler operations, properly capturing saturated tar-
gets proved challenging, due primarily to incorrect Kepler magnitudes in the KIC particularly for
variable stars and asymmetric saturation spill. In most cases, the 50% buffer added to the simu-
lated saturation described in Subsection 3.2.1 was sufficient so that saturated pixels required for
good photometry were captured. In several cases, however, the saturated star’s mask was not
sufficiently large to fully capture that star’s saturated pixels, seriously compromising that star’s
photometry. Prior to quarter 10 (Q10) operations, manual inspection revealed cases where satu-
rated pixels were not captured. When a lack of full capture was discovered, the missed saturated
pixels were recorded and the image creation algorithm in Subsection 3.2.1 was modified to add
these saturated pixels to the star’s simulated image.
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After two years of Kepler operations, the process of using Kepler data to determine which
pixels need to be included in a saturated target’s optimal aperture was automated through the
introduction of a saturation map. The saturation map is a list of bright stars, identified by Kepler
ID, and, for each bright star, a list of saturated columns with the lowest and highest saturated
row. The saturation map is created from the flight full frame images (FFIs) that were collected
monthly during the first two years of Kepler data collection. Because of Kepler’s exceptional
pointing stability and repeatability, FFIs from each of Kepler’s four observational seasons can
be combined to provide several snapshots of the entire Kepler focal plane. In this way, observed
saturation from every star in the Kepler field can be incorporated into the saturation map.

The saturation map is constructed as follows: For each observing orientation, all FFIs taken at
that orientation are individually analyzed to create images that show the saturated pixels on the
focal plane. These individual saturation images are combined via logical OR operation, resulting
in a saturation image per orientation that shows all pixels that were saturated in any FFIs taken
at that orientation. Connected sets of saturated pixels in each column are identified in each
orientation’s saturation image. These connected sets of saturated pixels are called saturation
events and are represented as a column number with lowest and highest row.

The final saturation map is created by comparing saturation events with the KIC, assigning
a bright star from the catalog to each saturation event. For very bright stars, several saturation
events may be assigned, reflecting the fact that bright stars can saturate several adjacent columns.
Each resulting saturation map entry contains a Kepler ID and a list of one or more saturation
events. The automated assignment of saturation events to KIC stars is manually inspected and
corrections are made as necessary. The saturation map adds saturated pixels to the synthetic
images used to determine the optimal aperture described in Subsection 3.2.2.

The assignment of saturation events to KIC stars can be ambiguous and even not well defined
when there is overlapping saturation from two bright stars in the same column. Such cases
are manually resolved by estimating the expected saturation from the stars’ Kepler magnitudes.
The resulting saturation map entries cannot be expected to be strictly correct in these cases, but
overlapping saturation presents a situation in which photometry for the individual contributing
star is not possible using saturated pixels. So there is little harm from saturation map errors
arising from overlapping saturation from two or more stars.

The saturation map may miss stellar variability due to the once-a-month sampling of the FFIs.
The addition of the standard halo described in Subsection 3.3.1 provides a margin against some
stellar variability. Visual inspection was continued and the saturation map was augmented when
uncaptured saturation was discovered.

When the saturation map is used, the 50% buffer can be removed, resulting in a significant
reduction in the pixels captured for saturated targets. This reduction in pixel cost of saturated
targets was seen when the saturation map was introduced for Q10.

3.2.2 Optimal Pixel Selection

This target-only image created in Subsection 3.2.1 is subtracted from the background image,
creating the background image with all stars on this channel except the target. Saturation and
CTE are then simulated as described in Subsection 3.2.1. Pixel values ptarget in the target-only
image define the signal of each pixel, while the pixel values pback in the background image
provide the background signal. The SNR of each pixel is estimated as

SNRpixel =
ptarget√

ptarget + pback + ν2
read + ν2

quant

(3.1)
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where νread is the read noise for this channel and νquant is the quantization noise given by

νquant =

√
nC
12

( w

2nb−1

)
, (3.2)

where nC is the number of cadences in a co-added observation (270 for LC), w is the well
depth and nb is the number of bits in the analog-to-digital converter (= 14). This noise formula
(Equation 3.1) includes Poisson shot noise of both the target and background pixel values. Given
a collection of pixels, the SNR of the collection is given by Equation 3.1 with the individual
pixel values ptarget and pback replaced by the sum of these pixel values over the pixels in the
collection. Optimal pixel selection begins by including the pixel with the highest SNR. The next
pixel to be added is the pixel that results in the greatest increase in the SNR of the collection.
Initially the collection’s SNR will increase as pixels are added. After the bright pixels in the
target have been added, dim pixels dominated by noise cause the collection’s SNR to decrease.
The pixel collection with the highest SNR defines the optimal aperture. Figure 3.4 shows an
example of the dependence of the SNR on pixel inclusion.

The background and target images enable crowding to be estimated by calculating the fraction
of flux in the optimal aperture that is due to the target star. The resulting crowding metric is useful
for estimating the dilution of flux from the target in the optimal aperture, which has an impact
on the detectability of transits (Batalha et al., 2010). The same measure on a 21 × 21 pixel
square provides a sky crowding metric, useful for identifying uncrowded stars. The fraction of
each target’s flux that falls in its optimal aperture is also computed. Both the flux fraction and
crowding metric are used in PDC (seeChapter 8) to correct the mean flux level of each light curve
for these effects.

3.2.3 Background Pixel Selection

Figure 3.4 The aperture SNR curve built up as
pixels are added in order of decreasing pixel SNR.
The optimal set of pixels is defined as the set of pixels
required to reach the maximum of this curve. From
Figure 3 of Bryson et al. (2010b).

Background targets are selected to create a
2-D polynomial representation of the back-
ground on each channel. This background
polynomial is subtracted from the pixel values
prior to aperture photometry (Twicken et al.,
2010). To lead to good polynomials the back-
ground targets should be homogeneously and
uniformly distributed on the output channel.
Because the accuracy of background poly-
nomials increases with increasing density of
data points but diminishes near the edge of the
polynomial domain, more background targets
are placed at the edges of the output channel.
To achieve this distribution, the intersections
of an irregular Cartesian mesh are used for the
initial guess at background target positions.
Because this mesh is the product of two linear
meshes we cannot get a homogeneous distri-
bution that provides exactly 1,125 targets, but
a choice of 31 × 36 = 1, 116 mesh lines is
close.

Because most pixels on an output channel
do not contain stars, a pixel in the synthetic image is considered to be background if its value is
less than the dominant mode of the pixel histogram. A 2×2 pixel background target is considered
valid if all four pixels are below the background threshold. Initially, a background target is placed
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Figure 3.5 Left: The grid used to seed background target positions on an output channel. Right: Final
locations of 2× 2 pixel background targets. From Figure 4 of Bryson et al. (2010b).

at each mesh intersection. If that target is not a valid background target, increasingly larger boxes
centered on the mesh intersection are searched until either a valid background target location is
found or the box exceeds a maximum size. In the latter case the target with the smallest summed
pixel value is chosen. The performance of this search is enhanced by the creation of a 2 × 2-
average binned image, so that the search in each box is done by taking the minimum of the
binned image in that box. The initial mesh and resulting background locations for one example
are shown in Figure 3.5.

3.3 Mask Creation and Assignment

The pixel selection process in Section 3.2 combined with custom apertures produces several
thousand uniquely-shaped pixel apertures across the Kepler FOV. These shapes must be mapped
to the 772 aperture masks loaded onto the spacecraft in a way that minimizes the number of
excess pixels collected. This presents a difficult combinatorial problem, for which an optimal
solution was not supported by available resources during Kepler development. A simpler, near-
optimal approach was developed that performs an iterative statistical estimate to determine which
pixel apertures may be best used as entries in the mask table.

Our approach is tailored to produce aperture masks efficient for dimmer targets, where the
vast majority of pixels are found, and relatively poor for bright targets. This inefficiency for
high-priority bright targets is addressed by creating several manually-designed masks.

The mask creation and assignment process proceeds in three stages:

1. Required pixel apertures are defined by adding pixel margin to the requested pixels (Sub-
section 3.3.1).

2. The mask table is created from an analysis of the resulting final set of pixel apertures,
supplemented by manual mask creation for bright targets (Subsection 3.3.2).

3. The required pixels for each target are mapped to one or more aperture masks in the mask
table, creating the final target definitions (Subsection 3.3.3).

The mask table and target definitions are then delivered for quarterly upload to the spacecraft.
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3.3.1 Required Pixels: Adding Pixel Margin

Once the pixels for a target have been specified, either by the optimal pixel selection process in
Section 3.2 for stellar targets or by explicit specification for custom targets, the target may be
assigned extra pixels. These extra pixels are of two types:

Halos: Rings of pixels around the specified pixels for a target, typically applied as a margin
against uncertainty. A pixel is added to the halo if any of the eight adjacent pixels, including
corners, is included in the target’s specified pixels. As many as four halos may be added,
which are added iteratively. For example, the third halo treats the previous two halos as
specified pixels for the target.

Undershoot Column: An extra column of pixels to the left (“upstream” in the pixel readout)
of the specified pixels that provides data for the undershoot correction algorithm (Quintana
et al., 2010, see also Chapter 5).

Halos and the undershoot column can be specified on a target-by-target basis, and when both are
present the halos are applied first. The default for stellar targets is to add one halo and undershoot
column, and the default for custom targets is no halo or undershoot column.

The final pixels, including the specified pixels and any halo or undershoot column pixels, are
called required pixels.

3.3.2 Mask Table Creation

We break the table of 1,024 aperture masks into four sections:

Dim Target Masks: Ndim masks that are algorithmically generated by an iterative statistical
analysis of the required targets, creating masks that fit required apertures with the smallest
number of excess pixels.

Dedicated Masks: Ndedicated masks that are automatically set equal to the required pixels for
specific targets. These masks are used for oddly shaped diagnostic targets or very bright
high-value stars that are difficult to fit efficiently using other masks.

Bright Target Masks: Nbright masks that are specially generated to fit long saturated columns
or large cores of bright stars in order to improve the efficiency of non-dedicated masks on
bright stars.

Reference Pixel Target Set Masks: NRPTS = 252 masks that are specifically designed to col-
lect collateral data (black level and smear) for reference pixel targets, as described in Sec-
tion 3.4.

The dim target portion is the largest section of the mask table (currently Ndim = 736) and is
filled in using the following algorithm:

1. The aperture mask table is initialized to contain simple geometric shapes.

2. Mask assignment is performed using the full target set as described in Subsection 3.3.3.

3. The unique required apertures are identified.

4. Masks that are perfect fits to some required apertures are identified and set aside.

5. Masks that were not perfect fits are sorted in descending order of the total number of excess
pixels associated with that mask.
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6. The masks in the last step are replaced with shapes from the unique set of required apertures
for targets dimmer than a specified magnitude until the dim target region of the mask table
is filled.

This process is iterated twice in nominal use. The result is the dim target portion of the mask
table containing masks appropriate for dim stars, which make up the bulk of the target set.

The bright target portion of the mask table (currently Nbright = 28) is filled in using two
methods. First, the magnitude range between 7 and 11 is divided into several magnitude intervals
(for the current mask table, 18 intervals are used). Within each interval the required pixels of all
targets with Kepler magnitudes within that interval are combined to make a single aperture mask
that fits all targets within that interval. For targets brighter than magnitude 7, masks are hand-
specified to capture their saturation and large cores.

The dedicated mask portion of the mask table is empty prior to final mask assignment and is
filled in as described in Subsection 3.3.3.

3.3.3 Mask Assignment

Once the mask table is complete, these masks can be assigned to target definitions. Because SC
targets are also on the LC target list, only the LC list needs to be considered. RP targets are
assigned masks separately, as described in Section 3.4.

The majority of target definitions are assigned aperture masks by choosing the mask that
contains the fewest pixels and that completely includes the target’s required pixels. Such a mask
and the position of the target definition inside the mask are chosen by convolving the target’s
required pixels (rotated by 180◦) with the aperture mask pixels. If the convolution contains
values that are equal to the number of required pixels, then the target’s pixels fit in the mask. The
position of the mask relative to the target pixels is determined by the centroid of all entries in the
convolution with values equal to the number of required pixels.

If no aperture mask contains the required pixels, the required pixel set is divided by two along
the shorter axis and a new attempt is made to find an aperture mask for each piece. This division
approach is applied iteratively until masks are found that cover all required pixels.

Dedicated mask targets are not algorithmically assigned masks by the above process. If there
is not already an aperture mask that exactly fits the target’s required pixels (several targets may
use the same dedicated mask), a slot in the dedicated mask region of the aperture mask table
(see Subsection 3.3.2) is filled in by the required pixels of this target. This process assumes that
the dedicated mask portion of the mask table has been sized to accommodate all dedicated mask
targets.

Examples of targets and their assigned masks are shown in Figure 3.6. In operations the
number of unused pixels downlinked due to masks over-fitting targets is 4%, mostly from bright
stars. Figure 3.7 shows the number of mask pixels per target, the cumulative pixel count and the
number of excess pixels per target as functions of target magnitude. We see that the excess pixels
are mainly in the bright targets while the dimmer targets, which make up the overwhelming
majority of targets, are well fit.

3.4 Reference Pixel Targets

A primary design consideration for reference pixels is the very limited number of pixels permitted
in an X-band transmission due to low bandwidth. The 96,000 available pixels are used to provide
attitude determination and diagnostics on 84 output modules (Chandrasekaran et al., 2010). The
requirement to calibrate stellar targets for this purpose implies that black-level and smear data for
each target must be included in the 96,000 pixel budget. Late in the mission this budget became
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Figure 3.6 Left: Examples of the masks (gray) selected once the halo and undershoot column are added
to the optimal aperture (black). Right: A flight image showing the targets captured by the masks from left.
From Figure 5 of Bryson et al. (2010b).

Figure 3.7 Left: The number of pixels per mask vs. target magnitude for stellar targets including pixel
halo and undershoot column. The pixel number for each mask is shown by a gray dot, and a 10th order
robust polynomial fit showing the mode of the pixel number distribution is shown by the black line. The
smallest mask (for a 1-pixel optimal aperture) is 4× 3. Banding for the brighter stars is due to the smaller
number of masks available for these stars. Right: Cumulative number of pixels in a target’s mask vs.
magnitude (solid line, left axis), showing that most pixels are on dim targets, and the number of excess
pixels per target (dots, right axis), showing that bright targets have the largest pixel excess and dim targets
have very little pixel excess. From Figure 6 of Bryson et al. (2010b).

much smaller as the bandwidth decreased due to the increasing distance of the spacecraft from
the Earth.

The target distribution strategy for reference pixels is to assign up to five bright, unsaturated
targets to each of the 84 output channels. Channels near the edge of the FOV are preferentially
given five targets to increase the attitude determination algorithm’s sensitivity to roll. At the
beginning of the mission, while bandwidth is high, all channels have at least three reference
pixel stellar targets to support plate scale measurements. Special dynamic range targets are also
included to provide measurements of the difference between the minimum and maximum pixel
values on each channel, and can quickly indicate if there are problems with the functionality of a
given channel. For the first half of the mission, all reference pixel targets are stellar and dynamic
range targets. As the bandwidth decreased, smaller rectangular custom targets were used for
diagnostics on some output channels starting in quarter 9.
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For each stellar target, two halos and an undershoot column are applied, and a stellar target
definition is created by assigning a mask using the algorithm described in Subsection 3.3.3. The
dynamic range target definitions are created in the same way, but do not require the extra halos
or undershoot columns for the mask assignment. Separate target definitions are created to collect
background, black, and smear pixels with custom masks that are created to collect the pixels in
the most efficient way.

Background pixels are chosen around each stellar target that are close to the local background
mode (computed using a synthetic image to compute the local minima) and that are also not
corrupted by smear. A custom mask is assigned to the background pixels by assigning the corner
pixel of the CCD channel at position (1, 1) to the background target definition and creating
a single ‘super mask’ that contains the offsets of all background pixels relative to this target
definition pixel. Black and smear pixels that lie in the projection of stellar and background pixels
are collected, as are the black pixels needed to calibrate the smear. The values of the black
columns and smear rows are user-specified, whereas the black rows and smear columns depend
on the location of the stellar targets and background pixels. A target definition is created for each
black column (with row index = 1) and for each smear row (column index = 1). The black super
mask can then be defined as having row indices equal to the unique rows of the combined stellar,
background, and smear rows (with column indices = 1). Likewise, the smear mask consists of
column values equal to the stellar and background columns (with row indices = 1).

3.5 Conclusions

The algorithms and approaches described in this paper have been successful in specifying the
pixels to be downlinked from the Kepler spacecraft. These algorithms are used to provide target
definition tables for use by the Kepler spacecraft. A variety of sometimes conflicting require-
ments are met, delivering good photometric performance while acquiring a small number of
unneeded pixels.
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Abstract. In order for Kepler to achieve its required<20 ppm photometric precision for magni-
tude 12 and brighter stars, instrument-induced variations in the CCD readout bias pattern (“2-D
black image”), which are either fixed or slowly varying in time, must be identified, and the
corresponding pixels either corrected or removed from further data processing. The two princi-
ple sources of these readout bias variations are: 1) crosstalk between the 84 science CCDs and
the four fine guidance sensor (FGS) CCDs, called FGS crosstalk, footnoteWhile there is video
crosstalk between the 84 science CCD readout channels, the effects don’t behave as fixed pat-
tern noise, as is the case with the crosstalk from the FGS to the science CCDs, which is caused
primarily by the clock driver pulses. and 2) a high-frequency amplifier oscillation on <40%
of the CCD readout channels. The crosstalk produces a synchronous pattern in the 2-D black
image with time-variation observed in <10% of individual pixel bias histories. We describe
a method of removing the crosstalk signal using continuously-collected data from masked and
over-clocked image regions (our “collateral data”) and occasionally-collected full-frame images
and reverse-clocked readout signals. We use this same set to detect regions affected by the oscil-
lating amplifiers. The oscillations manifest as time-varying moiré patterns and rolling bands in
the affected channels. Because this effect reduces the performance in only a small fraction of the
array at any given time, we have developed an approach for flagging suspect data. These flags
provide the necessary means to resolve any potential ambiguity between instrument-induced
variations and real photometric variations in a target time series. We also evaluate the effec-
tiveness of these techniques using flight data from background and selected target pixels. This
chapter is largely an updated version of Kolodziejczak et al. (2010).

Keywords: Kepler, photometer, CCD, noise, pattern noise, CCD readout, crosstalk, image anal-
ysis, photometry

4.1 Introduction

The first step of processing Kepler data is to perform pixel level calibrations, as shown in Fig-
ure 4.1. However, electronic image artifacts identified prior to launch (Van Cleve & Caldwell,
2016) motivated the development of partial mitigations for these thermally sensitive variations
in the bias voltage or “black level” of the CCD measurements. The Dynablack (DYN) module
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analyzes the black measurements made on the nominal long cadence (LC) data and the FFIs to
establish thermal corrections to the black correction coefficients used in the calibration (CAL)
module (see Chapter 5). DYN also flags instances of rolling band anomalies, which can inject
transit-like features into the science data, causing spurious detections in the transiting planet
search (TPS–see Chapter 9). This chapter is an extension of the work presented in Kolodziejczak
et al. (2010). Science Operations Center
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Figure 4.1 Dynablack (DYN) in the context of the architecture of the SOC. DYN analyses both long
cadence (LC) data as well as full frame images (FFIs) to identify improved black level corrections for the
calibration (CAL) module. DYN also identifies regions of the CCDs corrupted by rolling band anomalies,
which are caused by oscillating operational amplifiers in the analog focal plane electronics.

Within the Kepler calibration pipeline module (CAL) there are two types of black correction
available; 1) a static 2-D black plus a row dependent 1-D adjustment which is computed cadence
by cadence and 2) a dynamic 2-D black which includes per cadence row, column, and crosstalk
pixel type dependence. It is the dynamic 2-D black estimate which is described below and is
implemented in the standalone Kepler Pipeline module DYNABLACK, a sub module of CAL.
The process of dynamic 2-D black estimation and the subsequent application of this estimate in
CAL together are referred to as Dynamic Black Correction.

4.2 Background

The Kepler focal plane consists of 84 separate science readout channels (identified as mod-
ule#.output#) and four fine guidance sensor (FGS) channels, as shown in Figure 4.2a, all of
which are read out synchronously. Each channel has several regions available to collect cali-
bration, or “collateral” data (Figure 4.2b). There are two sets of columns of virtual pixels: 1)
12 columns of bias-only pixels resulting from 12 leading pixels in the serial register (“leading
black”) and 2) a 20-column serial over-scan region (“trailing black”). There are also two sets of
rows of collateral pixels: 1) the first 20 rows, which are covered by an aluminum mask (“masked
smear”), and 2) a 26-row parallel over-scan region (“virtual smear”). During science data col-
lection, a co-added sum of specified columns of the trailing black and rows of both the masked
and virtual smear are stored at each cadence for each channel. To enable correction for some
of the artifacts, a specific set of artifact removal pixels (ARPs), as illustrated in Figure 4.2c, are
collected along with the science data.

Science data are available at either short cadence (∼1 minute) for up to 512 targets or long
cadence (∼30 minutes) for up to 170,000 targets. All science data are collected with an inte-
gration time of 6.02 s with pixels read out at a 3 MHz clock rate. In science collection mode,
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Figure 4.2 a) Focal plane with designations for modules 1–25 and outputs 1–4 for each module.
Module.outputs 1.1, 5.1, 20.1 and 25.1 are FGS. b) Identification of collateral regions associated with
each output channel. c) Plots indicating the locations of artifact removal pixels (ARPs) in the leading and
trailing black regions. These pixels are collected during each long cadence. From Figure 1 of Kolodziejczak
et al. (2010).

the full single integration CCD frames are co-added together. Then at the end of the short and
long cadence period pre-specified pixels for each target are selected from the co-add, processed,
and stored on board. Due to data storage and transmission limitations, only about 6% of the 96
million pixels are stored for eventual transmission to the ground.

Kepler’s shutterless operation precludes standard dark frames. Instead, reverse-clocking of
the CCDs permits us to measure the bias level throughout the image in the absence of sky signal.
Also, a full frame image (FFI) mode permits collection of all the pixels in the focal plane. FFIs
are used to examine detector properties, verify pointing, and verify the target aperture definitions.
Reverse-clocked data and FFIs were taken periodically throughout the mission (Chandrasekaran
et al., 2010).

4.2.1 Description of Image Artifacts

Ground testing prior to flight uncovered several instrumental artifacts, each of which was investi-
gated to understand its cause, impact, and cost to fix or mitigate. These artifacts were extensively
characterized on the ground and then again on-orbit during the commissioning phase of the
mission. These investigations determined that several artifacts did not require mitigation. The
existing data processing pipeline (see Chapter 5 and Quintana et al. (2010)) or the algorithms
described herein handle those with the largest impact, such as those that contribute to the forma-
tion of a readout bias pattern. Those relevant to this discussion are briefly described below and
illustrated in Figure 4.3.
FGS Clocking Crosstalk. Crosstalk from the FGS clock signals to the science CCD video
signals injects a complex pattern into the bias image of every science channel with an amplitude
up to 20 DN per read (Argabright et al., 2008). Because the FGS and science CCDs share
the same master clock, the pattern is spatially fixed; however, the amplitude of the crosstalk is
dependent on the temperature of the Local Detector Electronics (LDE). The crosstalk has three
distinct components based on the state of the FGS CCDs as the science pixels are read out (see
Figure 4.3a): FGS CCD frame transfer, parallel transfer, and serial transfer. Approximately 20%
of targets have at least one of the parallel or frame-transfer crosstalk pixels in their aperture.
Without mitigation, the crosstalk introduces a small time-varying bias into a target’s flux time
series as the LDE temperature changes.
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High-frequency Oscillations. A temperature-sensitive amplifier oscillation at >1 GHz was de-
tected in some CCD video channels during the artifact investigation. This suggests that the signal
may originate from the AD8021 operational amplifiers used extensively in the video signal chain,
which may show subtle layout-dependent instability when used at low gains when operated at the
upper end of their rated speed range (as is the case for the Kepler focal plane electronics). The
oscillation’s frequency range, rate of change and pattern among the channels matched closely
those characteristics in the dark images, strongly suggesting that the artifact is a moiré pattern
(MPD) generated by sampling the high-frequency oscillation at the 3MHz serial pixel clocking
rate. Since the characteristic source frequency drifts with time and the temperature of the elec-
tronic components by as much as 500 kHz/C, the signal from a given pixel in a series of dark
images has a time-varying signature. This signature may be highly correlated with neighboring
pixels and yet poorly correlated with slightly more distant pixels. When the oscillation frequency
is a harmonic of the serial clocking frequency, a DC shift occurs producing a horizontal band off-
set from the mean bias-level in the image. As the frequency drifts with temperature, the point
on the image where this DC shift occurs moves up or down from sample-to-sample, producing a
rolling band artifact (RBA).

Forty-six of the 84 readout channels have never exhibited moiré pattern behavior and an ad-
ditional nine channels have not exhibited this behavior at a detectable level in flight. While the
moiré amplitude per pixel in the remaining channels is significant, its effect on our ability to
detect small planets depends on frequency, sum within a target aperture, and variations over time
scales of interest to transit detection. The instrument meets the 6-hour precision requirement
across the focal plane for the quietest 30% of stars (Jenkins et al., 2010). The two worst moiré
channels, 9.2 and 17.2, exhibit a ∼20% increase in 6-hour noise over the focal plane average at
12th magnitude, based on the standard deviation of 6-hour binned flux time series. Such an in-
crease is small compared with the factor of 1.5 spread in the distribution of dwarf star precision
at 12th magnitude (Jenkins et al., 2010). Twenty-nine of the 84 CCD channels exhibit moiré
pattern noise and/or rolling band artifacts (Caldwell et al., 2010).

For completeness, we briefly mention several other instrumental features in the Kepler data
which are either accounted for in the baseline calibration scheme (Quintana et al., 2010) or are
not currently observed to be variable enough to adversely affect Kepler science. The list includes:

1. Time-varying low-spatial-frequency characteristics, whereby the row-profile of the 2-D
black image tends to evolve slowly with time.

2. LDE undershoot, whereby star-like images induce a signal-dependent trailing undershoot
in the video output, and

3. Start-of-line ringing (SOLR), whereby a transient signal is initiated at the onset of serial
clocking of each row.

The variations at low spatial frequency are corrected using a cadence-by-cadence fit to the trailing
black collateral data detailed in the algorithm described in Section 4.3, where we also account
for FGS crosstalk and LDE undershoot. The SOLR has been observed to be sufficiently stable
over time to avoid photometric precision degradation.

Finally, scene-dependent artifacts arise in two possible ways: 1) as a consequence of the tem-
perature sensitivity of the oscillating LDE component, the thermal transient introduced during
readout by the signal from a bright star causes additional localized changes in the detected moiré
pattern amplitude and frequency and 2) through bright stars, especially at the ends of saturated
column segments, introducing variability in downstream pixels resulting from the LDE under-
shoot from beyond 20 pixels. How these could be addressed is discussed in Section 4.3.
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Figure 4.3 Illustrative description of pattern noise sources (left) and effects on Kepler images (right).
a) The FGS pixels are read out synchronously with the science pixels but the difference in size of the two
sensors combined with the changes in characteristics of the clocking signals during the parallel and frame
transfer intervals produces b) a complex pattern of thermally varying pixels at specific locations across the
image. c) An aliased high frequency signal is highly sensitive to LDE component temperature changes due
to normal operational warm-up. These produce a smoothly varying frequency change with row. Note that
a 0.1% change in the source frequency can produce an aliased frequency change from DC to Nyquist (1.5
MHz) in the readout. One result is d) a moiré pattern with row-dependent frequency (left). The trace of a
single row with time shows drift in the frequency (right). The other result is e) bands extending over all
columns, which occur when the aliased frequency crosses 0 Hz (left). The time-evolution of a single column
shows rolling band in response to temperature changes (right). Plots are meant to show typical qualitative
behavior for affected channels, so scales and data sources are suppressed. For reference b) shows flight data
from output 20.2, c) shows ground test data from output 14.4, d) shows ground test data from output 9.3,
and e) shows ground test data from 13.4. From Figure 2 of Kolodziejczak et al. (2010).

4.2.2 Kepler’s Noise Floor

The Kepler design places the noise floor for detecting stellar variation at a level that enables
detection of Earth-size planets in habitable orbits around 12th magnitude stars. A remotely ob-
served Earth would produce an 84 ppm decrement during a 12-hour solar transit, and to ensure
high detection efficiency for similar objects, a 1 σ noise level of 20 ppm for 6.5-hour time inter-
vals is allocated. Artifact-induced changes in bias level significantly exceeding 20 ppm on this
time scale or longer could be confused with the signals resulting from stellar variability. There-
fore, the objective of Dynamic Black Correction is to correct bias variations to below the noise
floor where possible, and to detect and flag them where correction is not possible. Table 4.1
summarizes implications for the acquired signal levels in electrons and DN.
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Table 4.1 Quantities used to define the level at which artifacts begin to affect Kepler science.

Stellar magnitude (G-type star) 11 12 13
Detected in-aperture electrons in 6.5 hours,
aperture sizes are typical for the magnitude

1.12e+10 in 25
pixel aperture

4.47e+09 in 16
pixel aperture

1.79e+09 in 9
pixel aperture

Earth-equivalent transit decrement, 84 ppm
(e-)

939000 376000 150000

Allocated noise including shot noise, 20 ppm
for 12th mag. (e−)

168000 89400 51900

Bias change matching allocated noise level in
aperture in 6.5 hr (e- read−1 pixel−1)

1.9 1.6 1.6

Bias in DN, nominal 100 e-/DN scale factor
(DN read−1 pixel−1)

0.019 0.016 0.017

The characteristics of pattern noise that justify the additional attention are that it may be
spatially correlated and temporally correlated, whereas ordinary white noise or other broadband
types of noise are likely to be less so. For an aperture with 16 pixels, observed for a time
interval of 6.5 hours (13 long cadences) noise will grow in the sum at a rate

√
16 · 13 ≈ 14

times more slowly than a spatially- and temporally-correlated bias change. On the other hand,
pattern characteristics vary widely, so only a small fraction of the integrated observing time field-
of-view product is likely to be subjected to a reduction in sensitivity or increased likelihood of
false detection. In this paper we use the term “source coverage” to identify the product of time
field-of-view.

4.2.3 Acceptable Bias Variations

It is clear from Table 4.1 that space- and time-correlated signals below 0.02 DN/read over time
intervals shorter than 6.5 hours would be difficult to distinguish from noise and therefore have
little scientific impact. Typically, the acceptable level of bias variation would be constrained by
detectability to several σ above the noise level. In this case however, we are able to leverage the
similar behavior of pixels acquired at a specific FGS clocking interval or pixels in an extended
region of a given readout channel to measure bias variations at several times below the noise
level. Since it is no more difficult to observe effects at the noise level than several times above,
we simply round the 0.016 DN read−1 pixel−1 to 0.02 DN read−1 pixel−1, which is equivalent to
25 ppm of the 6.5-hour signal from a 12th magnitude star. Thresholds for correction and flagging
of artifact-induced bias variations are based on limiting changes to 0.02 DN read−1 pixel−1.

4.2.4 Artifact Removal and Flagging Objectives

FGS crosstalk is clearly detectable in data from collateral regions collected during every long
cadence. The multiple examples of pixels collected during each FGS parallel and frame clocking
interval typically indicate a repeating pattern that shows little or no change over one science
readout. It is therefore possible to measure these bias changes on a cadence-by-cadence basis
and have high confidence that the science pixels are subject to the same effects. The objective
for the FGS algorithms is therefore to remove the FGS crosstalk signal to the level of 0.02 DN
read−1 pixel−1.

Collateral data from smear regions also provides a way to measure the amplitude and fre-
quency of moiré patterns on a cadence-by-cadence basis at the beginning and end of each readout
interval. Relating this to the row-by-row amplitude and frequency of moiré patterns in the differ-
ence between FFIs provides an indirect means of estimating the characteristics of moiré patterns
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at any readout location and time. Changes in trailing black collateral provide a similar means
to detect and characterize rolling bands. For these, however, confidence in the exact estimate of
the artifact-induced bias does not match that of FGS corrections. Such efforts are complicated
significantly by complex phase variations and scene-induced changes in readout component tem-
peratures, which lead to short term changes in the oscillating frequencies and local shifts in the
moiré patterns. For these reasons, our objectives with respect to MPD and RBA are to flag re-
gions of the focal plane and times when collateral data indicate that the amplitude of an effect is
greater than 0.02 DN read−1 pixel−1. The impact of a specific moiré pattern amplitude on the
peak-to-peak variation in an aperture is reduced by a factor of |2 sin (πfn) / (πfn)|, where n is
aperture width in pixels, and f is the moiré spatial frequency. This makes it difficult to general-
ize the severity of the moiré pattern in a flagged region independent of the target apertures. Our
approach is to flag data based on amplitude and provide localized severity information, such as
frequency, that permit more precise evaluation of the impact on a given target.

The dynamic black correction algorithms as implemented in the DYNABLACK pipeline mod-
ule include flagging only for RBA. However, DYNABLACK output includes the model descrip-
tions and fit residuals required for MPD analysis and flagging.

4.3 Methods

The process developed to mitigate the effects of the pattern noise sources on Kepler science
includes the elements and data products shown in Figure 4.4. The overall architecture takes
advantage of the results of cadence-by-cadence spatial fitting, removing FGS crosstalk and low-
spatial frequency variations from fit residuals, which would otherwise complicate detection of
the rolling bands and moiré pattern.

The Pipeline module DYNABLACK organizes the dynamic black fit algorithms as follows:

A1 – Single cadence spatial fits vs. row

A2 – Single cadence spatial fits vs. column

B1a – Fit coefficient results from A1 to time and temperature model

B1b – Fit coefficient results from A2 to time and temperature model

4.3.1 Spatial Fitting

The spatial fitting algorithm is designed to extract information about the time-varying parts of
the Kepler data stream using pixel and collateral data from each cadence or FFI. We derive the
information in the form of fit coefficients and uncertainties based on a model of the observed
behavior of each pixel. Let XRC represent the raw black level value in DN at row R and column
C, and let Z represent the zero offset introduced to prevent negative values. Then we assume,

XRC − Z = X0 + fRC + gC +WF
RC +WP

RC + URC , (4.1)

whereX0 is a constant, fRC is the row dependent term, (C only distinguishes leading and trailing
black), gC is the column dependent term,WF

RC is the FGS frame crosstalk-dependent term,WP
RC

is the FGS parallel crosstalk-dependent term, and URC is the undershoot dependent part.
Each of these components is defined in Appendix 4-A in terms of linear coefficients. The

fit values of all the coefficients, coefficient errors, residuals and associated statistics are the data
products of this algorithm.

The fitting process includes initialization and fitting segments. Initialization of FGS clock
states as a function of pixel location, selection of scene-dependent exclusion zones and initializa-
tion of model components are parts of the initialization segment. Fitting the average of specified
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Figure 4.4 Architecture diagram showing prototype elements as boxes and data product flow as arrows.
The algorithm as implemented in the Pipeline module DYNABLACK does not include the rightmost branch
(Fourier Analysis→Generate Suspect Data Flags for Moiré Pattern). From Figure 3 of Kolodziejczak et al.
(2010).

cadences and fitting each of a series of single cadences comprise the fitting segment. The FGS
frame and parallel crosstalk components occur in repeating patterns defined by the parallel and
frame-clocking intervals of the FGS. The term “row” applies to one of 1070 rows of a science
channel image, each 1132 pixels long. The actual number of 3MHz clock cycles in a row is
1455, so 323 clock cycles do not result in pixels (science parallel clocking). There are five FGS
frames (311,370 clock-cycles) for every science frame, so an overall pattern repeats every 214
rows. In terms of the continuous clock stream, the frame crosstalk signal repeats every 16 pixels
for 8,450 clock cycles. It then flat-lines to a constant offset for 109 clock cycles followed by a
short 3-clock-cycle waveform. The parallel crosstalk signal repeats every 566 clock cycles with
the first 16 cycles having the strongest crosstalk signal followed by a another 12–24 cycles that
exhibit low-level “ringing”. The remainder of the 566 may be treated as constant except for the
last one, which shows variability in some channels (cycles 17–566 are the serial clocking inter-
vals of the FGS frame readout). The parallel pattern begins at FGS clock cycle 8563 with parallel
cycle number 3 of 566 and continues modulo 566 through the entire FGS clock cycle range to
311,370.

To serve the fitting algorithm we assign the FGS-frame clock sequence numbers 1–16 to the
repeating frame pattern, the value 17 to the 109 following pixels and 18–20 to the interval-ending
feature. The remainder of the 311370 clock-cycles are assigned the value 0. Similarly, we assign
the FGS-parallel clock sequence numbers 1–566 to the repeating parallel pattern starting with
value 3 assigned to cycle 8,563, and all preceding cycles are assigned the value 0. For more
details on the FGS clocking crosstalk pattern, see Thompson et al. (2016, §2.3.5.1).

After stacking the five FGS frames and chopping off the excess 323 unobserved columns, this
provides a pair of mappings from (row, column) to FGS-frame clock sequence number and (row,
column) to FGS-parallel clock sequence number. We fit a spatial model in which each pixel’s
black level is a separable function of row, column, FGS-frame clock sequence number (frame-
CSN) and FGS-parallel clock sequence number (parallel-CSN). The algorithm allows fitting any
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combinations of frame-CSN and parallel-CSN, but we have limited the parallel-CSN modeling
range to pixels 1–29 and 565–66. The range 30–564 has not exhibited significant time-varying
features. The frame-CSN pixels 18-20 are only measured in reversed-clocked cadence data, and
are monitored but assumed constant.

The clock states included in DYNABLACK analysis are set by the following Dynablack Mod-
ule Parameters (defaults shown in MATLAB syntax):

These parameters are used in the A1 fit.

parallelPixelSelect: [565, 566, 1:29]

framePixelSelect: [1:16]

These parameters are used in the A2 fit.

a2ParallelPixelSelect: [565, 566, 1:29]

a2FramePixelSelect: [1:20]

Regions excluded from the fits are those potentially affected by moiré pattern drift changes or
undershoot produced by signals from bright stars near the trailing black. These appear to be
caused by temperature changes induced by the signals from bright stars on the readout circuit.
For the brightest stars, the signal may bleed over many rows and therefore the scene-dependent
region extends over many rows. The algorithm used for selection of scene dependent exclusion
zones uses FFI images and depends on choices of: a) a signal threshold in DN read−1, above
which a pixel may cause a scene-dependent artifact, b) a column threshold, above which a signal-
threshold-crossing pixel may cause a scene-dependent artifact in the trailing black, and c) the row
pad count to extend each contiguous region, which accounts for potential variations in star signal
levels. If a row of a robust averaged (cosmic ray cleaned) FFI contains a pixel above the signal
threshold at a column beyond the column threshold, then any row within the pad count of that
row will be excluded from the trailing black fits (Thompson et al., 2016, Section 2.3.5.5).

The signal threshold, column threshold and row pad count are set in DYNABLACK by the
following module parameters (defaults shown):

scDPixThreshold: 5000

nearTbMinpix: 1000

blurPix: 1

Only specific regions of an image are suitable for determining spatial coefficients. To system-
atize the selection of these regions, the algorithm accepts specifications of a series of rectangular
Regions of Interest (ROI), which are basically building blocks for the complete modeled image
region, containing pixel or collateral point attributes needed to assemble the modeled response
vectors and design matrices. These are summarized in Table 4.2.

The complete model is assembled from a set of components. To systematize the construction
of these components, we identify representative, distinct namable terms in the model that can
be thought of as building blocks for the complete modeled design matrix and their associated
indices for exclusion of potentially scene-dependent rows as a function of channel and all-zero
columns in the design matrix. These are essentially the components described at the beginning
of this section. There are also “delta” components that measure the difference between leading
and trailing black or masked and virtual smear as detailed in Appendix 4-A. The design matrix
is constructed with one row of information for each element of acquired data within each ROI
model. Prior to performing the cadence-by-cadence fitting for a given channel, we fit the pixel-
by-pixel average of all specified cadences to obtain the exponential time constant parameter for
the row-dependent exponential term by using a nonlinear model. Then we perform a linear fit on
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Table 4.2 Regions of Interest containing data used for black level spatial fitting. The “type" column
simply identifies the source of response vector data, “ARP” means artifact removal pixels from target LC
data, “Collateral” means summed collateral data, “FFI” means FFI pixel data, “RCLC” means target pixel
data from reverse-clocked long cadences. The target table that specifies RCLC pixels was designed to
monitor the FGS crosstalk, RBA and MPD artifacts (Van Cleve & Caldwell, 2016, Section 6.8).

Region of Interest (ROI) min
row

max
row

min
col.

max
col.

type main use

Leading ARP 7 1059 3 12 ARP row dependence
FGS crosstalk
undershoot

Trailing ARP 7 1051 1115 1132 ARP
Trailing Black Collateral 7 1059 1119 1132 Collateral
Trailing FFI 7 1063 1113 1132 FFI
Masked Smear Collateral 7 18 13 1112 Collateral column dependence

Start of Line Ringing
(SOL)
FGS crosstalk

Virtual Smear Collateral 1047 1058 13 1112 Collateral
Reverse-Clocked Long Ca-
dence

7 1058 3 1130 RCLC

Table 4.3 The following DYNABLACK module parameters control the Regions of Interest (defaults
shown). All 4-element vectors are organized as [min row, max row, min column, max column]. All CCD
row and column indices are 1-based:

Region of Interest [min row max row min column max column]
leadingArp: [7 1059 3 12]
trailingArp: [7 1051 1115 1132]
trailingArpUs: [1052 1063 1113 1132]
trailingCollat: [7 1059 1119 1132]
neartrailingArp: [1057 1063 1100 1112]
trailingFfi: [7 1063 1113 1132]
rclcTarg: [7 1058 3 1130]
trailingMaskedSmear: [1 20 1113 1132]
leadingMaskedSmear: [1 20 1 12]
a2SolRange: [1:280]
a2SolStart: 13

the mean of pixel values over selected long cadences to produce a set of mean coefficients. The
resulting exponential time constant is used for all single-cadence fits for a given channel.

Finally, we perform cadence-by-cadence fits to obtain linear coefficients for individual ca-
dences. The algorithm consists of the following steps.

For each channel and for each long cadence:

1. Select the response vector data from the input raw long cadences using the ROI indices
described above.

2. Determine the cadence-specific undershoot component of the design matrix, which we apply
to only a small subset of the modeled pixels, as described in Appendix 4-A.

3. Concatenate the constant part of the design matrix with the undershoot component.

4. Perform a linear fit of scene-dependent-free data to obtain linear coefficients, and store
results in output structures.

For each channel and for each FFI:
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1. Select the response vector data from the input raw FFI using the ROI indices described
above.

2. Determine the FFI-specific undershoot component of the design matrix, including all mod-
eled pixels.

3. Concatenate the constant part of design matrix with the undershoot component.

4. Perform linear fit of all data to obtain linear coefficients, and store results in output struc-
tures.

4.3.2 Thermo-Temporal Fitting

The spatial fit for each cadence produces a time series of spatial coefficients. These coefficients
exhibit a variety of behaviors, which are often, but not always, simple functions of time or tem-
perature. The purpose of the thermo-temporal fitting algorithm is to fit the time series of each
spatial coefficient, C, to the equation:

C (r, T ) = K0 +Kt t+KT T, (4.2)

where K0 is a constant, Kt is the linear trend in C, KT is the temperature coefficient of C, t is
time, and T is temperature.

In addition to fitting the model described by C where K0, Kt and KT are free parameters, the
algorithm also fits the three constrained models where Kt = 0, KT = 0 and Kt = KT = 0 and
provides the necessary statistics to evaluate which models are consistent with the data based on
the χ2. DYNABLACK also provides an option for adding step discontinuities to all four models
at any data gaps longer than some cadence gap threshold.

The following DYNABLACK module parameters control whether or not to include step dis-
continuities in the thermo-temporal models (defaults shown):

includeStepsInModel: true

cadenceGapThreshold: 2

4.3.3 2-D Black Correction

Not all the information from the spatial and thermo-temporal fits is typically required to ade-
quately correct the data for the observed artifact-induced variations. Some of the fit parameters
are intended only for monitoring instrument performance. The 2-D black correction only in-
cludes the following terms.

XRC − Z = X0 + fR + gC +WF
RC +WP

RC , (4.3)

where X0 is a constant, fR is the row dependent term, gC is the column dependent term, WF
RC

is the FGS frame crosstalk-dependent term, and WP
RC is the FGS parallel crosstalk-dependent

term:
The “undershoot” and the “delta” components are treated as static and are monitored. The

equation is separable in terms of the row, column and crosstalk dependent parts, which enables
the 2-D corrections to be calculated from only the four vector terms, significantly shortening
the processing time compared with an inseparable function. These terms separate as follows:
vertical coefficients, horizontal coefficients, FGS-frame crosstalk coefficients and FGS-parallel
crosstalk coefficients.

The retrieval algorithm evaluates the fitted model and returns the black value as a function of
row, column and long cadence. For short cadence processing in CAL, fractional LC numbers are
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accepted and the blacks values returned are the linearly interpolated values between the adjacent
integer long cadences. The model is assembled from the spatial and thermo-temporal fit coeffi-
cients based on a decision tree. If the χ2 of the thermo-temporal fit indicates that the time series
of the given spatial coefficient is not excluded from being a specific model at the 95% confidence
level, then the spatial coefficient is determined from that model for all specified long cadences.
In the event that multiple models meet the criterion, the preference order for the models, from
highest to lowest is: 1)Kt = KT = 0, 2)Kt = 0, 3) KT = 0 and 4) Kt and KT are free parameters.
If none of the cases meet this criterion, a comparison between the standard deviation of the dif-
ferences between consecutive coefficients in the time series and the spatial coefficient fit errors is
made. If the standard deviation of the differences is more than 1.5 times larger than the standard
errors in the individual coefficients, as determined in the least-squares spatial fits, then the coeffi-
cients are applied discretely. Otherwise they are smoothed using a quadratic thermo-temporal fit
over an adaptive time interval. Based on empirical data, the smoothing option is not available in
DYNABLACK to the vertical coefficients, only to the horizontal, the FGS-frame crosstalk and
FGS-parallel crosstalk coefficients.

The thermo-temporal may be determined automatically as described above, set to one of the
four models or set to no model (raw or smoothed coefficients). These options are selected when
retrieving the dynamic black fit in CAL.

The following CAL module parameters control the Dynamic Black thermo-temporal model
selection (defaults shown):

dynoblackModelAutoSelectEnable: true

coefficentModelId: N/A

dynoblackChi2Threshold: 0.9500

Note that a particular model may be selected by setting the following CAL module parameters:

dynoblackModelAutoSelectEnable = false

coefficentModelId = {−1, 1, 2, 3, 4}

coefficentModelId = 1→Kt = KT = 0

coefficentModelId = 2→Kt = 0

coefficentModelId = 3→KT = 0

coefficentModelId = 4→Kt and KT are free parameters

coefficentModelId = -1→ raw or smoothed coefficients.

4.3.4 RBA Flagging

The RBA and MPD share the same source signal, the high-frequency amplifier oscillation de-
scribed above; however RBA are somewhat simpler to identify. The effects of RBA on pixel
time series are generally larger and may be a greater risk to complicate the search for planet
signatures. For these reasons, we have developed separate algorithms for detection and flagging
of each. Only the RBA flagging algorithm has been implemented as part of DYNABLACK in
the Kepler pipeline. The RBA flagging algorithm is summarized in Table 4.4.
Measurement: The signature of a rolling band is a time-varying displacement in trailing black
spatial fit residuals, not due to scene dependent artifacts. The algorithm searches for these on
a row-by-row basis for each channel. It also convolves a square wave transit kernel with these
time series, as well as the column-by-column difference between masked and virtual smear time
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series for places where the black level variations exhibit transit-like signature. We call these
“black transits.” Clearly, when the collateral data exhibits transit-like time signatures, the data in
that row should be flagged, even if the typical variation is small. The convolution is equivalent
to a least-squares fit to a transit signature centered at each long cadence. The fit transit depth
is treated as a bias, and the uncertainty in the transit depth determines the noise level. The
convolution result normalized by the noise level is the detection statistic.
Detection: The RBA flagging algorithm compares measured detection statistics with acceptabil-
ity thresholds to detect unacceptable artifact behavior. As mentioned in section Subsection 4.2.3,
the thresholds for flagging bias variations are based on limiting changes to 0.02 DN read−1

pixel−1. The result is a map determining which parts of row/cadence space exceed the thresh-
old criteria. Detection statistics are filtered to clean spuriously flagged regions and a padding
algorithm adds a buffer zone in row/cadence space around areas with a high density of above-
threshold flags. The former prevents unnecessary flagging of data that is not at significant risk
to interfere with planet search algorithms. The latter accounts for the fact that we do not directly
measure the science pixels but rather collateral data that is indicative of the science pixels, and
thus there is some level of uncertainty in boundaries of affected locations. The result is a Boolean
map in row/cadence space indicating which regions are at risk.
Severity evaluation: The RBA flagging algorithm assembles a set of statistics that characterize
the severity of the flagged artifacts in the identified regions. The detection statistic for the flagged
regions is compared to the detection threshold and a 2-bit severity level is produced, indicating
severity at the 1–2, 2–3, 3–4, and > 4× threshold level.

RBA detection is executed on several time scales by performing the convolution with square
wave kernels of various integer long cadence lengths. The Boolean RBA flags at each time scale
(test pulse duration) are packaged with both the severity parameters and their measured detection
statistic to form a list. This is the primary output of the RBA flagging algorithm.

The following DYNABLACK module parameters control the RBA flagging (defaults shown):

cleaningScale: 21

meanSigmaThreshold: 1

pixelNoiseThresholdAduPerRead: 1.65

pixelBiasThresholdAduPerRead: 0.0160

robustWeightThreshold: 0.5

severityQuantiles: [0.9770 0.5000]

testPulseDurations: [3 6 12 24 31]

transitDepthSigmaThreshold: 0

4.4 Results

We applied these algorithms to a cross-section of Kepler flight data. The following paragraphs
describe the results of these prototype runs. Table 4.5 identifies the flight data used to exercise
each algorithm. The channels 2.1 and 12.1 were selected as “good channels”, 6.2 and 20.2 exhibit
worst case FGS crosstalk, and 9.2 and 17.2 exhibit worst-case MPD.
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Table 4.4 Summary of RBA flagging algorithm. Numerical values specified are nominal values for
algorithm parameters.

ITEM RBA

Measurement time-varying displacement in trailing black spatial fit residuals, not due to
scene-dependent artifacts

black transit search in trailing black residuals and smear differences

Detection displacement sigma vs. time > 0.02 DN/pixel/read

–or–

both fixed residual displacement and black transit > 0.02 DN/pixel/read

Filtering filter out flag densities less than 5% in 10 row by 39 LC region

pad around surviving flags ±19 LC and ±10 rows

package flagged regions into rectangular suspect data flags (SDF)

Severity Evaluation Calculate statistics of measured parameters within each SDF region.

97.7 percentile & median displacement and fraction of exposure exceeding
displacement threshold

97.7 percentile & median noise and fraction of exposure exceeding noise
threshold

97.7 percentile & median bias variation and fraction of exposure exceeding
bias variation threshold

number of >3 & >4 sigma transit-like features

total fraction of exposure exceeding combined thresholds

Table 4.5 Module Outputs and time intervals used to exercise the various algorithms. Q0 lasted 10 days
during commissioning from May 1–11, 2009; Q1 lasted 34 days from May 13-June 15, 2009.

Item All Long Cadences Q0–Q1 All LC first 10 days
of Q1

Decimated set: every
10th LC for Q0; ev-
ery 20th LC for Q2

Fitting 2.1, 6.2, 9.2, 12.1, 17.2, 20.2 All All
Correction 2.1, 6.2, 9.2, 12.1, 17.2, 20.2 None None
RBA Flagging 2.1, 6.2, 9.2, 12.1, 17.2, 20.2 All None
MPD Flagging 2.1, 6.2, 9.2, 12.1, 17.2, 20.2 All None

4.4.1 Example Fits

Kepler readout channels exhibit a wide variety of black level morphologies. This section illus-
trates the model response fidelity using a few typical channels that span this range. Figure 4.5
shows the raw trailing black collateral data for two channels, 12.1 and 20.2 along with the fit
curves. Some row regions were excluded from the fits because bright stars near the trailing black
would have introduced un-modeled scene-dependent artifacts that could bias the fit coefficients
if not explicitly removed.

The variation in the low frequency row-dependent terms of the model is evident from the
examples in Figure 4.5. The series of spiked rows, repeating five times, are collateral rows
containing FGS crosstalk sensitive pixels. The fit estimates offset values for each crosstalk-
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Figure 4.5 Example comparison of fit curves (dark gray) and data (black) comparing trailing black
collateral for channels 12.1 and 20.2 for one representative Q1 long cadence. The scales include an arbitrary
constant offset. The row dependence of the black level is modeled well by an exponential term with a time
constant that varies from channel to channel plus a logarithmic term which is channel independent. The
light gray points are data and residuals from regions excluded from the fit because of increase likelihood of
scene-dependent bias due to stars with pixel values >5000 DN read−1 within 400 columns of the trailing
black in the excluded rows. The density of stars is higher in channel 20.2 in Q1, so the likelihood of stars
very close to the trailing black is higher, leading to the evident higher number of obvious outliers in the
excluded region in that channel. From Figure 4 of Kolodziejczak et al. (2010).

sensitive pixel from the combination of both the collateral row values representing the sum of
14 pixels and the individual ARPs. Undershoot coefficients represent filter coefficients for an
additive term to each pixel based on a linear combination of the values of the previous 20 (not
shown). Figure 4.6 shows typical time dependent behavior of low-frequency serial and FGS-
frame coefficients. FGS-parallel coefficients are similar.

4.4.2 Effect of Corrections on Targets

Calibrated Kepler pixels are subject to three separate effects of FGS crosstalk stemming from a)
the 1-D black correction, b) the smear correction and c) the effects of any FGS-cross-talking pix-
els in the target aperture. In the crosstalk-unaware 1-D black correction, a robust row-dependent
fit is applied to the trailing black collateral data. Even with a robust fitting algorithm, there is
likely to be some time-varying bias introduced by FGS crosstalking pixels with nonzero weights
on the fit coefficients and thereby on the correction of each science pixel. A total of 89% of
collateral rows are unaffected by FGS-cross-talking pixels. The introduced bias in a given row
is applied uniformly to all science pixels in that row. The crosstalk-unaware smear correction
is a cadence-by-cadence column-dependent correction based on measurements from the masked
and virtual smear collateral regions. Each smear region is the sum of 12 rows. A total of 57%
of collateral columns are unaffected by FGS-cross-talking pixels, and 23%, 3%, 12%, 5% have
{4, 3, 2, 1} modeled pixels in a given column. The introduced bias in a given column is applied
uniformly to all science pixels in that column. Both effects are reduced by the averaging and
filtering afforded by the robust fits for the 1-D black correction and the averaging over typically
24 rows for the smear correction.

The FGS crosstalking pixels in the science pixel region represent the primary motivation for
a dynamic 2-D black correction. Target apertures currently have no time-varying correction for
crosstalking pixels. 82% of targets contain no FGS crosstalking pixels. In this case the introduced
bias in a given pixel applies to only science pixels in that target aperture. The overall impact on
the affected 18% of targets is substantially reduced by averaging over the whole aperture, and
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Figure 4.6 Examples of behavior of spatial fit coefficients vs. time for channels 2.1 (a,b) and 20.2 (c,d).
a) and c) show the behavior of the low-frequency spatial coefficients. The bottom traces show the constant
term, which is the only coefficient that always varies discretely (i.e., cannot be smoothed). The middle and
top trace are the log and exponential coefficients, respectively. b) and d) show the FGS frame crosstalk
coefficients. The scales are DN pixel−1 read−1 vs. time as measured by long cadence number. An arbitrary
offset has been added to each curve to provide visual separation. LDE temperature variation is shown in
e) for Q0–Q1 only and f) for an entire year. The LDE temperatures in e) are derived from the mean of
temperatures measured on all five LDE board pairs (ACQ & DRV), whereas f) shows only the ACQ 3
board temperature. Temperature and time were strongly correlated during Q0–Q1, but less so for the other
quarters. Spacecraft rolls at quarter boundaries, except Q0–Q1, produce step changes, and the failure of
module 3 in Jan-2010 produced a large step in ACQ 3, which is used for module 3 readout. Safe modes
explain the remainder of the discontinuous features in f). Temperature variations are generally∼1◦C within
a quarter, and∼2◦C over the year, excluding the step due to module failure. From Figure 5 of Kolodziejczak
et al. (2010).

by the fact that the crosstalk is somewhat smaller and changes sign for some pixels, thereby
producing further dilution by averaging.

Figure 4.7 Histograms of peak-to-peak dynamic 2-D black corrections per science target for a) worst
case channel 20.2 and b) all channels during Q1. The contribution of collateral effects is shown in gray.
From Figure 6 of Kolodziejczak et al. (2010).

Figure 4.7 shows a histogram of the peak-to-peak dynamic 2-D black corrections per target for
Q1 where mean LDE temperature varied by 1◦C over the full 34-day interval. The figure shows
both a worst case channel, which is highly susceptible to crosstalk, and the cumulative impact
on all channels. The gray histogram shows the separated effect of FGS-crosstalk in the collateral
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regions. The combined local pixels plus collateral (collateral only) affect 13% (5%) of targets
by more than >0.02 DN pixel−1read−1 in the worst case channel, while they affect only 4%
(>1%) of all targets at this threshold level. The potential exists for a larger fraction of targets to
be affected by >0.02 DN pixel−1read−1 for full quarters, but because the temperature variation
is large during this period, these values are likely to be typical of a quarter. It is noteworthy that
the worst case average temperature coefficient for a target is ∼0.6 DN pixel−1 ◦C−1 implying
that a 0.03◦C change in LDE temperature with the appropriate time signature would be required
to produce the signature of an Earth-size planet. Even then, the thermal excursion would need
to repeat three times at regular intervals to produce a false positive. A more likely possibility is
that, left uncorrected, the less predictably varying pixels, as shown in Figure 4.6d, would reduce
sensitivity to transits for limited periods in a small fraction of targets.

4.4.3 Flagging Effectiveness

Figure 4.8 Example of rolling band flagging results from channels a) 9.2 and b) 17.2 for combined
Q0-Q1. Varying shaded areas represent the degree beyond threshold level that the data indicate a rolling
band, white regions are the padding around the offending regions and black areas are unflagged. The scales
are image row vs. time as measured in long cadence periods. From Figure 7 of Kolodziejczak et al. (2010).

Two examples are shown in Figure 4.8 of rolling bands detected and flagged by the algorithm
described above for the result of combining Q0 and Q1. The varying shaded areas represent
the degree beyond threshold level that the data indicate a rolling band, the white regions are the
padding around the offending regions and the black areas are unflagged. The figure shows the
movement of the rolling bands as the flagged regions change with time. The pattern in the signal
over time at the top of Figure 4.8b is from a scene-dependent region caused by a variable star
near the trailing black region. When a scene-dependent region is flanked by a rolling band, the
flagging algorithm automatically flags the scene-dependent region as part of the rolling band.
If no rolling band is present, the flag remains scene dependent. The rolling band flags apply
to all columns in a flagged row so we can define the rolling-band-free source coverage as the
fraction of black cells in these 2-D maps. Here we define “artifact-free source coverage” as
the fraction of the available field-of-view solid angle and exposure time that is unaffected by a
given artifact. In the test cases below the rolling-band-free source coverage is 60% and 78% for



62 DYNAMIC BLACK CORRECTION

module-outputs 9.2 and 17.2, respectively. The rolling-band-free source coverage was 100% for
all but 10 channels in the first 10 days of Q1 data.

Appendix A: Terms in the Spatial Model

This appendix defines the terms in the spatial model. We are modeling several discrete compo-
nents with only the leading (C ≤ 12) and trailing black so it will be convenient to define the
following discrete delta functions:

δXY =

{
1 if X = Y ,

0 if X 6= Y
(A.1)

δC∈LB =

{
1 if C ≤ 12,

0 if C 12
(A.2)

δR∈MS =

{
1 if R ≤ 20,

0 if R 20
(A.3)

δR∈V S =

{
1 if R ≤ 1045,

0 if R 1045
(A.4)

δ{R,C}∈US =

{
1 if {R,C} undershoot ARPs,
0 otherwise

(A.5)

δF{R,C}∈i =

{
1 if {R,C} pixels with FGS frame sequence number i,
0 otherwise

(A.6)

δP{R,C}∈i =

{
1 if {R,C} pixels with FGS parallel sequence number i,
0 otherwise

(A.7)

With these we can define the various modeled terms for LC fits:

fRC =
(
Cf1 + δC∈LB C

f
2

)
log

(
R

Rlog
+ 1

)
+

(
Cf3 + δC∈LB C

f
4

)
e
− R

Rexp , (A.8)

where Rlog and Rexp are constants;

gC =
∑

i∈CLB

δCiC
g
i + δC∈LBC

g
0 , (A.9)

where CLB is the list of discretely modeled leading black columns;

WF
RC =

∑

i∈FGS−F
δF{R,C}∈i

(
CWF

1,iFGS−F + δC∈LBC
WF
2,iFGS−F

)
, (A.10)
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where FGS − F are modeled FGS frame clock states;

WP
RC =

∑

i∈FGS−F
δP{R,C}∈i

(
CWP

1,iFGS−F + δC∈LBC
WP
2,iFGS−P

)
, (A.11)

where FGS − P are modeled FGS parallel clock states; and

URC = δ{R,C}∈US


CU0 +

C−1∑

j=C−NUS

CUC−jXRj


 , (A.12)

where XRj is a measured pixel signal value, and NUS is the number of undershoot columns.

RCLCs are used to measure the column dependence of the black level using similar terms:

fRC = URC = 0. (A.13)

gRC =
∑

i∈CLB

δCi (Cg1i + δR∈MSC
g
2i + δr∈V SC

g
3i) + δC∈LB

[
(Cg10 + δR∈MSC

g
20 + δR∈V SC

g
30) +

(Cg11 + δR∈MSC
g
21 + δR∈V SC

g
31)C + (Cg12 + δR∈MSC

g
22 + δR∈V SC

g
32)
]
,

(A.14)

where CLB is the list of discretely modeled leading black columns.

WF
i∈FGS−F δ

F
{R,C}∈i

(
CWF

1 , iFGS−F + δR∈MSC
WF
2,iFGS−F

+ δR∈V SC
WF
2,iFGS−F

)
, (A.15)

where FGS − F are modeled FGS frame clock states.

WP
i∈FGS−F δ

F
{R,C}∈i}

(
CWF

1 , iFGS−F + δR∈MSC
WF
2,iFGS−F

+ δR∈V SC
WF
2,iFGS−F

)
, (A.16)

where FGS − F are modeled FGS frame clock states.
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Abstract. This chapter describes the CAL science algorithms that calibrate pixel data by per-
forming a series of corrections to the raw pixel data. Many of the primary corrections use
external models particular to each CCD. These models were developed from pre-flight hard-
ware tests and Full Frame Image (FFI) data collected during instrument commissioning (Haas
et al., 2010) both in thermal-vacuum testing and on orbit prior to the dust cover ejection. We
discuss how these models are applied to correct for the 2-D bias structure, gain and nonlinearity
in the conversion from analog-to-digital units (ADU) to photoelectrons, local detector electronic
effects (undershoot and overshoot) and spatial variations in pixel sensitivity (flat field). Instru-
mental effects that are compensated for in CAL include bleeding charge (excess charge from
saturated stars that leaks along the CCD columns and potentially into the masked and virtual
smear regions), outliers due to cosmic ray hits, thermally-activated dark current, spatially vary-
ing, thermally dependent bias voltage (or black) levels, and smearing of the image resulting from
shutter-less readout of the CCD. This chapter is an significantly updated and revised version of
Quintana et al. (2010).

Keywords: Kepler Mission, Transit Photometry, Calibration

5.1 Introduction

The task of calibrating the science data downlinked from the Kepler spacecraft is a challenging
one, both in light of the electronic image artifacts discussed in Chapter 4 and because of the fact
that only∼6% of the pixels from the focal plane are available for this purpose, due to the limited
storage capacity of the Solid State Recorder (SSR) and the limited downlink bandwidth. In SOC
9.3, the Dynablack module analyses the trailing black measurements to formulate improved 1-D
black corrections in the face of thermally dependent fine guidance sensor electronic crosstalk,
and to identify regions of the CCDs and cadences affected by rolling band anomalies. The
Calibration (CAL) module’s task is to use the information provided by Dynablack as well as a
suite of focal plane models to calibrate on-chip artifacts, including those commonly encountered
in CCD astronomy (e.g., flat field correction), and some artifacts peculiar to Kepler such as the
readout smear incurred by the absence of a shutter and a finite readout time. Figure 5.1 shows
where CAL fits in the context of the science data processing pipeline. The calibrated pixels
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furnished by CAL are used to extract brightness and location measurements from the target stars
as the next steps in preparing the data for the transit search.Science Operations Center
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Figure 5.1 CAL in the context of the architecture of the SOC. CAL performs the pixel level calibrations
on the original Kepler science data using focal plane models and information from the Dynablack (DYN)
module. The calibrated pixels are then processed by the Photometric Analysis (PA) module prior to
conditioning the data for the transit search in Presearch Data Conditioning (PDC) to remove instrumental
signatures and residual outliers.

In Section 5.2, we present an overview of the focal plane CCD array and the various pixel
types that are calibrated. Section 5.3 describes the individual calibration steps, presented in the
order that they are performed, along with the additional functionalities of CAL. In Section 5.4
we present a summary.

5.2 Kepler Data Formats and CAL Unit of Work

5.2.1 CAL Data Types: Long and Short Cadence and Full Frame Images

CAL is designed to operate on three data types that differ in the number of integrations that
compose each sampling time (cadence) and in the number and location of the pixel data. The
raw data include photometric pixels (target and background), along with a subset of pixels termed
“collateral data” that includes masked and virtual (over-clocked) pixels around the perimeter of
each CCD. The three types of data sets processed within CAL are: (1) Long Cadence Data (LC),
select pixels from up to 170,000 long cadence targets collected every 29.4 minutes (with 270
exposures per cadence); (2) Short Cadence Data (SC), a subset of the LC pixels from 512 targets
that are sampled more frequently, at 0.98 minute intervals (with 9 exposures per cadence); and
(3) FFI data that contain all available pixels for a single long cadence.

5.2.2 Focal Plane Array

The Kepler focal plane array is composed of 42 CCD detectors (Figure 5.2; see Van Cleve &
Caldwell (2016) for focal plane details). A CCD “Module” refers to a pair of CCDs that share
a field flattener lens and are read out simultaneously by the detector electronics. Each of the 21
modules is composed of four CCD “Outputs” that are each read out by a separate analog signal
chain.

The science module labels are integers [2–4, 6–20, 22–24]. Note that the four fine guidance
sensor modules on the corners of the focal plane [1, 5, 21, 25] are not listed as science modules.
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Figure 5.2 A celestial view of the Kepler focal plane (left), the first light full frame calibrated image
(middle), and a close-up of module/output = 17/2, channel 58 (right) are shown. The color axis on the
images is in units of 106 photoelectrons. From Figure 2 of Quintana et al. (2010).

The output integers range from 1–4. There are 84 combinations of module/output numbers, and
each is also referred to as a CCD channel and is specified by an integer from 1–84. Each channel
can therefore be mapped to a unique module/output (e.g., channel 19 = module/output 7/3). The
CAL software component operates on a single CCD module/output (channel) at a time.

5.2.3 Pixel Collection

Each CCD channel consists of an array of pixels with 1070 rows and 1132 columns, of which
a 1024×1100 subset is photometric pixels (Figure 5.3). For FFI data, the full 1070×1132 ar-
ray is downlinked whereas for LC and SC data, only select target and background pixels are
downlinked due to limitations in onboard storage, communications bandwidth and flight soft-
ware design (Bryson et al., 2010b). For LC data, an upper limit of 170,000 stellar targets and
94,500 background targets are collected across the focal plane with additional limitations on the
number of targets per channel and the total pixel count. LC collateral data (black, masked smear
and virtual smear pixels as described in the next section) are also collected for calibration. For
SC data, a subset of the LC stellar targets is collected at a higher rate. There is a maximum of 512
SC targets across the focal plane. SC collateral data are also downlinked. The SC collateral data
consist of the black pixels and smear pixels that lie in the projections of the SC target pixels onto
the collateral regions plus the black pixels that lie in the projections of the masked and virtual
smear pixels (see Figure 5.3).

5.2.4 Photometric and Collateral Data

For both photometric and collateral pixels, the pixel values, row/column indices and logical data
gap indicators for all cadences are presented to CAL. Photometric pixels are those in the un-
masked region of the CCD and are referred to in CAL as the target and background pixels. Note
that CAL does not distinguish between target pixels and background pixels, so all photometric
pixels are calibrated in the same manner.

On each channel, the collateral data include the 12 leading black columns (virtual pixels read
out before the photometric pixels in each row), 20 trailing black columns (virtual pixels read out
after the photometric pixels in each row), 20 masked smear rows (the physical pixels closest to
the serial register, which are covered with an opaque aluminum mask) and 26 virtual smear rows
(virtual pixels read out after all of the photometric rows are clocked out). The downlinked collat-
eral data include only co-added subsets of the collateral pixels for use in calibration. Downlinked
black pixels for each CCD row are the result of co-adding 14 trailing black pixels in columns
1118–1131 (zero-based indices). The leading black pixels are not co-added or downlinked as
collateral data due to the presence of image artifacts in that region; however, individual pixels in
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Figure 5.3 A schematic of the pixel regions in a single CCD channel (left) shows the location of
photometric pixels, along with the collateral pixels on the perimeter of the CCD that are collected for
calibration. Only a subset of collateral data (black columns and smear rows) is collected and co-added
onboard the spacecraft. For LC data, all black rows (and a subset of columns) and all smear columns
(and a subset of rows) are collected (gray region in right panel), whereas for SC only collateral data in the
projections of the SC target pixels are collected. From Figure 3 of Quintana et al. (2010).

the leading black are downlinked as Artifact Removal Pixels (ARP) targets and are used in the
dynamic black estimates developed by the CAL sub-module Dynablack (see Chapter 4). Down-
linked masked smear pixels for each physical CCD column (12–1111) result from co-adding the
12 pixels in masked smear rows 6–17. Downlinked virtual smear pixels for each physical CCD
column result from co-adding the 12 pixels in virtual smear rows 1046–1057. There are 1100
co-added masked and virtual smear pixels corresponding to the physical columns (12–1111) per
column per cadence.

For SC data, only a small number of targets are collected from each channel, and the rows
and columns of each target determine which collateral pixels are collected (see Figure 5.3). Two
additional pixel types are collected for SC: masked black pixels (the co-added sum of the pixels
in the cross-section of co-added trailing black columns and co-added masked smear rows) and
virtual black pixels (the co-added sum of the pixels in the cross-section of co-added trailing black
columns and co-added virtual smear rows). Each masked black or virtual black pixel is therefore
the sum of pixels in 14 black columns times 12 smear rows, or 168 co-adds per cadence.

For FFI data, the full 1070×1132 pixel array for each detector channel is downlinked. CAL
uses the spacecraft configuration map to determine which pixels from the collateral regions
should be binned for calibration, and the data are then processed as if they were a single ca-
dence of LC data.

Up to two small subsets of photometric pixels may be specially identified by row and column
in CAL LC processing in order to track the 2-D black and LDE undershoot metrics. These
subsets are called 2-D Black Targets and LDE Undershoot Targets.

5.2.5 Processing Order

Data for each CCD channel are calibrated individually. Regardless of data type (LC, SC, or
FFI), the collateral pixels are always processed first in order to estimate the black correction,
smear correction and dark correction, respectively. The photometric pixels are calibrated next
in multiple invocations. Due to the large volume of data, the target and background pixels are
broken up into chunks, which include all the available pixels in a subset of the CCD rows. Each
chunk is calibrated separately.
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a)

b)

Figure 5.4 Overview of the CAL MATLAB Controller for a) LC data, and b) SC data. The CAL MATLAB
controller is first called using collateral data inputs, and then multiple invocations of the controller are called
to calibrate the remaining photometric pixels, which are broken up into N chunks of data. The collateral
data are packaged differently for LC and SC data.

Figure 5.4 shows a high-level overview of the main CAL functions for SC data and LC data.
All science algorithms are written in MATLAB (MAtrix LABoratory) software, and the main
function that is called for each CAL invocation is referred to as the CAL MATLAB controller
(cal matlab controller.m). This function receives all inputs via the Java pipeline infras-
tructure, calls the appropriate algorithms according to the data type (LC, SC, or FFI), and outputs
the calibrated pixels and other CAL products back to the Java pipeline infrastructure. See Klaus
et al. (2010) for complete details on this Java-MATLAB interface.

For each invocation, the cal-inputs-*.mat file contains a structure called inputsStruct that
holds all data, and the following MATLAB command is executed for each invocation:

outputsStruct = cal matlab controller (inputsStruct) . (5.1)

The inputs structure has the same fields for all CAL invocations, but the pixel data fields
that are available (non-empty) determine which second-level functions to call from the controller
(either the collateral or photometric main calibration functions). A cadence type flag is set in the
inputs (for LC, SC, and FFI) in order to determine which functions (or parts of code within a
function) are required to process each type. Apart from initial repackaging within CAL, FFIs are
calibrated as a single cadence of LC data.

Table 5.1 and Table 5.2 further describe how the pixels are subdivided for the multiple invo-
cations for each module/output and data type (LC, SC, and FFI). Note that filenames that end in
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“m” are MATLAB functions and those that end in “.mat” are MATLAB binary files that contain
data.

Table 5.1 Short Cadence CAL invocations, where the number of cadences, k, is a parameter that can be
varied.

SC CAL
Invocation Inputs file Inputs file contents Outputs file

1 cal-inputs-0.mat

Collateral data (including
masked and virtual pixels
used to estimate the bias level,
smear level, and dark current).
Rows = all available
Columns = all available
Cadences = all available

cal-outputs-0.mat

2 cal-inputs-1.mat

A subset of the photometric
pixels:
Rows = all available
Columns = all available
Cadences = {1, . . . , k}

cal-outputs-1.mat

...
...

...
...

N cal-inputs-(N-1).mat

A subset of the photometric
pixels:
Rows = all available
Columns = all available
Cadences = all remaining

cal-outputs-(N-1).mat

The number of invocations is a pipeline parameter and the data type determines how the pho-
tometric pixels are subdivided. For LC data, each photometric pixel subset must include entire
rows of pixels in order to properly correct for the LDE undershoot/overshoot, which involves fil-
tering pixel flux along full rows. Each invocation includes all cadences available for the selected
pixels. SC data sets include far fewer target/background pixels per CCD, but they are sampled
30 times more frequently than LC data. All cadences of all SC collateral pixels can therefore be
processed in the first invocation, but the photometric pixels must be subdivided into chunks of
cadences (∼5700 cadences per chunk is nominal), which are processed in separate invocations.
Note for FFIs, the full 2-D collateral regions (black, masked, and virtual smear) are inputs rather
than just the binned 1-D arrays. In the FFI collateral invocation, the 2-D arrays are binned to
look like LC data and then calibrated. The second invocation includes all pixels from the entire
CCD array (collateral again plus photometric) which are then calibrated using the black, smear,
and dark estimates from the collateral invocation.

5.2.6 Data Gaps

All pixel types (black, smear, and photometric) are accompanied by logical arrays the same size
as the pixel arrays and indicate spatial and temporal gaps. Calibration steps are applied only
to the available (non-gapped) pixels. The inputs to CAL include a cadenceTimes structure
that includes timestamps, timestamp gap indicators, and spacecraft data quality flags (each is a #
cadences × 1 array). CAL uses timestamps that correspond to the middle of each cadence.

The spacecraft data quality flags used by CAL to augment the timestamp gaps are described
below. Gapping on these flags may be enabled separately; however, the nominal configuration
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Table 5.2 Long Cadence CAL Invocations, where the number of rows, j, is a parameter that can be varied.

Long Cadence Inputs file Inputs file contents Outputs file
CAL Invocation

1 cal-inputs-0.mat

Collateral data (including
masked and virtual pixels
used to estimate the bias level,
smear level, and dark current).
Rows = all available
Columns = all available
Cadences = all available

cal-outputs-0.mat

2 cal-inputs-1.mat

A subset of the photometric
pixels:
Rows = {1, . . . , j}
Columns = all available
Cadences = all available

cal-outputs-1.mat

...
...

...
...

N cal-inputs-(N-1).mat

A subset of the photometric
pixels:
Rows = all remaining
Columns = all available
Cadences = all available

cal-outputs-(N-1).mat

N + 1 cal-inputs-(N).mat

No pixel input - The last
invocation is used to aggre-
gate performance metrics and
diagnostics over invocations 1
through N.

cal-outputs-(N).mat

has been to run with all data quality flags enabled. The statements in parenthesis indicate the
condition required to set a cadence gap, followed by the corresponding data archive QUALITY
flag bit that is set in the light curve and target pixel FITS files (Thompson et al. (2016), Table
2–3).

isMmntmDmp: a momentum dump occurred during accumulation
(isMmntmDmp = T, QUALITY bit #6)

isFinePnt: spacecraft is not in fine point
(isFinePnt = F, QUALITY bit #16)

isSefiAcc: single event functional interrupt in accumulation memory
(isSefiAcc = T, QUALITY bit #15)

isSefiCad: single event functional interrupt in cadence memory
(isSefiCad = T, QUALITY bit #15)

isLdeOos: Local Detector Electronics out of sync reported
(isLdeOos = T, QUALITY bit #15)

isLdeParEr: Local Detector Electronics parity error occurred
(isLdeParEr = T, QUALITY bit #15)

isScrcErr: SDRAM Controller memory pixel error occurred
(isScrcErr = T, QUALITY bit #15)
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In addition to the spacecraft data quality flags there are exclude flags (excludeIndica-
tors) that are set by the pipeline operator at run time. Use of these flags in CAL is determined
by the CAL module parameters enableExcludeIndicators and enableExcludePre-
serve, which selects these gaps for the cosmic ray detector/corrector only. The nominal con-
figuration is to use them only in CR detection and correction (enableExcludePreserve =
true). The logical ‘or’ of all enabled spacecraft data quality flags relative to their gap condition,
excludeIndicators (if enabled) and the original gaps in cadenceTimes, determines the
cadence gap flags.

Gaps are further augmented in masked or virtual smear pixels that contain flux from saturated
stars spilling along the columns into the collateral region. This bleeding charge would potentially
contaminate the smear correction for all pixels in that column leading to poor calibration of the
photometric pixels. Due to the careful positioning of the Kepler field of view to avoid extremely
bright stars in the photometric pixel region, bleed into both the masked and the virtual smear
regions for any particular column has been avoided for the most part, leaving the uncontaminated
collateral region available for smear correction. However, to accommodate those cases where a
bright saturated star is bleeding into either the virtual or masked smear, two bleeding column
map files have been developed using a combination of FFIs and raw LC data. These are used
to identify masked and virtual smear pixel gaps prior to calibration. Since the targets falling on
a particular channel are season dependent there are a total of four mappings for each detector
channel for both masked and virtual smear. These maps are stored as MATLAB m-files:

get masked smear columns to exclude.m

get virtual smear columns to exclude.m.

Note the column indices in these files are in 1-based units. The first CCD column begins with
“1” and not “0”. The 1100 smear column indices are in the range 13–1112 (see Figure 5.3 and
Thompson et al. (2016) and Sections 2.3.5.5, 2.3.5.6).

Pixels from gapped cadences are not calibrated. Some of the intermediate products (e.g.,
black and dark level estimation) may contain nearest neighbor interpolated values for cadences
in which the gap indicators are set.

5.3 Calibration

The primary calibration steps are described in this section as well as Quintana et al. (2010). A
schematic of the data flow in the CAL module is shown in Figure 5.5 and Figure 5.6. The boxes
with dashed lines show the steps that can be disabled in the pipeline if desired. All cadence types
(LC, SC, and FFI) and pixel types (collateral and photometric) are processed separately but use
primarily the same MATLAB code base. Exceptions are noted in this section. There are a number
of steps performed in the controller before and after the pixel level calibration is performed. The
inputs are first validated to ensure that the available data are within the appropriate bounds. All
row and column fields are converted from java zero-based to MATLAB one-based indexing. If
the Propagation of Uncertainties (pouEnabled) flag is set, a structure is created to store the
primitive data and the kernel of each transformation performed on the data in turn. This structure
is used to propagate uncertainties on the primitive data and produce calibrated uncertainties for
the available pixel types.

For each cadence type and channel, the first invocation calls the script calibrate collateral -
data.m, which processes collateral (black and smear) pixels for all cadences. The outputs from
this first invocation include calibrated black and smear pixels, collateral and cosmic ray metrics,
and the black, smear and dark current corrections that are needed to calibrate the photometric
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Figure 5.5 Collateral data invocation. The steps with the red dashed borders can be enabled and disabled
independently. However, they were enabled for all nominal Kepler science data processing.

pixels. All remaining invocations call calibrate photometric data.m which calibrates the photo-
metric pixels using output from the collateral invocation.

The first few steps shown in Figure 5.5 and Figure 5.6 involve repackaging the input data,
allocating memory, and retrieving parameters from the spacecraft configuration map. In the
function repackage data for calibration, data and parameters are collected and repackaged
in formats that allow the code to be vectorized in order to improve run time performance.
Flags are set here that indicate which type of data has been passed into CAL (processLC,
processSC, processFFI), and which pixel types are available in the inputs (collateral or
target/background). All available pixel values, gaps, rows, and columns are saved in npixels ×
ncadences arrays. Short cadence data are saved as sparse arrays. Missing cadences are recorded
for each type. These arrays are saved to calIntermediateStruct, which is passed through all
subsequent functions in CAL. After each sequential correction, the pixel values and gap arrays
in the intermediate structure are updated. Due to memory limitations, we do not save all arrays
before/after each correction, but select intermediate arrays can be saved if a high debug level is
set when running CAL on a development workstation for example. The debug level is always set
to zero when running in the pipeline.

The next step involves allocating memory for intermediate data produced within CAL (such as
data used to compute uncertainties or metrics, or intermediate calibrated data saved with a high
debug level), and preparing some of the output structures for the final calibrated data. These fields
are also added to the calIntermediateStruct and are available to all subsequent functions.

Several additional parameters used in CAL are retrieved from the spacecraft configuration
map (and added to calIntermediateStruct) in the script get config map parameters:

requantization table fixed offsets (see Van Cleve & Caldwell (2016)) §7.4.1)
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Figure 5.6 Photometer data invocation. The steps with the red dashed borders can be enabled and disabled
independently. However, they were enabled for all nominal Kepler science data processing.

start/end columns of the black pixels that are co-added onboard the spacecraft (used to
normalize blackP ixels values)

start/end rows of the masked and virtual smear pixels that are co-added onboard the space-
craft (used to normalize maskedSmearP ixels and virtualSmearP ixels values; both
black columns and smear rows are used in SC data to normalize the maskedBlackP ixels
and the virtualBlackP ixels)

CCD read and exposure time

number of exposures per cadence.

5.3.1 Compute Raw Black Uncertainties

The “black level” refers to the bias in each CCD module/output, an electronic offset that has
been added to the CCD readout voltage to ensure that positive signals are input into the Analog
to Digital Converter (ADC). The offset is∼5% of the ADC input voltage range. Note that ‘black’
refers to this bias and should not be confused with the dark level, which is a measure of the CCD
dark current. The black level has an intrinsic noise referred to as “read noise” or “readout noise”.
In order to propagate the uncertainties from the primitive data, the uncertainties in the original
black data (and masked/virtual black data for SC) are estimated at the beginning of CAL from the
read noise model and quantization step size. First, the read noise in ADU is extracted from the
focal plane characterization (FC) model. The quantization noise from the 14-bit ADC must also
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be taken into account and is equal to 1/12 (the variance of a unit-wide uniform random process):

σ2
effectiveCoaddedReadNoise = σ2

readNoise + 1/12. (5.2)

The effective read noise calculated above is per pixel per read so it is scaled up by both the
number of exposures per cadence and the number of pixels co-added to produce the effectiveCo-
addedReadNoise.

The noise contribution due to requantizing the co-added pixel values prior to downlink is
computed by extracting the quantization step size from the requantization table for the raw black
pixels and using that step size to scale the unit-wide uniform process variance. The uncertainty
is taken to be the square root of the sum of the variances:

σ2
Q = ∆2

Q/12

σ2
raw black =

√
σ2

effectiveReadNoise + σ2
Q,

(5.3)

where σ2
Q is the quantization noise due to the requantization step size ∆Q in ADU. These uncer-

tainties are then renormalized by the number of co-added pixels so that their values represent the
uncertainty per black pixel per cadence.

5.3.2 Models

Some of the calibration steps rely on external models used to characterize each CCD. These FC
models (Allen et al., 2010) were developed from extensive ground-based testing, were updated
in flight while the spacecraft dust cover was still in place, and are monitored in flight by pipeline
metrics collected by the PPA (Photometric Performance Assessment) pipeline module. The FC
models are available at the Kepler MAST archive and are described in Thompson et al. (2016),
§2.3.5. The six time-dependent models used in CAL include:

1. A read noise model that gives the read noise per channel,

2. A 2-D black model that provides a 2-D map of the black/bias structure per channel,

3. A gain model that gives the ADU-to-photoelectrons conversion factor per channel,

4. A linearity model that provides a set of polynomial coefficients used in the gain transfer
function to correct for nonlinearity in the readout amplifier;

5. An undershoot model that includes coefficients for the digital filter used to correct for un-
dershoot/overshoot artifacts introduced by the CCD local detector electronics (LDE), and

6. A flat field model consisting of a 2-D map of values that are used to correct for pixel-to-pixel
sensitivity.

Note that these FC models are allowed to be piecewise linear functions in time. If there are
multiple entries in any model, the result of the correction should be the linear interpolation of the
bracketing corrections for any pixel, where the time intervals between the time tag of the data
and those of the prior and subsequent models determine the interpolation weights. That is, if t1
and t2 are the model times, t is the time of the data collection, and the two corrections applied to
the data result in x1 and x2, the corrected value is:

x = x1 +
(t− t1)

(t2 − t1)
(x2 − x1) . (5.4)
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In addition to these models, which are maintained outside of CAL, there is also a set of global
constants used throughout each pipeline module contained in the structure fcConstants that is
included in inputsStruct.

The following flags are included in the CAL inputsStruct to enable or disable the noted
corrections. These are fields of the moduleParametersStruct.

linearityCorrectionEnabled – enable/disable the nonlinearity correction

undershootEnabled – enable/disable the undershoot correction

crCorrectionEnabled – enable/disable the cosmic ray correction

flatFieldCorrectionEnabled – enable/disable the flat field correction

debugEnabled – enable/disable the debug level

pouEnabled – enable/disable the propagation of uncertainties (Note: this flag is a field of
the pouModuleParametersStruct, also attached to the inputsStruct).

Additional CAL inputs worth noting are:

spacecraftConfigMap – structure that contains mnemonics and values of configurable
parameters that are uploaded to the spacecraft (see Subsection 5.2.1 for parameters needed
by CAL; there may be multiple maps, each one applicable within specified timestamp in-
tervals)

requantTables – the requantization tables used to compute raw pixel uncertainties and to
compute the theoretical and achieved compression efficiency (there may be multiple tables,
each one applicable within specified timestamp intervals)

huffmanTables– the Huffman tables used to compute the theoretical and achieved com-
pression efficiency (there may be multiple tables, each one applicable within specified
timestamp intervals).

5.3.3 Fixed Offset, Mean Black, and Spatial Co-Adds

The first step in calibration is to adjust the raw downlinked pixels for the fixed offset and mean
black values that were applied prior to downlink. This adjustment is to compensate for variations
in bias across the focal plane array and to accommodate the variations in temporal and spatial
co-adding applied to the various data types. The black and smear measurements are spatially co-
added and thus possess more read noise than the target and background pixels. The SC data have
fewer temporal co-adds, and so have less read noise than the LC data. The fixed offset and mean
black levels are used by flight software to shift the digital values to the same “zero point” for LC
data and to a separate “zero point” for SC data (Jenkins & Dunnuck, 2011).1 All pixels are subject
to requantization in which each pixel value is mapped to a discrete value in a pre-generated table
in order to control the A/D quantization noise (the round-off error resulting from digitizing the
voltage signals) to within 1/4 of the intrinsic measurement uncertainty (Jenkins & Dunnuck,
2011). The meanBlack and fixedOffset adjust pixels on all channels to a common zero
point ensuring proper requantization. Given a pixel array P (in this case, for either collateral or

1The requantization table is really two tables concatenated into one table with one section for the the SC data and one
for the LC data, with buffers above, below, and between the LC and SC portions.
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photometric pixel data), the first correction performed within CAL for the available rows (row),
columns (col), and cadences (t) is:2

P ′all (row, col, t) = Pall (row, col, t)− fixedOffset+meanBlack (t) . (5.5)

Note that MATLAB is used for all of the CAL science algorithms. To increase runtime per-
formance, the operations are almost always performed on full or partial (nrows × ncols ×
ncadences) pixel arrays as a whole rather than looping over any particular dimension. The
(row, col, t) notation here is to help the reader understand which pixels are processed in each
step along with the dimensions of the pixel arrays and/or corrections. CAL only operates on
the available (non-gapped) rows, columns, and cadences. The collateral pixels (black, masked
smear, virtual smear, masked black, virtual black) need to be normalized by the number of spatial
co-adds to convert to ADU/pixel/cadence. The original photometric pixels are already in these
units.

P ′black (row, t) =
Pblack (row, t)

nblack cols
(LC + SC data)

P ′MS (row, t) =
PMS (row, t)

nMS;rows
(LC + SC data)

P ′V S (row, t) =
PV S (row, t)

nV S;rows
(LC + SC data)

P ′MB (row, t) =
PMB (row, t)

nblack colsnMS;rows
(SC data only)

P ′V B (row, t) =
PV B (row, t)

nblack colsnV S;rows
(SC data only).

(5.6)

5.3.4 Black Correction

The black level (bias) in each CCD channel includes a voltage offset that has been added to the
CCD output voltage to ensure that positive signals are input into the analog-to-digital converter
(ADC). In practice, the bias voltage varies across the CCD readouts and has an intrinsic, low-level
2-D structure within each detector channel. The black correction must correct for the non-ideal
behavior of the time- and spatially-varying black level.

The pipeline operator can select between one of three black correction modes:

piece-wise static 2-D black followed by polynomial 1-D black model (this method is avail-
able, but no longer used for processing)

piece-wise static 2-D black followed by a linear + exponential 1-D black model

dynamic time-dependent 2-D black model.

The selection is made based on the duration quarter being processed and the availability of the
supporting data needed for the dynamic 2-D black model. Starting with SOC 9.2 the dynamic
2-D black model was the default selection except for the short quarters Q0, Q1, and Q17.

5.3.4.1 Static 2-D black, Polynomial 1-D black The channel-dependent 2-D black structures
were measured for each channel during ground testing of the CCDs and are characterized in 2-
D black models developed from unilluminated ground test images and reverse-clocked images

2Note that throughout this chapter the use of the “prime” symbol on the variable on the left hand quantity of an equation
indicates the new, corrected value of the quantity.
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(which ignore light hitting the CCDs) taken on the ground and during Commissioning. Some
causes of the observed 2-D black structure include heating of the readout electronics, start of line
(SOL) transients, and FGS frame and parallel transfer clocking crosstalk signals which are in-
jected into the photometric signal as the image is read out. Figure 5.7 shows an example of a 2-D
black model (top panel) which displays SOL features near the leading black region, and a close-
up view (bottom panel) shows frame transfer (horizontal bands) and parallel transfer crosstalk
(diagonal bands) signals. A 2-D black model (in ADU/exposure) is retrieved within CAL for
each channel, scaled by the number of exposures, and is simply subtracted off all collateral and
photometric pixels. Although time dependence of the 2-D black models is supported, in practice
there is only one static model per channel available.

P ′all (row, col, t) = Pall (row, col, t)− 2Dblack (row, col, t) . (5.7)

Figure 5.7 An example of a 2-D black model (top, in
units of ADU/exposure) and a close-up (bottom) that
show the 2-D bias structure that is subtracted from all
pixels. From Figure 5 of Quintana et al. (2010).

Once the 2-D black level is removed, a
row dependent fit to the residual bias in
the trailing black region is used to estimate
a 1-D black correction. For software re-
leases prior to SOC Release 7.0, a polynomial
model (polynomialOneDBlack) was used
with best fit model order determined in an it-
erative fashion using the Modified Akaike In-
formation Criterion (Akaike, 1974). A robust
fit was first performed to protect from outliers
(neglecting charge injection rows in the vir-
tual smear region), and a least squares with
known covariance method was then used with
the computed best polynomial order to pro-
duce the fit per cadence. This fitted polyno-
mial is the black correction.

5.3.4.2 Static 2-D black, Exponential 1-D
black In this mode, the same 2-D black de-
scribed above is removed, followed by a row
dependent fit to the residual bias in the trail-
ing black region to estimate a 1-D black cor-
rection. The 1-D black model was developed
to address issues in the previously used poly-
nomial model caused by a flip-flopping poly-
nomial order, which introduces chatter into
the calibrated pixels. This empirical model
(exponentialOneDBlack) is defined by six
coefficients and includes a linear term in the
masked smear region combined with two ex-
ponentials plus a linear term in the remainder
of the rows. It has provided a much better fit
to the 1-D black residuals than the previous
polynomial model, resulting in a much improved black correction.

For each cadence, the black correction in a given row is subtracted from all available pixels in
that row:

P ′all (row, t) = Pall (row, col, t)− p1−Dblack (row, t) . (5.8)
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For SC, the only collateral pixels downlinked are those that share a row or column with one
of the target and background pixels. That is, only the SC target projections onto the trailing
black rows and virtual/masked smear columns are available (see Figure 5.3). Since there are
considerably fewer raw data to fit (1-5% compared to LC processing), the SC 1-D black correc-
tion is intrinsically noisier. Beginning with SOC 9.2, the LC 1-D black fit results which use the
exponentialOneDBlack model were made available to SC CAL processing in order to improve
the quality of the SC 1-D black fits. A bias term plus the LC 1-D black fit, linearly interpolated
onto SC timestamps and scaled appropriately for the difference in cadence length, are fit to the
available SC black pixels providing a more representative SC 1-D black correction. In order for
SC CAL processing to take advantage of the LC results, LC 1-D black correction results using the
exponentialOneDBlack model must be available and the black correction algorithm (module
parameter blackAlgorithm) in SC processing must be set to exponentialOneDBlack.

5.3.4.3 Dynamic 2-D black Time-dependent 2-D black models are available beginning with
SOC 9.2. These models are produced per channel per cadence by DYNABLACK, a stand-alone
pipeline module (see Chapter 4). They are available for both LC and SC processing (provided
DYNABLACK has been run for that quarter) and are selected in CAL by setting the module pa-
rameter blackAlgorithm = dynablack. The dynablack correction is a direct substitution for
the static 2-D black + 1-D black correction. The dynamic 2-D black goodness of fit is subjected
to a number of tests within DYNABLACK and the fit residuals are too high, or too variable, on
a given channel, CAL selects the static 2D-black + 1-D black models for use on that channel.
The algorithm that was actually applied on a given channel is recorded in the archive target pixel
and light curve FITS files under the keyword BLKALGO (either exponentialOneDBlack, or
dynablack).

Following the black correction (2-D black + 1-D black or dynablack), the black pixels are
corrected for cosmic rays and saved for output to the Multi-mission Archive at Space Telescope
(MAST) at STScI. Once the fits are performed, the pixels themselves are not used for any further
calibrations. Note that CAL corrects only the collateral pixels for cosmic rays but uses the same
methodology as the photometric pixel cosmic ray correction that is performed within PA (see
Subsection 6.3.1).

5.3.5 Nonlinearity and Gain Correction

Figure 5.8 The nonlinearity correction, shown for a sample CCD channel, is the fractional deviation from
the linear electrons-to-ADU transfer function at each pixel value. From Figure 6 of Quintana et al. (2010).
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The gain and nonlinearity describe the transfer function from photoelectrons (e−) in the CCD
to ADU coming out of the ADC. Gain is the average slope of the transfer function, and ranges
from 94 to 120 e−/ADU across the focal plane (Van Cleve & Caldwell, 2016; Caldwell et al.,
2010). Nonlinearity is a measure of the relative deviation from a linear transfer function at each
ADU signal level, expressed as a ratio. The nonlinearity is represented by a polynomial fit to
the ratio as a function of input DN scaled to a single read. The nonlinearity model provides
polynomial coefficients (Figure 5.8) that when evaluated, give the correction for the input black-
corrected pixel values. The range of this correction across the focal plane is within±3% of linear.
The nonlinearity model is valid up until the full-well level, which is the maximum number of
electrons a pixel can hold before saturation occurs (∼ 106 e−). The gain model provides the gain
value per channel and cadence in e−/ADU, and all pixels are simply multiplied by the scalar gain
following the nonlinearity correction. At this point, Pall now represents either smear arrays (in
which the rows can be ignored since these are essentially just functions of columns and cadences)
or photometric pixel arrays:

P ′all (row, col, t) = Pall (row, col, t) · pnonlin (Pall (row, col, t))

P ′all (row, col, t) = Pall (row, col, t) ·G (t) ,
(5.9)

where pnonlin is the nonlinearity correction polynomial, and G (t) is the gain model over time.

5.3.6 LDE Overshoot/Undershoot Correction

Overshoot and undershoot are signal distortions that were discovered during ground testing of the
CCDs. They result from operating a clamp circuit in the local detector electronics (LDE) with
insufficient bandwidth (Philbrick, 2009). The impulse response artifacts are most noticeable
after light-to-dark (undershoot) and dark-to-light (overshoot) transitions, resulting in spikes in
the pixel row time series of the affected targets (Figure 5.9). The undistorted image can be
reconstructed by modeling these artifacts as a linear shift-invariant (LSI) system, which can be
described by a set of difference equations that transforms an input signal x(n) into an output
signal y(n):

a(1) y(n) = b(1)x(n) + b(2)x(n− 1) + . . .+ b (nb + 1)x(n− nb)− (5.10)
a(2) y(n− 1)− . . .− a (na + 1) (n− na). (5.11)

Here n− 1 is the filter order, and a and b are the feedback and feedforward filter coefficients,
respectively, that determine the z-transform system response H(z):

H (z) =
b (1) + b (2) z−1 + ...+ b (nb + 1) z−nb

a (1) + a (2) z−1 + ...+ a (na + 1) z−na
. (5.12)

The undershoot model provides a set of 20 filter coefficients for a, and an inverse filter is
applied (with b = 1) to each row per cadence to correct for any undershoot/overshoot:

P ′all (row, t) = filter (b, a, Pall (row, t)) . (5.13)

The function filter refers to the MATLAB built-in function based on the above difference
equations. Note that an extra column of pixels on the side of the specified target pixels closer to
the readout register is included in the target aperture to provide data for the undershoot/overshoot
correction algorithm. Though it is designed to mitigate both undershoot and overshoot, we will
refer to this filter below as simply the undershoot filter and to the effect as simply undershoot.
Including this extra column, while certainly more helpful than not including it, is not sufficient
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Figure 5.9 A close-up stretched image of two saturated target stars that show pixel undershoot signatures
resulting from bright-to-dark pixel transitions in the direction of the serial readout (left panel) and the
calibrated image (middle). The mean of 3 pixel rows is shown for one target (right) with the undershoot
response (the negative spike) along with the corrected pixel values. From Figure 7 of Quintana et al. (2010).

to mitigate undershoot effects in cases where there is a bright star not downlinked for LC or SC
processing that is within 20 columns upstream (to the readout register side) of a LC or SC target.
The simple linear interpolation between target pixels along rows executed prior to applying the
undershoot filter will mask undershoot due to these bright stars, resulting in up to a 3% error in
the calibrated pixel flux for dim targets. Added functionality in SOC 9.2 allows estimation of
these unseen bright stars in LC and SC processing using and average of the FFI data over the
unit of work. This technique has been shown to reduce the error associated with applying the
undershoot filter to below 0.1% for all targets. The use of FFIs to inform the undershoot filter
applies to target and background pixels in both LC and SC processing. Also beginning with
SOC 9.2, SC smear pixel processing is improved by providing the partially calibrated LC smear
pixels per cadence to CAL SC processing to estimate and fill missing smear pixel values prior to
applying the undershoot filter to the smear. Both the FFI inform and LC smear inform options
have been enabled in the nominal pipeline configuration.

Both collateral and photometric data are corrected for undershoot. The median value of the
correction across the focal plane array is ∼0.34% (Caldwell et al., 2010). In the collateral data
invocation, the LC and SC masked and virtual smear pixels are next corrected for cosmic rays
and saved for output. They are used to estimate the smear and dark current levels, which are then
used to correct the photometric pixels (as described in the next section). The calibrated smear
pixels exported to the MAST include CAL corrections up to this point (Thompson et al., 2016).

5.3.7 Smear and Dark Correction

The target and background pixels are corrected for both smear and dark current levels. Since the
Kepler photometer is operated without a shutter, stars smear along columns as the CCD is read
out, which is clearly visible in uncalibrated FFI data (Figure 5.10). Dark current is a thermally-
induced signal in each physical pixel accumulated during an integration period, which includes
the exposure time (texp ∼ 6.02 s) and readout time (tread ∼ 0.52 s). Because the focal plane
is maintained at such a cold temperature (-85 degrees C), the dark current is very low with a
median value of ∼ 0.25e− pixel−1 sec−1 across the focal plane. The smear and dark corrections
are presented together because they are both estimated from linear combinations of the virtual
and masked smear pixels.

The masked smear pixels, which are shielded from star flux, detect dark current during inte-
gration (texp + tread) and collect the smear signal from the photometric and over-clocked virtual
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Figure 5.10 A portion of an uncalibrated FFI (ADU/cadence, left) and its calibrated image (photoelectrons
per cadence, right) demonstrate the removal of smear from several columns. From Figure 8 of Quintana
et al. (2010).

pixels during readout. The virtual pixels contain dark current that is accumulated during tread
only, but collect smear as they are clocked through the image. The dark level per cadence is
computed by taking a robust mean of the masked and virtual smear differences –corrected for
the different exposure times– from the common columns:

fdark = mean

{
PMS (col, t)− PV S (col, t)

(
texp + tread

texp

)}
, (5.14)

where fdark is the dark current, PMS is the estimated masked smear value in each column, PV S
is the estimated virtual smear value in each column, texp is the exposure time (6.54 sec) and tread
is the readout time (0.52 sec).

We interpolate dark level values over missing cadences to ensure that a dark level is available
for all cadences. To compute the smear level, the dark level is first removed from the masked and
virtual pixels:

P ′MS (col, t) = [PMS (col, t)− fdark (t)]

P ′V S (col, t) =

[
PV S (col, t)− fdark (t) (col, t)

(
tread + tread

texp

)]
.

(5.15)

Ideally, both masked and virtual pixels are available for each column and cadence, but either
may be used if only one is available. If neither is available, however, the smear correction cannot
be performed for that column. We use the (ncols × ncadences) logical gap indicator arrays G
(where gaps = true) that are provided with the smear pixel arrays to track the missing data. The
available smear pixels for each column are tracked using the logic shown in Table 5.3.

Table 5.3 Smear estimate combination logic

Available Masked Available Virtual CMS CV S

True True 1/2 1/2
True False 1 0
False True 0 1
False False 0 0

The available smear pixels for each column are tracked using the logic in the accompanying
table, where CMS and CMB are coefficients in the linear combination of the dark-corrected



CALIBRATION 83

masked and virtual smear pixels (where G
′

are logical arrays with gaps = false):

CMS (col, t) =
1

2
GMS (col, t)

[
1 +G

′

V S (col, t)
]

CV S (col, t) =
1

2
GV S (col, t)

[
1 +G

′

MS (col, t)
] (5.16)

and the smear estimate as a function of column and time is given by

fsmear (col, t) = PMS (col, t) · CMS (col, t) + PV S (col, t) · CV S (col, t) . (5.17)

The above smear and dark level estimates are computed during the collateral data calibration,
resulting in a mean dark level per channel and an array of smear levels per column per channel.
These are later subtracted from the photometric pixels in each column:

P ′photo (col, t) = Pphoto (col, t)− fdark (t)− fsmear (col, t) . (5.18)

An additional complication to the smear level estimate is bleeding charge from saturated tar-
gets into the masked or virtual smear regions, corrupting the smear estimate for that region.
These effects are clearly visible in FFI data. Using a combination of FFI and raw LC collateral
data, a map of which columns are corrupted by bleeding charge is developed for each quarterly
observing season and made available to CAL pipeline processing. This map is channel- and
season-dependent and is static throughout any one quarter. There are typically only one or two
bleeding columns per channel. The map is used to gap either the virtual or masked smear esti-
mate for the affected columns in the season of interest. See Thompson et al. (2016) §2.3.5.6 for
a description of the format and use of the map.

5.3.8 Flat Field Correction

The flat field is the final major calibration step. It operates on photometric pixels to correct for
spatial and temporal variations in pixel sensitivity to uniform illumination. Differences in pixel
response can be due to variations in quantum efficiency, throughput changes in the field flattener
lenses, or anti-reflection coating of the CCD. The flat field model includes a geometric large-
scale vignetting map combined with a small-scale (pixel-to-pixel) flat field map that is computed
using a 9×9 pixel high-pass filter (Van Cleve & Caldwell, 2016). The values represent the percent
deviation from the local mean with a median value across the focal plane of ∼0.96%. The flat
field model is applied to the photometric pixels for each cadence as shown below:

P ′photo (row, col, t) =
Pphoto (row, col, t)

Fflat (row, col, t)
, (5.19)

where Fflat is the flat field model. See Thompson et al. (2016) §2.3.5.11 and §2.3.5.12 for details
of the models.

5.3.9 Additional Functionality in CAL

After the calibration is complete, the output fields are validated, fields are converted back to
Java 0-based indices, and all information related to POU is saved. On the last CAL invocation,
the achieved and theoretical compression efficiencies are computed. These metrics, along with
time series of black, smear, and dark level metrics are computed within CAL and used by the
photometer performance assessment (PPA) module to track and trend data.

The uncertainties are computed within CAL using the propagation of uncertainties (POU)
algorithms (Clarke et al., 2010). The primary noise sources for Kepler include read noise (an
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additive noise source due to the readout process), quantization noise (stochastic, results from
quantization in the ADC and pixel requantization) and Poisson-like shot noise. The uncertainties
in the raw pixel data are computed at the start of CAL. If POU is disabled, the outputs from
CAL are these raw pixel uncertainties corrected only for gain. This has been dubbed ‘minimal
POU’. If POU is enabled, uncertainties are propagated at each transformation step by applying
the transformation to the pixel covariance matrix. Since the full propagation of uncertainties
is computationally intensive, the approach used in CAL is to compute the fully propagated un-
certainties on a decimated set of cadences (typically 1 in 24 cadences is fully propagated) and
then use the uncertainties obtained on this decimated set of cadences to compute the median
difference from minimal POU. The uncertainties output from CAL with POU enabled are then
minimal POU plus this median difference.

5.4 Summary

We have described the pixel-level corrections that are performed in the CAL pipeline for LC,
SC, and FFI flight data. The data corrections include: 2-D and 1-D black, gain, nonlinearity,
undershoot and overshoot distortions from the LDE electronics, cosmic rays, bleeding charge,
dark current, smear, and flat field variations. The algorithms were validated using simulated
flight data from the End-To-End-Model (ETEM) (Bryson et al., 2010a) that was developed as
a collaboration with Ball Aerospace Technologies Corporation. ETEM simulates every layer of
the data – from CCD and instrument artifacts to transit light curves – and has proven to be a
powerful tool in the development and testing of the pipeline modules. Output from CAL that is
exported to the MAST includes raw and calibrated black, smear, and photometric pixels, along
with the associated gap indicators and uncertainties. Additional metrics for cosmic ray detection,
black level, smear level, and dark current level estimates are also provided.
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Abstract. With the Kepler mission in its closeout phase, the final results from the Kepler Science
Operations Center (SOC) Science Processing Pipeline are now available for public use. We
provide an overview of the architecture and algorithms of the Photometric Analysis (PA) pipeline
component in its current and final state (SOC 9.3). It is our hope that this paper will assist
interested parties in achieving a thorough understanding of the Kepler data products available
from the Mikulski Archive for Space Telescopes (MAST). The primary functions of the PA
module are to compute the photometric flux and photocenters (centroids) for over 165,000 long
cadence (∼thirty minute) and 512 short cadence (∼one minute) stellar targets from the calibrated
pixels in their respective apertures. We detail the main PA science algorithms for long and short
cadences: cosmic ray cleaning, background estimation and removal, image motion estimation,
optimal aperture selection, aperture photometry, and centroiding. Finally, we present examples
of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data.

Keywords: Kepler, transit photometry, light curve, raw flux, photocenter, centroid, spectroscopy.

6.1 Introduction

The Photometric Analysis (PA) module of the Kepler Science Data Processing Pipeline is re-
sponsible for generating the flux time series and centroid time series for each target star observed
by Kepler. PA processes data from both long cadence (LC) target stars, which are sampled at
29.4 min, and short cadence (SC) target stars, which are sampled at 58.8 s (Jenkins et al., 2010b).
PA operates on the calibrated pixels produced by the calibration (CAL) pipeline module prior to
the identification and removal of instrumental signatures and systematic errors by the Presearch
Data Conditioning (PDC) pipeline module in preparation for the transit search. Figure 6.1 shows
the PA module in the context of the Science Operations Center (SOC). The primary function of
the PA module is to compute the photometric flux and photocenters (centroids) for stellar targets
from the calibrated pixels in their respective apertures. Prior to computation of the photomet-
ric flux for each target, so-called Argabrightening events are mitigated (Witteborn et al., 2011;
Christiansen et al., 2013, Section 5.8), cosmic rays are removed, and a background estimate is
subtracted from the pixels in the target apertures. A subset of the pixels collected for each target
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is then selected to optimize a photometric figure of merit. The photometric flux at each cadence
is calculated from these optimal apertures by summing the constituent pixels, a process known as
simple aperture photometry (SAP). Secondary functions of PA are to compute metrics to monitor
instrument performance and to support systematic error correction in the PDC module. Raw flux
light curves and centroid time series are exported to the Mikulski Archive for Space Telescopes
(MAST) (see Thompson et al., 2016, Section 2.3). Corrected flux light curves generated in PDC
are also exported to the MAST. These account for systematic errors due to data and spacecraft
anomalies, and also for excess flux in the target apertures due to background sources.Science Operations Center
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Figure 6.1 Photometric Analysis (PA) in the context of the architecture of the SOC. PA identifies and
removes cosmic rays from calibrated background and target star pixels produced by the calibration (CAL)
component, fits and removes sky background flux from the target star pixels, and then estimates the brightness
and position of each target star in each cadence. The flux time series produced by PA are then conditioned
prior to the transit search in Presearch Data Conditioning (PDC) to remove instrumental signatures and
residual outliers.

PA has undergone continuous development and improvement since its inception, with an
emphasis on boosting pipeline sensitivity to transit events and increasing throughput. Major
improvements to PA since its first application in the Kepler Science Data Processing Pipeline
(Twicken et al., 2010b) include the addition of internal optimal aperture computations (previ-
ously done externally without the benefit of analysis of pixel data1), an improved cosmic ray
cleaning algorithm, and parallelization of target processing. Minor improvements include iden-
tification of cadences during which reaction wheel speeds dropped to or near zero and computa-
tion of contamination levels in optimal apertures by so-called rolling band image artifacts. An
overview of the PA module’s architecture and component algorithms is presented in Section 6.2.
PA science algorithms are detailed in Section 6.3, including cosmic ray cleaning, background es-
timation and removal, image motion estimation, optimal aperture selection, aperture photometry,
and target centroiding. Conclusions are presented in Section 6.4.

6.2 Architecture

The standard PA unit of work (Klaus et al., 2010a,b) for LC and SC science data processing is
a single module output for a duration of one quarter (LC) or one month (SC – Twicken et al.,

1The previous version of the optimal aperture selection algorithm made use of the measured image motion over the course
of the observations within a quarter but relied on focal plane models and the stellar catalog to perform the signal-to-noise
ratio (SNR) calculation, yielding the optimal aperture. See Chapter 7 for more details.
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2010b). Science data processed by PA include calibrated background and target pixels. Targets
may be stars, in which case PA selects a photometric aperture automatically, or they may be
manually-specified custom apertures. A subset of ∼200 stellar targets on each channel is used
by PA to derive a set of high-quality centroids to which a polynomial model of image motion
is fitted. These Photometer Performance Assessment (PPA) target sets were initially preselected
for use in attitude reconstruction by the PPA pipeline module (Jenkins et al., 2010b; Li et al.,
2010) and possess the following characteristics that make them useful elsewhere in the pipeline:
bright but not saturated, uncrowded, and well-distributed across each module output.

By definition a PA task processes a single unit of work. As illustrated in Figure 6.2, a LC task
consists of the following five sequential steps: 1) background pixel processing, 2) PPA target
centroiding, 3) motion model estimation, 4) target processing, and 5) results aggregation. Each
step is executed as one or more subtasks. As shown in Figure 6.2, the target processing and
PPA centroiding steps are divided into multiple subtasks and can be performed in parallel if the
computational environment and resources allow. Execution time can be minimized by processing
each target in a separate subtask, though in practice limited resources have necessitated multiple
targets per subtask. Since there are neither background pixels nor full sets of PPA targets in
SC units of work, processing relies on interpolated versions of the LC background and motion
models.

The major algorithmic components comprising each subtask are introduced here and de-
scribed in greater detail in Section 6.3:

Identify Reaction Wheel Zero-Crossing Events: Static friction causes the spacecraft’s reac-
tion wheels to exhibit a low-amplitude rumble at wheel speeds near zero, which can have a small
but measurable effect on pointing and photometry. Ancillary engineering data, including wheel
speed measurements, are delivered along with data from the photometer and are analyzed to de-
termine and flag cadences on which any wheels speeds approached zero. First, a median filter is
applied to the wheel speed time series for all four wheels and strings of consecutive zeros in the
filtered data are identified. The median filter length is configurable and is set to 5 for the SOC
9.3 run. Then strings longer than the median filter length are flagged as zero-crossing events.
Since the engineering data are not synchronized with the photometer data (they are sampled at
a frequency of approximately 0.0083 Hz), the final step is to determine and flag cadences that
overlap with the flagged zero-crossing events in the engineering data.

Identify and Mitigate Argabrightening Events: It has been observed in flight data that there
are cadences for which the flux values of all background and target pixels are elevated (Jenkins
et al., 2010b). These have been dubbed Argabrightening events after Vic Argabright, the Ball
Aerospace engineer who first observed and reported them. There has been speculation about the
source of the Argabrightening events, but the true source remains unknown. If Argabrightening
mitigation is enabled (the default), then detection statistics are formulated for each cadence and a
threshold is applied to identify the Argabrightening cadences. Identification of Argabrightening
cadences is done independently for each unit of work and occurs in the first subtask of both LC
and SC tasks. Argabrightening cadences are subsequently gapped in all background and target
pixel time series in the unit of work. Argabrightening statistics are formulated from the back-
ground pixels for LC units of work and from target pixels outside of the optimal apertures of the
respective targets in the first subtask for SC units of work (Twicken et al., 2010b).

Clean Cosmic Ray Noise: If cosmic ray cleaning is enabled (the default), the effects of cosmic
ray strikes are identified and removed from the calibrated background (LC only) and from target
pixels (both LC and SC). Lists of detected cosmic ray events and the corrections applied are
maintained for both background and target pixels and are written into the pipeline’s Data Store
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Figure 6.2 Flow diagrams for LC and SC PA tasks, which each process a single unit of work. Panel a)
Each long-cadence PA task is divided intoM+N+3 subtasks, represented by shaded ovals. Subtasks within
the PPA centroiding and target processing steps are executed in parallel if the computational environment
allows; otherwise, subtasks s0 through sM+N+2 are executed sequentially. The algorithmic steps performed
by each subtask are listed on the right-hand side of the box containing it. Panel b) There are no background
pixels in SC data, and SC processing relies on interpolated versions of the LC background and motion
models.

in the final subtask.

Fit Background Polynomials: For LC units of work, a 2-D (background) polynomial is fitted as
a function of CCD row and column to the cosmic ray-cleaned background pixels on a cadence-
by-cadence basis.

Fit Motion Polynomials: In LC units of work, a polynomial model of image motion is con-
structed by fitting a pair of 2-D polynomials to the collection of PPA target centroids at each
cadence: one mapping celestial coordinates (Right Ascension (RA) and Declination (Dec)) to
CCD row coordinates and another mapping them to column coordinates. In SC units of work,
motion polynomials are obtained by interpolating LC motion polynomials retrieved from the
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Data Store. It follows that LC processing precedes that of SC. Within PA, motion polynomials
are used to account for image motion in cosmic ray cleaning and in image modeling for optimal
aperture selection. They are also utilized elsewhere in the pipeline for focal plane geometry fit-
ting (Tenenbaum & Jenkins, 2010), systematic error correction (Twicken et al., 2010a), attitude
determination (Li et al., 2010), and computation of instrument performance metrics (Li et al.,
2010).

Optimal Aperture Selection: PA reexamines the optimal apertures provided by the Target and
Aperture Definitions (TAD) component based on the observed image motion (see Chapter 3 and
Chapter 7 for more details). Since TAD computes optimal apertures without access to the ob-
served pixels, there is an opportunity for PA to use pixel data to improve the apertures. For each
target mask, PA selects a photometric aperture based on a number of factors, including the esti-
mated SNR at each pixel, the estimated Combined Differential Photometric Precision (CDPP) of
light curves produced by candidate apertures, and several tuned heuristics.2

Simple Aperture Photometry: PA light curves are computed by summing the cosmic ray-
cleaned and background-subtracted pixels within the optimal photometric aperture. For SC units
of work, background polynomials must be normalized and interpolated at the SC timestamps
before they can be used to obtain background estimates. Simple Aperture Photometry (SAP) is
the only photometry method supported by PA.

Compute Target Centroids: Row and column centroid time series are computed from the
background-removed target pixels on a cadence by cadence basis. Flux-weighted centroids are
computed for all PA targets. Centroids may also be computed by fitting a predetermined Pixel
Response Function (PRF – Bryson et al., 2010a) to calibrated target pixel values. In practice,
PRF centroiding was only done for PPA targets. It was disabled for non-PPA targets both be-
cause of the computational expense and because the quality of results diminishes for dimmer and
more crowded stars.

Compute Encircled Energy Metric, Brightness Metric, and Cosmic Ray Metrics: The en-
circled energy metric is computed for each cadence from the background-removed target pixels
and centroids of PPA targets. This metric is a robust measure of the average radius required to
capture a specified fraction of flux from the respective targets. The brightness metric is computed
for each cadence from the raw flux light curves for the set of PPA targets and is a robust measure
of the average ratio of observed-to-estimated flux for the given targets.

Cosmic ray metrics are computed separately from the background and target cosmic ray event
lists. The metrics are computed for each cadence in a unit of work and include the number of
events per square centimeter per second detected during the cadence, along with the first four
central moments (mean, variance, skewness, and kurtosis) of the set of event magnitudes.

6.3 Photometric Analysis Science Algorithms

The PA module’s constituent algorithms were introduced in the previous section. In this section
we provide detailed descriptions of the algorithms for cosmic ray cleaning, background and
motion polynomial model fitting, centroiding, optimal aperture selection, and simple aperture
photometry. The uncertainties associated with calibrated pixels presented to PA are propagated
by these algorithms to produce uncertainties for each output flux and centroid value. Due to the

2CDPP is a measure of the effective noise seen by a transit of a given duration. A 10 ppm CDPP at 6 hours indicates that
a 10 ppm deep 6-hour transit is a 1-σ event (Jenkins et al., 2010c; Christiansen et al., 2012).
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large computational expense, rigorous propagation of uncertainties on every cadence was not
possible. In SOC 9.3, uncertainties for every cadence were propagated under an assumption of
statistical independence between variables (i.e., using diagonal covariance matrices). A more
rigorous treatment, utilizing full covariance matrices for a subset of cadences to estimate and
correct the bias of the approximations (Clarke et al., 2010; Twicken et al., 2010b), was included
as an option but was not used in the final processing. The resulting uncertainties are likely
understated by a few tenths of a percent to several percent over the range of target star magnitudes
Kp=9 to Kp=16.

6.3.1 Cosmic Ray Cleaning

Galactic cosmic rays and solar energetic particles (we loosely refer to all such particles as “cos-
mic rays” regardless of their origin) continuously bombard the instrument with an expected mean
flux of ∼ 5 cm−2 · s−1 (Van Cleve & Caldwell, 2016). When a cosmic ray strikes the detector,
it typically produces free electrons in more than one pixel, depending on its energy and angle of
incidence. We refer to the charge deposited in an individual pixel as a pixel event and the set of
all pixel events caused by a cosmic ray as a particle event. Based on simulations, approximately
18% of pixels are expected to suffer pixel events on a given LC (0.6% for SC). The total charge
released in a particle event is expected to follow the distribution shown in Figure 6.3a, which
was obtained by simulation (Jenkins et al., 2004). Since the photometer has no shutter, cosmic
ray noise characteristics cannot be estimated from dark images during mission operations. How-
ever, during Kepler’s commissioning there was a unique opportunity to measure the cosmic ray
signal in the absence of stellar illumination before the instrument’s dust cover was jettisoned.
Figure 6.3b illustrates the observations from this period (Van Cleve & Caldwell, 2016), which
generally agree with our expectations.

The effects of cosmic ray strikes appear as positive single-cadence impulses in a pixel time
series. PA cleans (i.e. identifies and removes) cosmic ray effects from both background and
target pixels immediately after Argabrightening events have been mitigated. Cosmic ray identi-
fication in the relatively low flux background pixels is more effective than in target pixels where
deposited energy is more often a small fraction of the total flux. Cosmic ray strikes are expected
to deposit less than 420 e− in roughly 90% of all affected pixels during a LC measurement, while
the shot noise-dominated background levels are on the order of 105e−. The vast majority of cos-
mic ray effects are therefore below the background noise level and cannot be reliably separated
from the other signal components. The problem of reliably detecting even large effects is non-
trivial because high-frequency stellar variations and image motion can also produce significant
impulse-like features in pixel flux time series. There is also the practical challenge of cleaning
approximately 5,000,000 pixel time series with limited time and computational resources, which
limits the allowable complexity of a solution.

Our algorithm attempts to quickly isolate and remove large-amplitude cosmic ray effects from
the pixels in each target mask (this applies both to 4-pixel background targets and stellar targets).
As illustrated in Figure 6.4, our strategy is to successively model and remove features of decreas-
ing scale from the time series until only white noise with single cadence outliers remains. At that
point we apply a threshold to clean likely cosmic ray effects. In the interest of speed we fill short
gaps by linear interpolation. Short gaps are defined by a configurable threshold (typically 10
cadences). Rather than attempting to fill longer gaps, we process pixel time series in segments,
the boundaries of which are determined by the long gaps.

The first step is to normalize the variance of the observed pixel time series by dividing each
calibrated flux measurement φ(i, n) by its corresponding uncertainty value σ(i, n), where i de-
notes a particular pixel and n a cadence, to produce a variance-normalized time series. We then
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(a) (b)

(c)

Figure 6.3 Characteristics of cosmic ray noise. a) Estimated distribution of photoelectrons per particle
event (Jenkins et al., 2004). b) Histogram of observed charge deposited per pixel event, derived from channel
13.1 full-frame images. Only pixel events exceeding a 6-σ read noise threshold are shown. c) Examples of
cosmic ray strikes before ejection of the instrument’s dust cover (Van Cleve & Caldwell, 2016).

model the variance-normalized, calibrated flux time series fi at pixel i as

f̂(i) = l(i) + Dx(i) + a(i) , (6.1)

where l(i) denotes the large-scale trend in the time series, Dx(i) denotes a model that accounts
for both salient harmonic components and the effects of image motion, and a(i) is an autoregres-
sive (AR) process. The AR model can be further decomposed into the sum of a white innovation
process (Papoulis, 1986) ε(i) and a prediction ρ(i) derived from it (Equation 6.3). Provided the
model adequately captures the effects of image motion and stellar variability, cosmic ray noise
will be confined to ε(i) + e(i), where e(i) = f(i) − f̂(i) denotes the model residual. Once the
model has been fit, as described below, we identify and correct positive impulses in ε(i) + e(i)
that are above a configurable detection threshold (typically 4σ).

In constructing the model of Equation 6.1, we separate the structure of the variance-normalized
pixel time series into large- and small-scale components l(i) and s(i), respectively, by applying
a 49-cadence median filter. At this point, cosmic ray-induced impulses should be isolated in
the small-scale component. It is important to be aware that cosmic rays occasionally produce
significant effects on multiple cadences by causing changes in pixel sensitivity, termed Sudden
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Figure 6.4 Flow diagram of the cosmic ray cleaning algorithm showing the decomposition of a pixel
time series in order to isolate large-amplitude cosmic ray effects. Flux components plotted in red contain
significant cosmic ray-induced noise, while green components should be largely free of cosmic ray energy.
Note that in the detection step it is impossible to distinguish low-level cosmic ray noise from fluctuations in
the innovation process of the AR model. Our goal is to remove the large outliers.
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Pixel Sensitivity Dropouts (SPSD – Christiansen et al., 2013, Section 5.9), and that such events
are corrected separately in the PDC pipeline module (Stumpe et al., 2012).

Next we model and remove the effects of periodic stellar variations and abrupt changes in
spacecraft pointing and/or instrument focus, both of which can produce impulse-like features
that resemble cosmic ray effects. For a given target mask consisting of pixels with indices in
the set I , the summed small-scale component

∑
i∈I s(i) is analyzed to identify up to Mmax

(a configurable parameter typically set to 25) salient harmonic components with frequencies
w1, w2, . . . wM . If motion polynomials are available, they are used to produce estimates of cen-
troid position and plate scale (a convenient proxy for the system’s state of focus) at each cadence
(see Appendix 6-A for details). The position and focus time series are then detrended with a
49-cadence median filter to isolate short-timescale changes in pointing and focus. Note that mo-
tion polynomials are typically available for stellar target processing, where they are most useful,
but not for background target processing, as background targets don’t have celestial coordinates
associated with them.

The design matrix,

D =




h1,1 . . . h1,M r′1 c′1 s′1
h2,1 . . . h2,M r′2 c′2 s′2

...
. . .

...
...

...
...

hN,1 . . . hN,M r′N c′N s′N




, (6.2)

is constructed from the identified harmonics and the detrended motion time series, where M is
the number of salient harmonics identified and N is the number of cadences in the unit of work
being processed. The coefficients hn,m = cos(wmtn)sin(wmtn) in theM columns to the left of
the dashed line model the harmonic content, where tn is the mid-cadence timestamp of the nth

cadence, while columns to the right model effects of image motion. Terms r′n, c′n, and s′n denote
median-filtered estimates at cadence n of the row and column centroid positions, r and c, and
plate scale s, respectively. We then solve s(i) = Dx(i) for coefficients x(i) in the least squares
sense by computing the pseudoinverse of D. Singular value decomposition is used to obtain a
solution in cases where D is poorly conditioned or has low rank; otherwise a QR decomposition
is used.

After subtracting the large scale trend and the harmonic/motion model, the remaining flux
s(i) − Dx(i) at pixel i is modeled as a zero-mean AR process a (i) with infrequent outliers.
Given parameters b1(i), . . . , bKAR

(i), the nth element of a(i) is given by

a(i, n) = ρ(i, n) + ε(i, n) =

KAR∑

k=1

bk(i)a(i, n− k) + ε(i, n) , (6.3)

where ρ(i, n) can be thought of as a prediction of a(i, n) based on the preceding KAR values
in the time series and ε(i, n) as the prediction error. The model order KAR is a configurable
parameter. If the time series being modeled is wide-sense stationary (having shift-invariant mean
and autocovariance), then the innovation process ε(i) should be white noise. We use the Burg
method (Burg, 1967) to robustly fit the AR parameters to the remaining flux in two iterations: a
forward pass and a backward pass. On the forward pass we identify and flag outliers exceeding
a threshold (typically 10σ), which are replaced by the innovation’s mean value (zero). Upon
completion of the backward pass, we once again identify and zero any outliers and then compute
the residual e(i) of Equation 6.1. At this point the bulk of cosmic ray effects should be confined
to ε(i) + e(i).

The final step in our algorithm consists of analyzing ε(i) + e(i) to identify positive-going
impulses above the detection threshold τ (typically 4σ). We start by applying a 3-cadence median
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filter to remove any non-impulsive features from the residual. The result, e′(i), is then added to
the estimated innovation from Equation 6.3, which also contains significant cosmic ray noise,
and the detection threshold is applied to obtain an estimate of φcr(i), the large-amplitude cosmic
ray signal:

φ̂cr(i, n) =

{
(εi,n + e′(i, n))σ(i, n), if ε(i, n) + e′(i, n) > τ

0, otherwise
. (6.4)

Note the multiplication by σ(i, n) in Equation 6.4 that undoes the initial variance normalization.
To apply the correction for pixel i we simply subtract the estimated cosmic ray signal φ̂cr(i)
from the calibrated pixel flux φ(i).

6.3.2 Background Estimation and Removal

Background targets are acquired at the LC rate in a quasi-grid pattern on each of the focal plane
module outputs (see Subsection 3.2.3). 1,116 2× 2 pixel apertures are defined on each channel.
The background pixel time series represent spatial and temporal samples of the global back-
ground level. In selecting background targets an effort is made to prevent them from being
corrupted by flux from neighboring stars or from saturated targets on the same columns. Nev-
ertheless, there are background pixels in the flight data that exhibit high flux levels for reasons
including nearby or saturated targets and imperfectly corrected smear. These pixels necessitate
the development of a method for background estimation and subtraction that is robust against
outliers.

Background estimation is performed in two steps. The process begins by fitting a 2-D (back-
ground) polynomial to the calibrated, cosmic ray-corrected background pixel values as a function
of the CCD row and column coordinates for each cadence. This occurs in the first PA subtask in
each LC unit of work. In all subsequent target subtasks, the background is estimated by evaluat-
ing the background polynomial for each cadence at the CCD coordinates of the respective target
pixels. This produces a spatially smooth estimate of the local background for each target without
dedicating any background pixels to specific targets. The ratio of background pixels to pixels
from stellar or custom apertures is on the order of 1:14 across the entire focal plane.

Once the background is estimated for each target pixel and cadence, it is removed by subtract-
ing the estimated value from the calibrated, cosmic ray-corrected target pixel value. Uncertain-
ties in the background-removed target pixels are propagated as described at the beginning of this
section.

Background removal for SC targets is complicated by the fact that there are no SC background
pixels. In SC units of work, the LC background polynomials are provided as input to PA in the
first subtask. The background polynomials are then scaled to account for the shorter integration
times and interpolated in time at the midpoints of the SC intervals. The background estimation
and removal process proceeds with the interpolated background polynomials as before. It should
be noted that changes in the background that occur on time scales shorter than the LC rate cannot
be captured in the SC background estimation process.

The order for the 2-D polynomial that is fit to the background pixels for each LC is determined
in the pipeline with the Akaike Information Criterion (AIC – Akaike, 1974). This criterion in-
cludes a penalty that increases with fit order and seeks to optimize the trade-off between fit order
and goodness of fit. In PA, the order used in the background fit for all cadences is determined by
the order (up to a specified maximum) that minimizes average AIC over all cadences in the unit
of work. For a background fit of order K, the number of background polynomial coefficients for
each cadence is (K + 1)(K + 2)/2.

For the set of calibrated, cosmic ray-subtracted background pixels, let φb(i) and σb(i) desig-
nate, respectively, the pixel values and uncertainties of pixel i for a given LC. Furthermore, let
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the (one-based) CCD row and column coordinates at the center of pixel i be designated by r0(i)
and c0(i), respectively. The background estimate for pixel i is given by

φ̂b(i) =

KB∑

k=0

k∑

l=0

Bqr
k−l
0 (i)cl0(i) , (6.5)

where the background polynomial coefficient index is given by

q = k(k + 1)/2 + l . (6.6)

Letting I denote the set of background pixel indices, the background polynomial coefficients
B0, B1, . . . , BKB

for the cadence in question are determined by minimizing the weighted chi-
square,

χ2
b =

∑

i∈I

(
φb(i)− φ̂b(i)

σb(i)

)2

. (6.7)

For the set of pixels A in a specified target aperture, the background level may then be esti-
mated for the given cadence from the background polynomial B and subtracted from the cali-
brated, cosmic ray-corrected target pixels to obtain the background-removed target pixel values
φs as follows:

φs(i) = φ(i)− φ̂cr(i)− φ̂b(i) . (6.8)

6.3.3 Centroiding

There is substantial motion of the target positions on the focal plane in the flight science data
at the sub-pixel level. The dominant source of long-term target motion is differential velocity
aberration (DVA), which causes the targets to trace small but significant elliptical paths across
the respective CCD detectors over the period of the heliocentric orbit of the photometer. The
maximum motion due to DVA is 0.6 pixels per observing quarter (Jenkins et al., 2010a). There
is also target movement due to pointing jitter, pointing drift, focus changes (due mainly to tem-
perature changes in the photometer), and commanded attitude adjustments to compensate for
pointing drift. It should be noted that the photocenters of variable targets also move in crowded
apertures.

Flux levels vary with target motion at even the sub-pixel level. Systematic effects that result in
target motion therefore produce correlated signatures in the associated light curves. Precise com-
putation of the target locations on each cadence is critical for correcting systematic errors later
in the pipeline. It is also required for precise a posteriori definition of optimal target apertures
(see Subsection 6.3.5), for precision reconstruction of spacecraft attitude, and for monitoring in-
strument performance. The photocenter of each target in its aperture is referred to as the target
centroid. It should also be noted that analysis of centroid motion (Wu et al., 2010) is a critical
tool for distinguishing between legitimate transits due to orbiting planets and apparent transits
due to background eclipsing binaries or transits on background stars.

Two centroiding methods are employed in PA. Flux-weighted centroids are computed for ev-
ery target and cadence and are currently exported to the MAST. These centroids are computation-
ally inexpensive and essentially determine the photometric center of mass in the target aperture.
Subsection 6.3.3 illustrates the sub-pixel migration of an 11th magnitude star’s flux-weighted
centroid during Q0. PRF-based centroids, obtained by fitting a PRF model to the observed flux,
may additionally be computed for some or all targets in the pipeline, though in practice they
were computed only for PPA targets. The PRF-based centroiding algorithm determines the pho-
tocenter coordinates by solving for the PRF translation and scaling which best fit the cosmic
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ray-cleaned and background-subtracted flux in the respective target apertures. Flux-weighted
centroids are computed in an aperture that includes the optimal aperture plus a single halo ring
for each target. PRF-based centroids are computed in an aperture that includes all of the available
pixels for each target. In both cases, uncertainties are propagated to the computed centroid row
and column coordinates based on the Jacobian for each centroid computation.

Figure 6.5 Movement of an 11th magnitude target’s flux-weighted centroid during Q0. These data are
from the same target shown in Figure 6.7. The plot on the left shows the path traced on the CCD by the
migrating centroid, while the right hand plot shows the row and column centroid time series. The visible data
gap near cadence 280 is due to a loss-of-fine-point anomaly accompanying a momentum dump. Transient
features in the centroid time series are mainly due to focus changes caused by thermal fluctuations in the
photometer, although the brief drops in centroid column lasting ∼20 cadences (∼10 hours) every ∼90
cadences (∼2 days) is due to an eclipsing binary falling on a fine guidance sensor (FGS) that was selected
as a guide star at the time (see Christiansen et al., 2013, Section 4.5). Every time an eclipse happened it
biased the FGS centroid measurements, pulling Kepler off point by a few millipixels.

Every centroid computed in PA is validated against the bounding box of the associated cen-
troid aperture, and each is gapped in the event that it does not fall within the bounding box for
any reason. Gaps are also set for PRF-based centroids that cannot be successfully computed for
any target and cadence due to failure of the iterative fitting algorithm.

6.3.4 Motion Polynomial Fitting

In this section we describe in detail the process by which the motion polynomials introduced in
Section 6.2 are fitted to the set of PPA target centroids in each unit of work. Even though PPA tar-
gets are selected for their likelihood of producing precise and consistent centroids, some of them
are unsuitable for this purpose. If the centroid for a given target is determined at run time in PA
to be unsuitable for any cadence then the centroids for that target are excluded from the motion
polynomial fits for all cadences. Targets exhibiting flux variations greater than 1% are the first
major group of unsuitable PPA targets. The centroids for variable targets move with the chang-
ing flux level (depending on the degree to which the aperture is crowded and the background
has been removed) and will degrade the predictive capability of the motion polynomials if not
excluded. Targets for which the reported magnitude appears to be incorrect (based on anomalous
uncertainties in their centroids due to contamination from nearby saturated and bleeding bright
stars) are the second major group of unsuitable PPA targets. If a target is brighter than its Kepler
Input Catalog (KIC) magnitude suggests, it may be saturated or affected by a nearby saturated
star and therefore completely unsuitable for precision centroiding. If the target is dimmer than
its KIC magnitude suggests then the quality of its centroids is also compromised due to lower
than expected SNR.
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The orders for the 2-D polynomials that are fit to the row and column centroids of the PPA
targets for each LC are determined in the pipeline with the AIC in a manner similar to the order
selection for the background polynomials. The difference in this case is that the model orders
are selected independently for the fits to the centroid rows and columns. The orders used for the
polynomial fits to the centroid rows and columns for all cadences are determined by the mode
of the orders (up to a parameter-specified maxima) that minimize the AIC for all target rows and
columns, respectively, over a decimated set of cadences in the unit of work (in practice, pipeline
configurations specified a decimation factor of 8). For a row or column motion polynomial fit of
order K, the number of polynomial coefficients for each cadence is (K + 1)(K + 2)/2.

As with the background polynomial fitting process, it is necessary to perform the motion poly-
nomial fitting in a robust fashion to prevent centroid outliers from perturbing the least squares
solution. The motion polynomial fits are therefore performed iteratively to identify and deempha-
size any centroid outliers in row and/or column. Centroid outliers can result, for example, from
errors in the target sky coordinates, crowding in the target apertures, bleeding from saturated
targets in the vicinity or poor correction of the local background.

For the set T of PPA targets that have not been excluded from the motion polynomial fit as
described above, let µr and σr designate the centroid row coordinates and uncertainties for any
given cadence such that µr,t and σr,t represent the value and uncertainty of the row centroid
for the tth target. Similarly, let µc and σc designate the centroid column coordinates and un-
certainties for any given cadence such that µc,t and σc,t represent the value and uncertainty of
the column centroid for the tth target. Furthermore, let the celestial RA and Dec coordinates of
the PPA target t be designated by αt and δt, respectively. The row motion polynomial R is then
determined for order KR by minimizing the weighted χ2 defined in Equation 6.9 for the given
cadence:

χ2
r =

∑

t∈T

(
µr,t −

∑KR

k=0

∑k
l=0Rqα

k−l
t δlt

σr,t

)2

. (6.9)

Likewise, the column motion polynomial C is determined for order KC by minimizing the
weighted χ2 defined in Equation 6.10 for the given cadence:

χ2
c =

∑

t∈T

(
µc,t −

∑KC

k=0

∑k
l=0 Cqα

k−l
t δlt

σc,t

)2

. (6.10)

The motion polynomial coefficient index q in both Equation 6.9 and Equation 6.10 is defined
in Equation 6.6. Once the weighted least squares problems in Equation 6.9 and Equation 6.10
have been solved for a given cadence, the row and column motion polynomials may then be
evaluated for any arbitrary celestial coordinates α and δ (on the associated module output) to
estimate the centroid location for a target at the given celestial position, as detailed in Appendix
6-A.

The robust fitting algorithm is performed per cadence and successfully deemphasizes centroid
outliers on a per cadence basis, but it does not necessarily consistently weight the centroids from
cadence to cadence. The mix of centroids that are effectively fit can therefore potentially vary
with time, resulting in discontinuities and chatter in the temporal sequences of the respective mo-
tion polynomial coefficients. This could present a problem later in the pipeline where the motion
polynomials are utilized for systematic error correction, attitude reconstruction and computation
of instrument metrics. The following are enhancements to the robust fitting routine intended to
improve both stability and fidelity of the fit coefficients.

To mitigate motion polynomial chatter, the set of targets participating in the fit is determined
through an iterative process. Initially the centroids from the set of PPA targets are fit robustly to
a 2-D polynomial. Then those targets that have been assigned robust weights (in row or column)
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below a threshold are removed from the set of targets being fit and the centroids are re-fit. The
threshold is configurable, and was set to 100 for the SOC 9.3 processing. This fitting and culling
process continues until the set of targets being fit remains unchanged, an iteration limit is reached,
or the size of the set of targets being fit drops below a threshold. We also require that the same
set of targets be used over all cadences (although the robust weights assigned to any particular
target change from cadence to cadence).

Large biases in the centroid data can cause problems with the robust fit as well. Centroids with
very large biases may be overly deemphasized in the robust fit, reducing the overall effectiveness
of robust weighting. In order to mitigate the effects of any large biases, the residual biases for
each centroid time series are first estimated from the fit residuals as a low order polynomial. The
model bias is then removed from the original data and the polynomial fit is repeated a second
time, providing a more accurate robust fit.

6.3.5 Optimal Aperture Selection

PA receives as input a photometric aperture produced by the TAD module (see Chapter 3), shown
in Figure 6.1. Since TAD computes optimal apertures without access to the observed pixels, PA
attempts to use pixel data to improve the apertures if it can. It constructs a set of candidate
apertures, evaluates them along with the original TAD aperture, and selects the best one for use
in photometry. Construction and selection of apertures in PA is based on maximizing SNR and
minimizing CDPP, as well as on a number of heuristics that render the problem computationally
tractable. Construction of candidate apertures begins by fitting a model of image formation to
the pixel data within the target mask, enabling isolation of the flux contribution from the target
star.

6.3.5.1 Image Formation Model An accurate model of image formation is important for SNR
estimation because it enables the decomposition of background-subtracted pixel flux into contri-
butions from each point source in the instrument’s field of view. Our model consists of a scene
description comprising the set of known sources S = {s1, s2, . . . , sK} with celestial coordi-
nates {αk, δk} and specified magnitudes, a model of image motion on the focal plane, and a
model of the Kepler Pixel Response Function (PRF), as illustrated in Figure 6.6. In brief, the
PRF describes the expected response of a pixel i to a point source at an infinite distance whose
photocenter falls on the detector at real-valued row and column coordinates {r, c}. In its normal-
ized form, as used here, it describes how the total response due to a point source is distributed
among pixels. The PRF accounts for the effects of the optical PSF, the CCD detector respon-
sivity function, spacecraft pointing jitter, and other systematic effects. A static model of the
Kepler PRF was constructed from 121 dithered LC data sets acquired during commissioning of
the Kepler spacecraft (Bryson et al., 2010a).

After subtracting the estimated background flux φ̂b and cosmic ray flux φ̂cr from the calibrated
pixel flux φ, we model the remaining flux, φs, at each pixel i during cadence n as a linear
combination of PRF values for each source plus a constant offset:

φs(i, n) = β(n) +

K∑

k=1

Φk(n)P̂RF (i, rk(n), ck(n)) . (6.11)

The total flux Φk due to source sk is distributed among pixels according to the normalized
PRF, denoted by P̂RF . P̂RF is obtained by evaluating the PRF over an 11-by-11 pixel grid
centered at {r, c} and dividing pixel i by the sum of evaluated pixels. The real-valued CCD
coordinates rk(n) and ck(n) are estimates of the mean photocenter of source sk during cadence
n and are obtained from motion polynomials as detailed in Appendix 6-A. The constant term β
is included to account for any local bias in the background flux estimates for the set of pixels
being modeled.
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Figure 6.6 A single-cadence model of an actual
Kepler target pixel mask. The image model is
constructed from a background model, a normalized
PRF model evaluated for each source, and estimates
Φk of the total flux contributed by each source.
The celestial coordinates (αk, δk) of each source are
mapped to CCD coordinates (rk, ck) by a polynomial
model of image motion. Note that in this example the
centroid of source s1 lies slightly outside the mask,
but it still contributes significant flux to pixels inside
the mask. Also note that the component images in
the figure have been scaled to aid visualization. From
Figure 1 in Smith et al. (2016).

An independent model is fitted to each set
of pixels comprising a target mask. The scene
model for a given mask is constructed from
entries in the KIC and is initialized by rank-
ing sources in the vicinity of the target by their
maximum expected SNR contribution to any
pixel in the mask. Sources whose maximum
SNR values fall below a threshold of 100 are
discarded and up to Kmax = 30 sources from
the remaining set are admitted to the scene
model in order of rank. Since certain regions
of the FOV may be densely populated with
dim stars, limiting the scene model in this way
prevents wasting time and computing power
on sources that do not make significant flux
contributions.

We fit model parameters Φk(n), βk(n), αk
and δk to the observed data by minimizing the
weighted sum of chi-square residuals over all
pixels and cadences in the model. Fine-tuning
the source positions {αk, δk} in the fit com-
pensates for both catalog errors and local bi-
ases in the motion polynomials. Position fit-
ting is enabled only for sources with centroids
inside the target mask that contribute suffi-
cient flux, defined by a maximum pixel SNR
threshold of 500. The minimization is con-
strained such that source flux is non-negative
and perturbations ∆k to catalog positions are
smaller than ∆max = 1.5 pixels. Note that,
while fitting Φk and β is a linear problem, fit-
ting source positions αk and δk is inherently
nonlinear.

We address the two components of the fit
separately in an iterative scheme. We use a
Levenberg-Marquardt algorithm to optimize the perturbation of source positions, while a non-
negative least squares method (Kim et al., 2013) is used to fit the flux model of Equation 6.11 for
a given perturbation:

minimize (w(∆) + 1)

I∑

i=1

N∑

n=1

χ2(i, n; Φ(n), β(n),∆)

subject to Φk(n) ≥ 0,∆k ≤ ∆max,

(6.12)

where

χ(i, n) =
φs(i, n)− φ̂s(i, n)

σs(i, n)
, (6.13)

and σs(i, n) denotes the uncertainty associated with φs(i, n). The heuristic weighting function
w (∆) in Equation 6.12 prevents source positions from converging on the same peak in the data
by increasing as sources move toward one another from their catalog positions.
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The resulting image model provides the required estimate of flux due to the target star in
isolation, which is given by:

φ̂t(i, n) = Φt(n)P̂RF (i, rt(n), ct(n)) . (6.14)

It also enables easy calculation of flux fraction and crowding metrics (see Subsection 6.3.6 for
detailed descriptions of these quantities) for each cadence.

6.3.5.2 Aperture Optimization For pixel i and cadence n, the modeled target flux of Equa-
tion 6.14 provides the numerator for an estimate of SNR. The denominator, or noise term, is the
sum of estimated shot noise, read noise, and quantization noise (Smith et al., 2016; Jenkins et al.,
2000; Howell, 1989). The contiguous aperture that maximizes SNR is then identified by way
of a region-growing algorithm. The pixel containing the modeled target centroid {rt(n), ct(n)}
provides the seed, which we designate A1(n). A second region, A2(n), is constructed by identi-
fying the 4-connected neighbor of A1(n) having maximum SNR. In general, the p-pixel region
Ap(n) is obtained by finding the 4-connected neighbor of Ap−1(n) having maximum SNR. This
procedure is repeated until all pixels in the P -pixel target mask belong to at least one region and
we have a set of cadence-specific candidate aperturesA1(n), A2(n), . . . , AP (n). Note that these
apertures are not necessarily symmetric and may contain holes. The SNR of Ap(n) is given by:

SNRp(n) =

∑
i∈Ap(n) φ̂t(i, n)

√
p (νread(n)2 + νquant(n)2) +

∑
i∈Ap(n) φs(i, n)

, (6.15)

where φ̂t(i) denotes the modeled target flux at pixel i and φs(i) denotes the corrected pixel value
defined in Equation 6.8, which includes flux contributions from all background stars (the shot
noise term is derived from these values). The other two terms, νread and νquant, are the read
noise and quantization noise, respectively.

For each cadence we select the candidate aperture that maximizes SNR. We now have an
optimal (in the SNR sense) photometric aperture for each cadence, denoted by Aopt(n), but
the SAP method employed by the Kepler pipeline requires a single static (i.e., time-invariant)
aperture to be used for photometry on all cadences. There are many ways we can construct such
an aperture. Our approach is once again to construct several candidates and then select the best.

Two of our static aperture candidates are derived directly from the set of per-cadence optimal
apertures, Aopt(n). This is done by counting how many of the Aopt(n) a given pixel belongs
to and adding the pixel to the static aperture if its frequency of inclusion is above a threshold
percentage. We do this for thresholds of 5% and 50%. Since the candidate resulting from the
5% threshold can be seen as the union of 95% of the Aopt(n), we refer to it as the 95% union
aperture and denote it byAunion. The 50% threshold produces an aperture that can be considered
the median of the Aopt(n) apertures and is denoted by Amedian. For targets with small centroid
motion, the median aperture is optimal since it finds the “core” of pixels containing the signal and
is robust to outliers in the centroid position. When there is large motion, however, a significant
fraction of the target flux is distributed to outlying pixels not included in Amedian. In such
situations the larger Aunion is often preferred.

A third candidate aperture is constructed by minimizing estimated CDPP. Since it is not com-
putationally feasible to perform the minimization over all possible apertures, we do so for a
limited subset. Letting m(i) denote the number of the Aopt(n) to which pixel i belongs, we
assign pixel i a rank equal to m(i). Starting with the central pixel we construct a subset of aper-
tures of increasing size by adding pixels in order of their rank (highest to lowest). By doing so
we reduce the number of possible apertures from 2P − 1 (all possible subsets of pixels minus
the empty set) to P . We can now afford to compute the much more costly estimate of CDPP for
each of the P candidate apertures to find the aperture with the lowest CDPP.
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At this point we have four candidate apertures from which we must select one:

1. ATAD, the purely model-derived aperture computed in TAD.

2. Amedian, the SNR-optimized median aperture.

3. Aunion, the SNR-optimized 95% union aperture.

4. ACDPP , the CDPP-optimized aperture.

Each of these apertures can yield better performance for a subset of Kepler targets. Since
transit signal detection is the primary goal of the Kepler mission, we principally select the optimal
aperture based on CDPP. It may seem that the CDPP-optimized aperture should always be the
best choice. But even if we were to optimize CDPP over all possible apertures, which is not
computationally feasible, there would still be cases in which a purely CDPP-based selection
would lead to poor results. For targets with bright background objects in close proximity, a
CDPP-based optimization could engulf the background object, depending on the attributes of its
light curve. We therefore select from the four optimal aperture candidates using a strategy that
combines CDPP and SNR by way of a tuned logistical regressive heuristic model (Smith et al.,
2016) detailed in Chapter 7.

Figure 6.7 shows an example of an optimal aperture selected in the manner described here
alongside the TAD-computed optimal aperture passed as input to PA. The histogram shown in
Figure 6.8 indicates that revised apertures reduce the estimated CDPP for the vast majority of
targets and quarters, with 77% showing an improvement, 13% showing some degradation, and
10% showing no change. In 14% of cases CDPP is reduced by 10% or more.

Figure 6.7 Example of Q0 pixel/target flux inputs and outputs for an 11th magnitude target (KIC 10645746)
near the edge of the focal plane (module output 6.3). The top half of the figure shows PA inputs, including
the pixels comprising the target mask (top left) with the TAD optimal aperture bounded in white and the
sum of calibrated flux time series (top right). The bottom half shows PA outputs, including the revised
optimal aperture along with the raw light curve delivered to the MAST archive. The aperture plots on
the left side of the figure show the median pixel flux values in the target mask over 476 cadences. KIC
objects are represented by circular markers with the target star in green and background objects in white
or yellow. Objects are shown at their median (over all cadences) CCD coordinates as predicted by motion
polynomials. The Kepler magnitude of each object is shown in magenta to the right of its marker. Features
to note include the exclusion from the revised aperture of pixels near background stars and the removal of
most positive-going spikes due to cosmic rays and Argabrightenings in the output light curve.



104 PHOTOMETRIC ANALYSIS

Figure 6.8 Histogram of fractional CDPP improvement when comparing light curves produced from
revised PA apertures with those produced from the original TAD apertures. Positive values indicate
improved photometric precision. Note that each target is counted separately for each quarter. That is, the
sum of the histogram is (number of targets)× (number of quarters).

6.3.6 Simple Aperture Photometry

Storage and bandwidth limitations made it impossible to save and later downlink all of the pixel
values acquired on the focal plane array on every cadence. Rather, an aperture was defined
for each target that specified the pixels necessary to support pixel-level calibrations, light curve
extraction, and computation of the target photocenter. Only pixels in the specified target apertures
(plus the background and collateral (Quintana et al., 2010) pixels for black level and smear
corrections in CAL) were written to the solid state recorder aboard the spacecraft and downlinked
for pipeline processing. Great care was taken in generation of the aperture definitions (Bryson
et al., 2010b) to ensure that all of the pixels required to support the Kepler science mission were
captured.

Within each target aperture, the subset of pixels required for photometric extraction of light
curves is referred to as the optimal aperture. The size of the optimal aperture for any given target
depends on a number of factors, including target magnitude, PRF, noise level, local crowding,
image motion, and DVA. The target apertures were redefined for each observing season as the
targets moved from one CCD to another with each quarterly roll of the photometer. An a priori
optimal aperture is estimated for each target by the TAD component (Figure 6.1) in order to
identify the pixels that need to be collected and stored onboard the spacecraft for later downlink.
This estimate is provided to PA as input along with the pixel data and is used as the initial estimate
for the photometric aperture. After the motion polynomials are determined in the first run of PA,
TAD is called again to furnish updated optimal apertures using the reconstructed image motion
across the observation period. As described in Subsection 6.3.5, PA uses the observed pixels to
update the estimated optimal aperture via PA-COA and can fall back on the TAD aperture should
any problems arise in its analysis. Before the introduction of PA-COA in release 9.3, the updated
TAD apertures were employed to compute SAP flux.
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The optimal aperture does not necessarily contain all of the stellar flux for a given target.
Along with the raw light curve, PA delivers two additional values at each cadence: the flux
fraction and crowding metric. The flux fraction in the aperture refers to the ratio of target flux
contained in the optimal aperture to the total flux of the target. Furthermore, not all flux in the
optimal aperture is due to the primary target. The crowding metric refers to the fraction of flux
in the optimal aperture that is due to the target. Both flux fraction and crowding are accounted
for when the light curves are corrected in PDC (Twicken et al., 2010a).

As stated in Section 6.2, light curves are computed by SAP. Once the calibrated target pixels
have had cosmic rays corrected and background removed, the raw flux is obtained per target and
cadence by the unweighted summation of pixels in the associated optimal aperture. Letting Aopt
denote the set of indices for pixels within the optimal aperture of a specified target, the raw flux
Φ is computed by SAP from the background removed pixels φs in the target aperture for a given
cadence by:

Φ =
∑

i∈Aopt

φs(i). (6.16)

The SAP results from an 11th magnitude target star are shown in the lower panels of Figure 6.7.
It should be noted that if a data gap exists for any pixel and cadence in the optimal aperture of
a given target, then a data gap is set for the raw flux value (and associated uncertainty) for
that target and cadence. Setting the gaps in this manner prevents discontinuities from being
introduced into the light curves by extracting the raw flux from only a subset of the pixels in the
optimal aperture. As this is written, it has not been observed in-flight that data availability is
pixel dependent. Rather, it has always been true that either all or none of the pixels are valid for
a given cadence.

6.4 Summary and Conclusions

We have presented an overview of the architecture and algorithms of the Photometric Analy-
sis component of the Kepler SOC Science Data Processing Pipeline. Detailed expositions of
the main science algorithms and examples of the primary data products were given. We have
provided examples of the main PA data products and have shown a significant improvement in
estimated CDPP of light curves due to refinement of photometric apertures.

Appendix A: Obtaining Centroid and Plate Scale Estimates from Motion Polyno-
mials

For a given cadence, the row centroid estimate is obtained by evaluating the order KR row
polynomial with coefficients Rq at the target’s celestial coordinates (α, δ),

r =

KR∑

k=0

k∑

l=0

Rqα
k−lδl , (A.1)

where q = k(k + 1)/2 + l, and likewise for the column centroid estimate:

c =

KC∑

k=0

k∑

l=0

Cqα
k−lδl . (A.2)
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Plate scale is computed from the partial derivatives of the motion polynomials at each cadence
with respect to right ascension and declination by calculating the determinant of the Jacobian
matrix:

s =

∣∣∣∣∣∣∣∣

∂r

∂α

∂r

∂δ

∂c

∂α

∂c

∂δ

∣∣∣∣∣∣∣∣
. (A.3)

The partial derivatives in Equation A.3 are given by

∂r

∂α
=

KR∑

k=0

k∑

l=0

Rq[(k − l)αk−l−1]δl ,

∂r

∂δ
=

KR∑

k=0

k∑

l=0

Rqα
k−l[lδl−1] ,

∂c

∂α
=

KC∑

k=0

k∑

l=0

Cq[(k − l)αk−l−1]δl , and

∂c

∂δ
=

KC∑

k=0

k∑

l=0

Cqα
k−l[lδl−1].

(A.4)
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Abstract. With the loss of two spacecraft reaction wheels precluding further data collection
in the Kepler primary mission, even greater pressure is placed on the Science Data Processing
Pipeline to eke out every last transit signal in the data. To that end, we have developed a new
method to optimize the Kepler Simple Aperture Photometry (SAP) photometric apertures for
both planet detection and minimization of systematic effects. The approach uses a per cadence
modeling of the raw pixel data and then performs an aperture optimization based on Signal-to-
Noise ratio (SNR) and the Kepler Combined Differential Photometric Precision (CDPP), which
is a measure of the noise over the duration of a reference transit signal. We have found the new
apertures to be superior to the previous Kepler apertures. We can now also find a per cadence
Flux Fraction in Aperture and Crowding Metric. The new approach has also been proven robust
at finding apertures in K2 data that help mitigate the larger motion-induced systematics in the
photometry. The method allows us to identify errors in the Kepler and K2 input catalogs. This
chapter draws on an updated version of Smith et al. (2016).

Keywords: Stars; Extrasolar Planets; Data Analysis and Techniques

7.1 Introduction

To achieve Kepler’s primary goal of discovering potentially habitable Earth-size planets transit-
ing Sun-like stars in its 116 square degree field of view (FOV), obtaining photometric precision
is vital. The task of determining which pixels are used to formulate the photometric measure-
ment for the Kepler target stars is a crucial component of this effort. Prior to the final software
release, SOC 9.3, the photometric apertures were determined by a component called Create Op-
timal Apertures (COA) as part of the Target Management function of the SOC pipeline within
the software module Target and Aperture Definitions (TAD; see Chapter 3). COA performed two
distinct jobs:

1. It identified the pixels that needed to be captured and stored onboard Kepler’s solid state
recorder (SSR) based on a predicted pointing profile and models for the CCDs, point spread
function (PSF), and sky.

2. It identified the pixels to be used for extracting photometry from the pixels that were stored
and downlinked to the ground, based on the actual pointing behavior.
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The TAD module relied on the accuracy and validity of the Kepler Input Catalog (KIC) and its
updates to formulate valid apertures. In practice, a subset of stars had catalog errors in mag-
nitude and celestial coordinates as well as right ascension and declination (α, δ), resulting in
sub-optimal apertures and degraded flux time series. This motivated the development of a new
module called PA-COA in SOC 9.3 that allowed the actual pixel data to be used in formulat-
ing the photometric apertures, in addition to the catalog, focal plane models, and reconstructed
pointing histories. Figure 7.1 shows where PA-COA fits in the context of the SOC Pipeline.Science Operations Center
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Figure 7.1 PA-COA in the context of the architecture of the SOC. PA-COA determines the apertures used
in the Photometric Analysis (PA) module to produce simple aperture photometry from the calibrated pixels
flowing into PA from the calibration module (CAL).

7.2 Finding Optimal Apertures

Due to bandwidth considerations, data from all of the 95 million pixels in the Kepler focal plane
cannot be stored for downlink for every cadence. Therefore specific objects (mostly stars) in the
Kepler FOV are identified as targets.1 Groups of pixels around these objects are called masks
and are extracted for storage and eventual transmission. Within each mask is a smaller collection
of pixels called an “aperture” that is optimized for generating photometric light curves. For some
targets, such as galaxies, the required apertures are explicitly specified and not optimized in the
pipeline. For planetary transit targets the pixels in the aperture are selected to maximize the SNR
and photometric precision for the target by TAD. The resulting collection of pixels is called an
“optimal aperture”. For the Kepler Pipeline a single fixed optimal aperture is found for each data
quarter of approximately 90 days. The maximum motion for Kepler data is 0̃.6 pixels over a
90-day quarter, with an average of 0.4 pixels, plus minor pointing drift. Although using moving
adaptive apertures is unavoidable for many ground-based photometric surveys, where the image
motion can be several pixels and upwards over a night of observations, it is not necessary with
the pointing precision similar to that of Kepler.

Two principle methods are used for finding the optimal apertures. One is model-driven, the
other data-driven. The first method (Method #1) generates two Pixel Response Function (PRF)
model–derived synthetic Full Frame Images (FFIs), one with and one without the target star (the
PRF is discussed in Section 7.3 and in Chapter 3). These FFIs are used to estimate the SNR of

1We will use the term “source” to reference any individual point source in the FOV be it a star, galaxy or otherwise. The
targets are almost all stars but a small number of targets are clusters, galaxies or AGNs.
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each pixel, allowing the selection of the pixel set that maximizes the SNR of the total flux of
each target. The second method (Method #2) uses a PRF model image fit to the acquired pixel
data to find the target flux contribution to the scene. The method then uses the pure pixel scene
data to estimate the noise. This second method has a further step where the aperture is optimized
with Combined Differential Photometric Precision (CDPP, discussed in Subsection 7.4.2). The
quality of the resultant aperture and light curve is compared between the two methods and the
better of the two is chosen for each target. Method #1 has been used for the Kepler Mission since
before launch and is how apertures are selected in flight. A brief description of this method is
presented in Section 7.3 for reference. Method #2 is novel to the SOC 9.3 software release.

7.3 Method #1: Using the Synthetic FFI and a Pure PRF Image Model

In this method the computation of optimal apertures is based on the generation of two synthetic
FFIs for each CCD channel without the use of the acquired pixel data, one FFI with all stars and a
second FFI with the target star removed (though still including the effects of the target star, such
as smear – see Subsection 3.2.1 and Subsection 3.2.2). These images are then used to compare
the signal from the target star with the noise from the target star, stellar background, and the
instrument thereby optimizing the aperture for SNR. By considering all the pixels in these two
FFIs in a region around a target, we can determine the pixel set whose sum maximizes the SNR
for that target.

The undersampled Kepler Point Spread Function (PSF) combined with the intra-pixel vari-
ability causes the PRF to be very sensitive to small motions of a point source’s centroid2. These
motions include spacecraft pointing jitter and differential velocity aberration and can be a signif-
icant source of signal noise and uncertainty. Therefore it is important to characterize each pixel’s
response to image motion on a sub-pixel scale. We call the function describing a pixel’s response
to the location of a point source the Pixel Response Function (PRF) (Bryson et al., 2010a).

The PRF models were determined during commissioning using 121 long-cadence data sets
acquired at a 15-minute cadence (Bryson et al., 2010a). They account for components of the
mean motion due to spacecraft pointing jitter and other effects that occur on a single long-cadence
time scale. The PRFs depend sensitively on the sub-pixel location of the point sources. We
therefore approximate this dependence by characterizing the PRF as a piece-wise 2-D polynomial
on a 6×6 sub-pixel grid, so each pixel has 36 2-D polynomials representing the PRF waveform
in that pixel, creating a super-resolution representation of the PRF on a 0.17 pixel grid.3 For
each sub-pixel the polynomial was computed as a robust χ2 fit to the normalized pixel fluxes for
all pixels of stars in that CCD readout region falling in that sub-pixel using the commissioning
data, as discussed in (Bryson et al., 2010a). Five PRFs were determined for each CCD readout
channel in order to capture variation in the focus across each CCD, each representing the PRF
in a specific region of the CCD channel, with one for the center, and one for each of the corners.
To evaluate the PRF for a particular star, the three of the five canonical PRFs for that readout
channel that contain the CCD region in which the stellar image falls are interpolated to obtain a
PRF model specific that that star’s location. We use the commissioning PRFs, the target catalog
and estimates of the image motion (∆x,∆y) over time due to pointing and differential velocity
aberration (DVA) to compute a synthetic FFI, which is then used to estimate the set of pixels that
provide an optimal signal for a target.

2The PRF is approximately the convolution of the PSF with the responsivity of a pixel over its spatial extent (see Bryson
et al., 2010a).
3Note that the PRF models located on the MAST are resampled versions of the piecewise-polynomial PRFs used inter-
nally by the SOC, and are documented in the KAM (Thompson et al., 2016).
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The sub-pixel grid accounts for intra-pixel variability. For each sub-pixel location the PRF
is defined on a domain of up to 15×15 pixels centered on the point source centroid. The PRF
model thus found is represented by interpolating a set of polynomial coefficients expressing the
brightness of each pixel as a function of offsets of the light falling on that pixel by convolving
the flux centered on each of that pixel’s sub-pixel position with the coefficients of the pixel
response function for that sub-pixel position, and summing over the sub-pixel positions. Motion
over longer time scales is explicitly accounted for by making the offsets {∆x(t),∆y(t)} time
dependent.

The computation of a synthetic FFI uses several inputs (Bryson et al., 2010a):

Kepler Input catalog (KIC) (Brown et al., 2011), providing J2000 right ascension, decli-
nation and magnitude in the Kepler bandpass of stellar targets in the Kepler field.

Pixel Response Function (PRF) model, an observation-based super-resolution model of
expected pixel values in response to point sources. The PRF model includes intra-pixel
variability.

Focal Plane Geometry (FPG) and pointing model, which includes measurements of the
locations of the CCDs in the Kepler focal plane, models of the Kepler optics and of differ-
ential velocity aberration (DVA).

Saturation model, which includes information about the well depth of each output channel.

Zodiacal light model, represented as a mesh of magnitude values on the sky.

Read noise model, observed values of read noise for each output channel.

Charge Transfer Efficiency (CTE) model, which describes how much flux is lost with
each parallel or serial charge transfer during readout.

In essence, for each source in the KIC that falls on a channel, the source’s pixel position on
the channel is computed from the KIC, using the FPG and pointing model and a copy of the
appropriate PRF scaled by the brightness of that source and smeared by DVA motion. This is all
added to the FFI in the appropriate pixel location. Due to the large number of sources in the KIC
and the resolution required to estimate the DVA motion, the direct computation of the FFI would
be impracticably slow. To overcome this difficulty, both the PRF and the brightness of each pixel
in the FFI are represented by two-dimensional polynomials, and most of the computations are
performed in terms of the polynomial coefficients. The contribution from each individual source
is included in the model by adding the coefficients of the PRF’s polynomial representation to the
coefficients of the FFI pixel’s polynomial representation. Once this process is complete the FFI is
generated by evaluating the FFI’s polynomial for each pixel. The synthetic FFI is completed by
adding simulated spill-over of saturated pixels, effects of charge transfer, smear due to shutterless
operation and zodiacal light.

The above computation of a synthetic FFI uses all known sources that fall on a channel. A
subset of these sources are identified as target stars and the same procedure is used to generate
synthetic images of each target’s contribution in isolation. The isolated target images are then
subtracted from the all-inclusive FFI to produce an FFI with the target flux removed. When
removing the flux from a target star to compute the second FFI, care is taken to retain the smear
signal from all other sources. A noise model is then used to estimate the noise in each pixel.
This noise model includes shot noise of the target, background signal, smear and zodiacal light
as well as read and quantization noise. The SNR for each pixel is computed using

SNRpixel =
ftarget√

ftarget + fback + ν2
read + ν2

quant

, (7.1)
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where νread is the channel’s read noise based on the read noise model and νquant is the quanti-
zation noise, given by

νquant =

√
nC
12

( w

2nb−1

)2

, (7.2)

where nC is the number of cadences in a co-added observation (nC = 270 for Kepler Long
Cadence), w is the well depth and nb is the number of bits in the analog-to-digital converter (14).
The other two terms in Equation 7.1, ftarget and fback, are the target and background flux values
from the FFI and account for the Poisson shot noise (which scales as the square root of the flux).

Given a collection of pixels, the SNR of the collection is given by Equation 7.1 summed over
the pixels in the collection. Optimal pixel selection begins by including the pixel with the highest
SNR. The next pixel to be added is the pixel that results in the greatest increase in SNR of the
collection. Initially the collection SNR will increase as pixels are added. After the bright pixels
in the target have been added, dim pixels dominated by noise cause the SNR to decrease. The
pixel collection with the highest SNR defines the optimal aperture.

This computation of the optimal aperture is based on a method originally implemented in
the Kepler End-to-End Model (ETEM), described in Jenkins et al. (2004) with modifications
described in Bryson (2008) and Bryson et al. (2010b) (see also Chapter 3). It is a model-driven
approach and does not use the actual CCD pixel data in the computation. It relies on an accurate
PRF, pointing knowledge, target catalog and representation of noise sources. Herein lies its main
deficiency: errors in the PRF model or target catalog position and magnitude directly result in
aperture errors. Incomplete accounting for background objects by the catalogs used, focus errors,
stellar variability and saturation also impair the method. While this method is fast and reliably
selects an aperture, the above errors lead to compromised photometry on some targets. Using
collected pixel data to identify and correct these errors is the motivation for the method described
in the next section.

7.4 Method #2: Using a PRF-Based Image Model and the Pixel Scene

The driving factor to improve upon the older aperture finding routine is to allow the data to speak
for itself when finding both the background noise and the target signal. The Kepler catalog is
quite complete to 17th magnitude but dimmer background objects can still contribute to the noise
and yet not be modeled in Method #1. There can also be errors of up to ±0.5 magnitudes and 4′′

in position (Brown et al., 2011) for known catalog objects which further contributes to errors in
the found optimal apertures.

Method #2 fits an image model to the scene and can thereby update the catalog targets’ po-
sitions and brightnesses. It then calculates the signal flux for each pixel in the mask based on
this model, which is then used as the numerator in the SNR ratio. Note that, although the image
model exploits the existing PRF models, this is not PRF photometry per se, as we are not gener-
ating light curves from the PRF model but merely using the modeled image for the numerator in
the SNR calculation.

The optimal aperture Method #2 algorithm includes a multi-step process. For each cadence,

1. The PRF model is fit to the pixel scene using the catalog as initial values and then determines
the contribution to the pixel flux from each catalog object plus the residual background. A
description of the image modeling is given in Subsection 7.4.1 below.

2. The target center pixel is found based on the PRF model fit and this pixel is labeled as the
first pixel.
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3. The pixel adding order is found by calculating the SNR for each progressively larger aper-
ture size and always choosing the next pixel that increases the SNR the most. This will
order the pixels by their contribution to the SNR.

4. The peak in the SNR curve is found using Equation 7.3 below; this is the SNR-maximized
optimal aperture for this cadence.

This part of Method #2 is very similar to Method #1 except for the use of real data. So, instead
of using Equation 7.1, here we compute the SNR on a per cadence basis using the following
equation:

SNRk =

∑k
i fi√

k
(
ν2

read + ν2
quant

)
+
∑k
i yi

, (7.3)

where f is the target image fit to the PRF model (as given in Equation 7.4 below), y is the actual
pixel data including all background (this is the shot noise term), the other two terms are the
non-shot noise (read noise & quantization noise) as computed in Section 7.3 and i is over each
pixel in the aperture of size k. Note that the calibrated pixel data produced by the calibration
(CAL) module are used (i.e., corrected for bias, flat-field, etc.). When ordering the pixels there
is no requirement for symmetric apertures and there can be holes in the aperture; however the
apertures must be contiguous in the 4-connected sense (i.e., each pixel in the aperture has a solid
edge in contact with at least one other pixel in the aperture).

We now have an optimal aperture for each cadence. The Kepler Mission pipeline creates
photometric light curves using simple aperture photometry, which means a single aperture is
used for each quarter. There are different ways we can construct the single optimal aperture and
we find two apertures directly from this SNR-optimized, per-cadence aperture. The first is a
95% union of each cadence’s aperture. That is to say, a pixel is included if greater than 5% of the
cadences include that pixel in its optimal aperture. The other is a 50% union, or median aperture
over all cadences. For targets with small centroid motion the median aperture is optimal since it
finds the “core” pixel array containing the signal. The median is also better than the mean at not
being skewed by transient blips in the centroid position. The median aperture therefore robustly
removes outlier cadences. When there is large motion however, the “core” aperture found with
the median will clip too much of the flux far from the center of motion, while the 95% union
aperture is better at accounting for the “smear” of the flux over the larger pixel array.

By ordering the pixels as described above, the number of possible apertures in the N-pixel
mask is reduced from 2N − 1 (all possible subsets of pixels minus the empty set) to N . With
this ordering we can therefore afford to compute the much more costly estimate of Combined
Differential Photometric Precision (CDPP, Jenkins et al., 2010) for each of the N candidate
apertures to find the aperture with the lowest CDPP. This CDPP-optimized aperture is discussed
in Subsection 7.4.2.

7.4.1 Modeling Target Masks

The optimal aperture selection is determined by separating the flux contribution of the target star
from that of other sources so that we can disentangle the numerator, or information, from the
denominator, or noise, in the SNR. An accurate model of image formation enables this decom-
position of background-subtracted pixel flux measurements into contributions from each point
source in the instrument’s FOV. Our model consists of a scene description comprising the set
of known sources s = {s1, s2, . . . , sN} with celestial coordinates (αn, δn) and magnitudes, a
model of background flux, a model of image motion on the focal plane and a model of the PRF.
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We model the calibrated mean flux f at each pixel p during cadence c as a linear combination
of PRF values for each source plus a background model,

f(p, c) = fbkgnd(p, c) + β(c) +

N∑

n=1

Fn(c)P̂RF (p, xn(c), yn(c)). (7.4)

The total flux Fn due to source n is distributed among pixels according to the normalized PRF,
referred to here as P̂RF , which is obtained by evaluating the PRF over an 11-by-11 pixel grid
centered at x, y and dividing pixel p by the sum of evaluated pixels. For more details on evalu-
ating the PRF the reader is referred to (Bryson et al., 2010a). The real-valued CCD coordinates
xn(c) and yn(c) are estimates of the mean photocenter of source sn during cadence c. Cen-
troid estimates are obtained from a polynomial model of image motion, which maps celestial
coordinates to CCD coordinates,

xn = Px(αn, δn) (7.5)
yn = Py(αn, δn). (7.6)

Motion polynomials Px and Py for each channel and cadence are robustly fitted to images
of a spatially distributed set of ≈ 200 bright, unsaturated and uncrowded sources (Twicken
et al., 2010, see also Chapter 6). Background flux estimates fbkgnd are obtained from similarly-
constructed 2-D polynomial models fitted to the grid of background pixels collected from each
channel. The constant term β is included to account for any local bias in the background flux
estimates for the set of pixels being modeled.

An independent model is fitted to each set of pixels comprising a target mask. The scene
model for a given mask is constructed from entries in the KIC (Brown et al., 2011) UKIRT
(Lawrence et al., 2007) and Ecliptic Plane Input Catalog (EPIC)4 (Huber et al., 2016) and is ini-
tialized by ranking sources within 5 pixels from the edges of the target’s mask by their maximum
expected SNR contribution to any pixel in the mask. Sources whose maximum SNR values fall
below a threshold are discarded and up to 30 sources from the remaining set are admitted to the
scene model in order of rank. Since certain regions of the FOV may be densely populated with
dim stars, limiting the scene model in this way prevents wasting time and computing power on
sources that do not make significant flux contributions.

We fit model parameters Fn(c), βn(c), αn, and δn to the observed data by minimizing the
weighted sum of χ2 residuals over all pixels and cadences in the model. Fine-tuning the source
positions {αn, δn} in the fit compensates for both catalog errors and local biases in the motion
polynomials. Position fitting is enabled only for sources with centroids inside the target mask
that contribute sufficient flux, defined by a threshold parameter. We only allow for position
variations if the star is sufficiently bright and its expected centroid lies within the mask. If the
predicted centroid falls outside the mask, then the data would only capture the “skirt” of the PRF
and its position would be too poorly constrained for a fit to be reliable. The minimization is
constrained such that source flux is non-negative and perturbations, ∆n, to catalog positions are
smaller than 1.5 pixels. The purpose of the fitting of ∆n is to identify and correct errors in the
catalog. But we have found in some cases the fitter will drift far off in R.A. and decl. and so
the limit of 1.5 pixels (3.98 arcsec) is to inhibit these cases. A drift of greater than 4 arcsec is
considered a poor fit since catalog errors are not expected to be any larger (Brown et al., 2011).
Note that the 1.5 pixel limit is only to the catalog right ascension and declination {αn, δn}. The
motion polynomials can still allow for greater centroid motion than 1.5 pixels across the CCD,
which is not uncommon for K2 data. Also note that, while fitting Fn and β is a linear problem,
fitting source positions {αn, δn} is inherently nonlinear. We address the two components of

4EPIC is hosted at MAST (http://archive.stsci.edu/k2/epic/search.php).

http://archive.stsci.edu/k2/epic/search.php
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the fit separately in an iterative scheme. We use a Levenberg-Marquardt algorithm to optimize
the perturbation of source positions, while the non-negative least squares method in (Kim et al.,
2013) is used to fit the flux model of Equation 7.4 for a given perturbation,

minimize (w(~∆) + 1)

P∑

p=1

C∑

c=1

χ2(p, c; ~F (c), β(c), ~∆) (7.7)

subject to Fn(c) ≥ 0,∆n ≤ ∆max

and where

χ2(p, c) =
(fobserved(p, c)− fmodel(p, c))2

σ(p, c)
. (7.8)

Measurement uncertainties, σ(p, c), are obtained from CAL along with calibrated pixel flux,
fobserved. The heuristic weighting function, w(~∆), in Equation 7.7 prevents source positions
from converging on the same peak in the data by increasing as sources move toward one another
from their catalog positions. Treating each source as a charged particle of like sign, we compute
the potential energy of the source configuration defined by the catalog as well as that of the
perturbed configuration (catalog + ~∆). If the energy of the perturbed configuration is greater
than the catalog configuration thenw(~∆) is given the value of the difference (perturbed - catalog).
Otherwise it is set to zero. By basing the weight on the energy increase, we penalize solutions in
which multiple stars tend toward the same position without penalizing solutions that agree with
the catalog. An illustration of the model fitting process is given in Figure 7.2.

The fit yields an initial light curve estimate for the target star as well as estimates of errors
in its catalog position and magnitude. The light curve estimate constitutes the numerator of the
SNR estimate in Equation 7.3 used for establishing the optimal aperture and pixel adding order.
The quantities Fn(c), αn, and δn can be used to identify errors in the Kepler KIC, UKIRT and
EPIC Catalogs.

7.4.2 Optimizing the Aperture for Photometric Precision

SNR is a very simple and fast calculation. One can easily calculate it for every pixel combination
and find a pixel adding order in a tractable amount of time, even for large apertures. However,
if planet transit finding is the primary science goal, as it is for the Kepler Mission, a better
metric to optimize the aperture is Combined Differential Photometric Precision (CDPP). Simply
speaking, CDPP is an estimate of how well a transit-like signal can be detected in a stellar
light curve (Jenkins et al., 2010). A 6-hour CDPP of 100 part-per-million (ppm) means that
a 100 ppm 6-hour transit signal has a detection statistic of 1 σ. CDPP is a significantly more
sophisticated calculation than SNR, so we cannot afford to calculate it for a large number of
candidate apertures. Fortunately, in Section 7.4 we have already described a pixel adding order
per cadence. But a further step is first needed since CDPP is calculated on a flux time series, not
on individual cadences, Therefore, a single “averaged” pixel adding order over the entire quarter
is needed. This single “average” pixel adding order gives us a limited set of apertures where we
can compute CDPP. We calculate the “average” pixel adding order by taking the “mode”, or most
frequently occurring values, of the pixel adding order per cadence, ensuring that every pixel is
only included once in the averaged pixel adding order. Once we have this order, we begin with
the center pixel (first pixel in the pixel adding order) and generate a simple aperture light curve.
CDPP is then calculated for each sequentially larger aperture using the averaged pixel adding
order.

The calculation of CDPP is explained in detail in Jenkins et al. (2010, see also Chapter 9). Cal-
culating CDPP for all 14 pulse durations used in the planet transit search would be prohibitively
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expensive here. The performance benchmark for Kepler is a 6-hr CDPP on a 12th magnitude
dwarf star. We therefore restrict ourselves to computing a 6-hour transit duration CDPP. Also
considered is that the total flux in the aperture changes as we increase the aperture size, which
will directly change the absolute CDPP values. We therefore median normalize the light curves
to place each aperture on equal footing. The CDPP thus computed is a time series giving the
detection statistic for each cadence. We take a robust root-mean-square (rms) value of this time
series to obtain a single CDPP value as a function of aperture size.

Figure 7.2 A single cadence model of an actual
Kepler target pixel mask. The image model is
constructed from a background model, a normalized
PRF model evaluated for each source, and estimates
Fn of the total electron flux contributed by each
source. The celestial coordinates (αn, δn) of each
source are mapped to CCD coordinates (xn, yn) by a
polynomial model of image motion. Note that in this
example the centroid of source s1 lies slightly outside
the mask, but it still contributes significant flux to
pixels inside the mask. Also note that the color spaces
of the component images have been stretched to aid
visualization. From Figure 1 in Smith et al. (2016).

CDPP is dangerous to use by itself to find
the optimal aperture. If, for example, a back-
ground object is brighter than the target, then
the CDPP of an aperture centered on the back-
ground object will very likely be less than one
centered on the target, and the aperture will
grow to engulf the brighter background ob-
ject. The SNR, on the other hand, is very
robust against background contamination, the
numerator in the SNR being purely from the
modeled target star. Any contamination will
only decrease the SNR value. A combina-
tion of the two metrics can therefore simulta-
neously exclude background objects and op-
timize for planet detection. We combine the
two and find k to minimize

C̃DPPk −
(
SNRk − SNR

) σSNR

σCDPP
, (7.9)

where C̃DPPk is a smoothed CDPP curve for
an aperture comprising k pixels. The smooth-
ing is necessary since the CDPP measurement
has more scatter than the SNR curve, which
is typically very smooth. σSNR and σCDPP are
the variance in the SNR and CDPP curves, re-
spectively, and the ratio of these scales the
SNR curve to the same range as the CDPP
curve so that they are given equal weight in
the optimization. SNR is the median SNR
value over aperture sizes k. The minimum
of the above curve is chosen and this is the
CDPP-optimized aperture.

7.5 Selecting the Best Aperture using CDPP and Logistic Regression

We have now found four apertures:

1. Pure PRF image model-derived (Method #1)

2. Real pixel data-derived SNR-optimized Median

3. Real pixel data-derived SNR-optimized Union

4. Real pixel data-derived CDPP-optimized.
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Each of these apertures can yield better performance for a subset of Kepler targets. Since transit
signal detection is the primary goal of the Kepler Mission, we principally select the optimal
aperture based on CDPP. An estimate of the uncertainty in the CDPP measurement is used to
bias the selection to just apertures 2 – 4. This is because we believe an aperture selected using
flight data will be superior in most cases to a purely model-based aperture. So if we are within
the uncertainty in the measurement, we will pick the Method #2 aperture. However, in certain
cases, the data-derived aperture can fall into a local minimum during the optimization procedure
and not identify the true optimal aperture, hence the model-based aperture (Method #1) is still
considered, which has more consistent and robust behavior (by virtue of it being based on a
synthetic model).

For about 0.5% of targets, Method #2 has been shown to be problematic, in spite of it having a
lower CDPP. CDPP is agnostic to whether or not the proper target is chosen. For example, if one
of the four apertures incorrectly centers on a background object that is brighter than the target
then the CDPP metric could select that aperture. Method #1, on the other hand, is more robust to
these cases, but at the expense of overall poorer apertures. So for the 0.5% of targets we identify,
reverting to Method #1 is a move to revert to the more conservative aperture. A logistic regressive
heuristic model was developed to help identify these corner cases. We identified several key
metrics that can be used in aggregate to identify the bad corner cases including:

1. Net change in flux in the aperture between Method #1 and Method #2,

2. Fractional change in aperture between Method #1 and Method #2,

3. Fractional change in flux between Method #1 and Method #2,

4. Ratio of total mask used in the Method #2 aperture, etc.

5. Fraction of total mask used in the Method #2 aperture,

6. etc.

Any one of these predictors is not necessarily sufficient to identify poor performance. Logistic
regression (see James et al., 2014), was therefore used to identify the appropriate combination
of predictors. To find the proper regressive model, a training set is needed to “train” the model.
Each of the metrics was calculated for all targets on Kepler CCD module channel output 2.1
for quarter 13, 1358 targets in total. The targets were ranked by response to each of the metrics.
Then for each target in order of rank, the diagnostic information generated by the aperture finding
algorithms (an example of which is shown in Figure 7.4 and Figure 7.5) was examined to identify
poor aperture selection in Method #2. Targets continued to be tallied down to lower predictor
response until nearly all remaining Method #2 apertures appeared to be good. This resulted in
a training set of 100 targets, with 10 having incorrectly chosen one of the Method #2 apertures.
Multinomial Logistic Regression was then used to model a response p on the predictors:

p(X) =
eβ0+β1X1+···+βNXN

1 + eβ0+β1X1+···+βNXN
(7.10)

where X = (X1, . . . , XN ) are the N predictors and β = (β0, . . . , βN ) are the coefficients plus
intercept β0. The coefficients were fitted using the maximum likelihood, and the p-values for
the identified coefficients were then used to rank the suitability of each of the predictors. After
a couple iterations of dimensional reduction, we found that the three predictors, 1, 3 and 4 from
above, are most effective at identifying poor aperture selection. The other predictors, such as the
fractional change in aperture, were found to be poor predictors and we zeroed their coefficients,
β2, etc. This zeroing resulted in better separation in the prediction value p(X) between good and
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Table 7.1 Table of Confusion for identifying poor aperture selection.

True Positive False Negative
22 3

False Positive True Negative
18 3891

bad apertures5. Several other predictors were also tried but not listed above, as none were found
to enhance the separability of good and bad apertures.

The prediction p(X) is a real function spanning [0, 1] so we must determine the prediction
descrimination threshold for poor apertures, τ . The threshold value that minimizes false neg-
atives was chosen, the logic being whenever an aperture found by Method #2 is deemed poor,
we error conservatively by falling back on the more robust Method #1 aperture. Once our pre-
dictive model was trained, we used two different CCD channels, 7.3 and 13.2, to test the model
(3934 targets in total). These two channels have different image characteristics than the training
channel, 2.1, and so they are good channels with which to test the robustness of the method. The
three predictors and coefficients were evaluated in Equation 7.10 to return a prediction value, and
when p(X) > τ the target aperture was flagged as poorly chosen and we reverted to Method #1.
The table of confusion for the test data is given in Table 7.1.

We see that the total number of truly poor apertures is 25
3934 ≈ 0.5% and we correctly identify

22 of those, leaving only 3 or about 0.05% not identified. The 18 false positives are not consid-
ered problematic because, as explained above, we choose to error conservatively. This logistic
regressive method can therefore correctly identify 90% of the small number of poor apertures,
reducing the total number of poor apertures down to only 0.05%, which translates to only about
1 target per CCD channel, or ∼ 75 total out of the ∼165,000 targets processed by Kepler.

7.6 Per Cadence Flux Fraction and Crowding Metric

No aperture will collect all the flux from any one object, the non-finite PSF insists that some flux
will spill over any finite aperture. We therefore calculate a Flux Fraction in Aperture, or Flux
Fraction for short, to quantify the fraction of target flux in the photometric aperture. Likewise,
background objects will inevitably spill into the aperture to some degree. The Crowding Metric
gives the fraction of flux in the aperture that is due to the target star. Prior to the introduction
of PA-COA in SOC 9.3, the mission was limited to a single Flux Fraction and Crowding Metric
value per quarter. Since a target image model can be computed for every cadence, a Flux Fraction
and Crowding Metric can now be computed per cadence. These per cadence values can be used
to further reduce systematic trends in the data. However, we have not yet incorporated this
information into the systematic error removal in PDC (see Chapter 8).

7.7 Saturated Pixels

Very bright targets result in CCD pixel saturation. For saturated targets the image modeling
in Subsection 7.4.1 does not function properly because the PRF model does not account for
saturation. We therefore always choose Method #1 for these targets and use the purely synthetic
image model. Saturated charge is spilled along columns, with the fraction of charge spilled
up and down determined by the saturation model mentioned in Section 7.3. The pixel values
are set to the saturation value in the synthetic image created in Method #1, and the aperture is

5This observation emphasizes the common adage that more variables in a model does not necessarily produce a better
model!
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computed. Ground tests indicate that the well depth and saturation spill direction varies across
the focal plane (Van Cleve & Caldwell, 2016), including variation within a channel. Therefore a
buffer is added to the optimal aperture for saturated targets. This buffer is applied equally up and
down the column and is added to the target’s optimal aperture, but the pixel values themselves
are not changed. If the buffer size is smaller than the optimal aperture in either direction, then the
buffer size is ignored in that direction. In principle, there is no reason the saturation model cannot
be used in the image modeling in Subsection 7.4.1 and future improvements could incorporate
this model.

7.8 Summary and Example of Performance

Optimizing the Kepler Aperture
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Figure 7.3 Flow chart showing the steps in finding optimal apertures in Kepler data. From Figure 2 in
Smith et al. (2016).

In Figure 7.3 we see a general flow chart of all the steps in aperture selection discussed in
this paper. The purple box shows Method #1 and the aquamarine box shows Method #2, which
loops over all cadences. We find four different apertures in total, force contiguity of the apertures
and finally select the best. Per cadence Flux Fractions and Crowding Metrics are then computed
for the chosen aperture. In practice, for Kepler data, we do not actually loop over all cadences
but just every tenth cadence.We found no degradation in performance and yet achieved a nearly
factor of ten decrease in processing time, allowing the pipeline to continue to finish in a timely
manner. The image motion in Kepler data is a small fraction of a pixel per cadence and so every
tenth cadence is sufficient to capture the full motion. As an example, Figure 7.4 shows the four
found apertures for Kepler ID 7846328. The pixel image colors give the background-removed
pixel data in this target’s mask. The found target center on each cadence is plotted as red dots
(the centroid motion is not large for this example) and the median center for each background
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Figure 7.4 The mask scene, fitted PRF image and four found apertures for Kepler ID 7846328. The color
bar is in units of electrons per second. From Figure 3 in Smith et al. (2016).

object is a black dot. In this example we see two dim background objects with black dots and one
bright background object with a center just off the mask. The four found apertures are labelled as
crosses, x’s, circles and diamonds as referenced in the legend. The contour lines show isophotes
of the target object’s image model, which is used as the numerator in Equation 7.3. The pixel
data (with background NOT removed) are used in the denominator of the SNR. The aperture
selection process is illustrated for this same target in Figure 7.5. The upper right plot shows the
SNR versus aperture size using the average pixel adding order with a maximum clearly present.
Note that the actual SNR-optimized aperture is found for every cadence, but here we just plot
the average SNR over all cadences. The error bars represent the standard deviation in the SNR
curves over all cadences. This target has little motion or stellar variability so the SNR curve is
very similar for all cadences. The lower right plot shows calculated CDPP versus the number of
pixels in the aperture in the average pixel adding order as blue dots and the smoothed CDPP curve
as a magenta line. The cyan curve is the combined CDPP and SNR curve as in Equation 7.9.
Combining the CDPP with SNR allows for a single minimum to be more pronounced. The
magenta curve, on the other hand, has two potential local minima near zero and 32 pixels. Neither
would be a proper aperture for this target. The dip in the magenta CDPP curve beginning at pixel
index 30 is due to the aperture engulfing the bright background object as shown by the pixels
labeled “30-32” in Figure 7.4. If the pixel mask for this target was even larger and the CDPP
curve extended out to cover the entire bright background object then the minimum in the CDPP
curve would include both objects, as occurs in many other target examples. The upper left plot
shows the photometric light curve for each of the four apertures. In this case the Method #1 and
median SNR-optimized apertures contain the same pixels (as also seen in Figure 7.4) and so the
blue curve lies directly under the red. The legend contains the calculated rms CDPP for each
of these four light curves and the CDPP-optimized light curve (cyan curve) is the clear winner
at 60 ppm, versus 91 ppm for the Method #1 aperture. We can also see that the cyan curve
has dramatically reduced instrumental systematics versus the other curves and so it is the clear
superior aperture and light curve. Systematic features in the data comparable in length and size
to transits will obscure transit signals and therefore increase CDPP. It is therefore reasonable that
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Figure 7.5 The aperture fitting diagnostic figures for Kepler ID 7846328. From Figure 4 in Smith et al.
(2016).

the CDPP optimized light curve will also have minimized systematics. The three-day reaction
wheel heater cycle visible in the black and red curves is a good example of a systematic signal
that can obscure a transit signal. One may suspect that the CDPP-optimized aperture will always
win the CDPP test. If we were optimizing the aperture purely on CDPP then this would be the
case. But as discussed above, finding a global CDPP minimum would require 2N −1 evaluations
of CDPP for a pixel mask of size N . This is an insurmountable computational endeavour for an
automated pipeline. We therefore must reduce the number of CDPP computations, which we do
by finding the average pixel adding order. Doing so risks not finding the true optimized adding
order and therefore the CDPP-optimized aperture can drift off in aperture space and not find the
best aperture. We also have to take care not to engulf background objects, further complicating
the CDPP optimization. The heuristic logistic regressive model will also revert to the Method #1
aperture in some cases. Considering for these caveats the actual aperture used on all targets is a
combination of the four found apertures. For quarter 13, over 166,791 targets, the breakdown for
aperture selection is

Pure PRF image model derived = 7.6%

Real pixel data derived SNR-optimized Median = 21.3%

Real pixel data derived SNR-optimized Union = 22.5%

Real pixel data derived CDPP-optimized = 48.6%.

Of the 7.6% that use Method #1, 0.9% are due to the logistic regressive heuristic model identify-
ing when the Method #2 aperture is poor despite it having the lowest CDPP. Note also that 21.3%
chose the SNR-optimized median aperture over the CDPP-optimized aperture. This is again due
to the CDPP-optimized aperture not being optimized solely on CDPP, and also because many
times the SNR- and CDPP-optimized apertures have very similar CDPP values. The fractional
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Figure 7.6 The chosen aperture for Kepler Quarter 13 over the Field of View. The aperture selection is
evenly distributed over the FOV with a strong preference for the CDPP-optimized aperture. From Figure 5
in Smith et al. (2016).

change in aperture between Method #1 and Method #2 does have an annular shape across the
FOV, where targets further away from the ring of best focus require more correction. This is in
agreement with expectations. We rely on a static PRF model that was derived from data acquired
in a particular state of focus during commissioning in May 2009. Our image models are there-
fore generally better in regions that more closely match that state. A graphical representation of
the selected aperture over the FOV is shown in Figure 7.6. We see the dominance of the CDPP-
optimized aperture selection and an even distribution over the FOV for all aperture types but with
a slight preference for Method #2 apertures near the center of the FOV. There are no “Haloed
Saturated” apertures, this aperture type is reserved for K2 data as discussed in Section 7.9.

The full Kepler data set of all 18 Quarters of data has been reprocessed using the newer
aperture selection method discussed in this paper. Figure 7.7 shows a histogram of the overall
improvement in CDPP for simple aperture photometry light curves using the newer method (the
old method being using solely Method #1). The revised apertures reduce CDPP for the vast
majority of targets and quarters, with 77% showing an improvement, 13% showing some degra-
dation, and 10% showing no change. The majority of those showing no change is due to the
algorithm choosing Method #1. In 14% of cases CDPP is reduced by 10% or more. The next
component in the Kepler Science Data Processing Pipeline is PDC (Stumpe et al., 2012, see also
Chapter 8) so light curves generated with simple aperture photometry in PA are not the final light
curves generated by the Kepler Mission. In PDC we remove systematic trends in the data and so
the CDPP values generated in PA are much larger than those seen by the transiting planet search
algorithm. But with the improvements in this paper, PDC now begins with lower noise light
curves than before. The resultant PDC light curves now have even lower CDPP, which directly
translates into better sensitivity to transit detection in TPS. We have shown that the decrease in
CDPP does indeed propagate through PDC.

7.9 Application to K2 Data
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Figure 7.7 Histogram of fractional CDPP
improvement when comparing light curves produced
from the new aperture method with those produced
from the original Method #1. Positive values indicate
improved photometric precision. This histogram is
over all Kepler targets and each target is counted
separately for each quarter. That is, the sum of
the histogram is (number of targets)×(number of
quarters). From Figure 6 in Smith et al. (2016).

In the K2 Mission (Howell et al., 2014), pe-
riodic thruster firings are used to compensate
for the loss of two of the four reaction wheels.
These firings occur up to once every 6 hours,
or every 12th long cadence, and the resulting
barrel axis roll motion can be well over 4′′ for
the outer CCD channels. The roll drift and
thruster firing repeats produce a character-
istic “sawtooth” pattern in uncorrected light
curves. Method #1 as implemented is unable
to account for the K2 roll motion and so the
Method #1 apertures are typically of low qual-
ity for the higher motion targets. Method #2,
in contrast, can be directly applied to the K2
Mission data and there are very few changes
to the algorithm. To properly account for the
large, fast motion we must find the aperture on
every cadence. There are no changes in how
the optimal aperture is selected but due to this
large motion the union aperture is most of-
ten found to have the lowest CDPP as shown
in the following aperture selection breakdown
for Campaign 4 with over 17,278 targets:

Pure PRF image model derived = 34.4%

Real pixel data derived SNR-optimized Median = 4.3%

Real pixel data derived SNR-optimized Union = 53.3%

Real pixel data derived CDPP-optimized = 8.0%.

Of the 34.4% that chose Method #1, 19.4% are saturated or custom targets where Method #1
is always chosen. This leaves only 15.0% where the Method #1 aperture was considered better
than the ones selected by Method #2. A graphical representation of the selected apertures over
the FOV is shown in Figure 7.8. We see the annular dependence where targets further from
the boresight, and where the roll motion is larger, strongly prefer the union aperture. Near the
center of the FOV, where the roll motion is smaller, the Median and CDPP apertures are more
preferentially chosen. For saturated targets and those with large roll motion, Method #1 will
not always collect all relevant pixels. We therefore add a two pixel halo around each Method
#1-derived saturated target aperture, these targets are labeled as “Haloed Saturated” in the figure
and are evenly distributed. Notice that the Method #1 apertures are clustered. The vast majority
of these are custom targets where the Method # 1 aperture is always chosen and custom targets
tend to be clustered in regions of interest to specific Guest Observer Office funded projects

To illustrate the performance on K2 data, Figure 7.9 and Figure 7.10 give the pixel scene,
apertures and diagnostic curves for EPIC ID 204115036 processed during Campaign 2 on module
output 2.3. These two figures are directly analogous to the example figures given above for
Kepler data. Here, we clearly see the much larger motion (red centroid dots) in the K2 Mission.
The Method #1 aperture in Figure 7.9 does not properly account for the large roll motion and
therefore finds an aperture (the plus symbols) that is slightly off the target centroid. The Method
#2 median and CDPP-optimized apertures (the x’s and circles, respectively) do find the proper
center but do not fully account for the motion. The union aperture, however, is both properly
centered and accounts for the full motion of the target centroid. Three bright background objects
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Figure 7.8 The chosen aperture for K2 Campaign 4 over the FOV. The annular dependence is due to the
large roll motion about the instrument barrel axis. From Figure 7 in Smith et al. (2016).

are very near to the target. Care must be taken that these objects do not contaminate the target’s
optimal aperture. In Figure 7.10 we see the diagnostic curves. Note that the “average” SNR
curve no longer peaks at the SNR-optimized median aperture size (i.e., the red circle in the
upper right plot is not on the blue curve peak). This is indicative of high centroid motion and
that the SNR-optimized median aperture is changing over time. Therefore the “averaged” SNR-
optimized curve will not account very well for the motion nor find a good optimal aperture. This
can also be seen in the large error bars that represent the standard deviation in the SNR curves
over all cadences. The spread is large compared to the sharp peak in the curve. We also see in the
lower right plot that the (magenta) CDPP curve has minima as we engulf the background objects,
whereas the combined CDPP and SNR curve does not (cyan curve). But neither the median nor
the CDPP-optimized aperture is the best aperture. The upper left plot shows that the union
aperture has, by far, the lowest CDPP and is the best choice. The large image motion relative
to the optimal aperture results in the uncorrected light curves, flux fraction and crowding metric
time series showing a strong “sawtooth” behavior. We could increase the aperture size until no
sawtooth is present, but doing so would cause the SNR to decrease and the broad-spectrum noise
to increase to unacceptable levels; we would simply be trading a distinct noise source for broad
spectrum noise. The distinct sawtooth signal can be removed in PDC, whereas broad spectrum
noise is very difficult to remove. We therefore are best served by minimizing the noise at the
expense of a stronger sawtooth signal.

The above discussion invites the natural conclusion that adaptive apertures that adjust on
every cadence might be optimal for K2 data. The authors do not disagree with this observation.
Unfortunately, the K2 Science Data Processing Pipeline is an adaptation of the Kepler Science
Data Processing Pipeline, which was committed to a single fixed optimal aperture per quarter.
The time and resources were not available to modify the pipeline to allow for adaptive apertures.
Given this constraint we have found smaller apertures to be generally better.

In Subsection 7.4.1 we mentioned that the fitted image model parameters can be used to
identify errors in the stellar catalogs. Two examples of this were found in K2 Campaign 4
processing. There is a group of targets whose measured flux is more than twice that expected
from their EPIC magnitudes. Figure 7.11 shows that these targets fall into spatial groups that
are aligned with right ascension and declination (shown as blue markers), rather than focal plane
coordinates, strongly indicating that the cause of this anomaly is catalog errors. The source of this
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Figure 7.9 The mask scene, fitted PRF image and four found apertures for EPIC ID 204115036. From
Figure 8 in Smith et al. (2016).
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(2016).
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error is unknown and is not correlated with any particular target type. The other error identified
in the figure is the scatter of red markers indicating targets whose brightness is overestimated.
These targets are strongly correlated with “JHK” and “J” stars which were discovered to be K/M
dwarfs that are not well represented in the data used to create the conversion from JHK/J to
Kepler magnitude (Howell et al., 2012). Method #2 attempts to correct for these errors and find
a true optimal aperture, but the PRF modeling can only go so far and so identifying these catalog
errors is of benefit to the mission. Star catalogs generated for future campaigns will try to account
for and fix these errors.

Figure 7.11 All C4 target stars plotted in celestial coordinates, colored by their magnitude inferred from
their observed flux minus their Kepler magnitude from the EPIC. There are two square-like regions and a
line of blue markers, indicating stars whose inferred Kepler magnitude is about a magnitude smaller than
their catalog magnitude, indicating that these stars are about a magnitude brighter than expected. The red
markers are consistent with the population of “JHK” or “J” stars whose brightness is overestimated. From
Figure 10 in Smith et al. (2016).

7.10 Conclusions

The above described optimal aperture finding method has been shown to provide superior pho-
tometry for Kepler data as summarized in Figure 7.7. We can now also find a per cadence Flux
Fraction in Aperture and Crowding Metric, providing a potentially superior systematic error re-
moval; however, the latter was not implemented in the pipeline. The method further allows us to
identify errors in the Kepler and K2 input catalogs.

The new approach has proven robust at finding apertures in K2 data and helping mitigate the
larger motion-induced systematics in the photometry. The older Method #1 does not perform well
with the larger motion and so the new method is absolutely critical for extracting high-quality
photometry with K2. Dynamic and moving apertures could potentially provide even better pho-
tometry but the mission was not provided the resources to implement this further improvement.
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The next processing component in the Kepler Pipeline is PDC, which has been modified for use
with K2 data (Van Cleve et al., 2016). It has been shown to remove up to 99% of the “sawtooth”
systematic pattern in the data. Nevertheless, improvements to the PDC component of the K2
Pipeline is probably the area where the most improvement in photometry could be achieved.

As with any working method, improvements could still be made. One relates to how we find
a single aperture from the per cadence optimal apertures in Equation 7.3 of Section 7.4. As of
now we find two apertures: 1) a 50% union, or median aperture, and 2) a 95% union. Instead,
we could allow the union percentile to be a parameter that we optimize versus SNR or CDPP.
This would not require us to first find an average pixel adding order, which introduces an added
approximation and sometimes, an awkward pixel order. Another potential improvement is to
identify and fit for uncatalogued background objects. As of now, we use the KIC, UKIRT and
EPIC α, δ, and magnitude with the motion polynomials (Equation 7.6) of each object to model
the scene and image motion. We do know dim, uncatalogued background objects do exist and can
contaminate the scene fitting. A method to auto-find these objects would aid in more complete
scene modeling A final improvement could be a better characterization of the intra-pixel response
variations. The PRF model obtained during commissioning has been proven to perform well for
Kepler; however, we do know it does not capture all variations in the flux in the presence of
motion and thermal variations. Commissioning and PRF modeling is critical to any CCD based
observations, and the limits of the PRF model are probably a limiting factor in the performance
of our method.
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Abstract. Kepler provides light curves for ∼200,000 stars with unprecedented precision. How-
ever, the raw data as they come from the spacecraft contain significant systematic and stochastic
errors. These errors, which include discontinuities, systematic trends, and outliers, obscure the
astrophysical signals in the light curves. Correcting these errors is the task of the Presearch
Data Conditioning (PDC) module of the Kepler data science pipeline. The completely new
noise and stellar variability regime observed in Kepler data poses a significant problem to stan-
dard cotrending methods. Variable stars are often of particular astrophysical interest, and the
preservation of their signals is of significant importance to the astrophysical community. PDC
first utilizes an overcomplete discrete wavelet transform, dividing each light curve into mul-
tiple channels, or bands, thereby allowing for a good separation of characteristic signals and
systematics. The light curves in each band are then corrected utilizing a Bayesian maximum a
posteriori (MAP) approach, where a subset of highly correlated and quiet stars is used to gen-
erate a cotrending basis vector set, which is in turn used to establish a range of “reasonable”
robust fit parameters. These robust fit parameters are then used to generate a Bayesian prior and
a Bayesian posterior probability distribution function (PDF) which, when maximized, finds the
best fit that simultaneously removes systematic effects while reducing the signal distortion and
noise injection that commonly afflicts simple least-squares (LS) fitting. A numerical and empir-
ical approach is taken where the Bayesian prior PDFs are generated from fits to the light-curve
distributions themselves. In addition to the wavelet-based MAP approach to systematic error
removal, PDC applies several other corrections to the data as described herein. This chapter is
largely an updated version of Stumpe et al. (2012).

8.1 The Kepler SOC Pre-Search Data Conditioning Pipeline Module

In order to search for planets, the Kepler Pipeline must first produce systematic error-corrected
light curves. As described in the previous chapters in Part II (see Figure 8.1), the raw pixels are
first calibrated at the pixel level by the Dynablack (DYN) and Calibration (CAL) modules, and
then photometry and astrometry are extracted from the calibrated pixels by Photometric Analysis
(PA) component. The final step to produce light curves is performed in the Presearch Data
Conditioning module (PDC), where signatures in the light curves that correlate with systematic
error sources from the telescope and spacecraft, such as pointing drift, focus changes, and thermal
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transients are removed. Additionally, PDC identifies and removes the Sudden Pixel Sensitivity
Dropouts (SPSD) that result in abrupt drops in pixel flux with short recovery periods. This is
often preceded immediately by a cosmic or energetic solar ray event, and is sometimes followed
by an exponential recovery over the course of a few hours, but usually not to the same flux
level as before. Such step discontinuities are identified separately from those due to operational
activities, such as safe modes and pointing tweaks, and are mended using a sophisticated method
described in a companion paper (Kolodziejczak & Morris, 2012). PDC also identifies residual
isolated outliers and fills data gaps (such as during intra-quarter downlinks) so that the data
for each quarterly segment are contiguous when presented to later pipeline modules. Finally,
PDC adjusts the light curves to account for excess flux in the optimal apertures due to starfield
crowding as well as the fraction of the target star flux in the aperture to make apparent transit
depths uniform from quarter to quarter, as the stars move from detector to detector with each roll
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Figure 8.1 PDC in the context of the architecture of the SOC. PDC identifies and removes time-varying
instrumental signatures appearing in the light curves produced by the Photometric Analysis (PA) module
prior to the transiting planet search (TPS). Additionally, PDC identifies and removes sudden pixel sensitivity
dropouts (SPSD) and isolated outliers. PDC also corrects the flux to account for the fact that each photometric
aperture fails to capture all the light from its target star, and to account for contamination due to other stars’
point spread functions leaking into the photometric aperture.

8.2 Introduction

With the area ratio of the Earth relative to the Sun being∼1×10−4, detection of transits of Earth-
like planets requires an unprecedented photometric precision of 20 ppm (Koch et al., 2010; Jenk-
ins et al., 2010a). The search for the transits is further complicated by the presence of systematic
errors in the photometric data, which occlude the transit signatures as well as other astrophys-
ical signals in the light flux series. The main causes for the systematic errors are changes in
the focus of the photometer (caused by intrinsic and extrinsic thermal variations), differential
velocity aberration, residual spacecraft pointing errors1, mechanical vibrations, and electrical in-
terference with other devices onboard the spacecraft (typically leading to moiré like patterns).
Here we report on the new Presearch Data Conditioning (PDC) module in the Kepler Science
Operations Center (SOC) Science Processing Pipeline, which is specifically designed to remove
temporally correlated systematic errors and other artifacts from the light curves prior to planet

1Kepler’s pointing stability is 0.009′′, 3σ on timescales of 15 min and greater.
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detection.2 The new PDC module, which has been completely rewritten for Kepler SOC 8.0 (the
official Kepler software release in August 2011), shows dramatically improved performance – in
particular at removing systematic trends while preserving stellar variability, and at detecting and
correcting flux discontinuities.

In this chapter we describe the architecture and algorithms of the Presearch Data Conditioning
module in the final software release, SOC 9.3, used to generate the legacy archival systematic
error-corrected Kepler light curves. PDC has been completely rewritten and replaces the previ-
ous SOC 7.0 PDC module documented in Twicken et al. (2010b).We will briefly describe the
different kinds of systematic errors typically encountered in the light curves, compare the main
systematic error cotrending3 algorithm of the current version with that of the old version, explain
the software architecture of the PDC module, and show real light curve examples of the vastly
improved performance of the new PDC module. Since one of the major improvements of this
version of PDC is the Bayesian maximum a posteriori (MAP) approach to cotrending, we will
also refer to the new version PDC first introduced in Kepler SOC 8.0 as “PDC-MAP”, and to
PDC pre-8.0 as “PDC-LS” (where LS stands for “least squares”), when comparing the two4.
Note that this chapter is largely based on Stumpe et al. (2012), Smith et al. (2012), and Stumpe
et al. (2014), with updates and revisions reflecting the final, as-built software.

8.2.1 Errors in the Light Curves: Tasks of PDC

Kepler’s light curves as they come from PA contain a variety of systematic and other errors,
which can occlude the astrophysical features in the light curves, and prevent detection of small
planet transits. These errors are caused by a variety of instrumental effects and span a wide range
of frequencies and amplitudes.

The highest amplitude errors (∼1%) result from a combination of Differential Velocity Aber-
ration (DVA) and long term focus changes, which can introduce low-frequency systematic errors
over the whole quarter as the orientation of the Sun with respect to the telescope varies as Kepler
orbits the Sun. Another source of strong systematic errors, typically with periods of hours to
days, are focus changes that are caused by thermal transients. Such temperature changes are usu-
ally observed during the recovery from planned or unplanned interruptions in the science data
collection. Unplanned interruptions include safe mode events and loss of fine point. Planned
events that interrupt science data collection are the monthly “Earth-points” and the quarterly
rolls during which Kepler points its high gain antenna (HGA) toward the Earth to downlink the
previous month of data. In addition, the spacecraft is rotated 90◦ about its boresight during the
quarterly breaks to keep the solar arrays and sunshade properly aligned towards the Sun and the
radiator that cools the focal plane electronics pointed away from the Sun (Haas et al., 2010).
Earth-points last about one day whereas quarterly rolls can take up to a few days if the space-
craft status is nominal. Temperature-change related focus changes can also be faster, such as the
intermittent modulation of the focus by ∼ 1 µm every 3.2 hours by a heater on one of the reac-
tion wheel housings, which was partially mitigated after quarter 1 (Q1 – Jenkins et al., 2012).
The magnitude of temperature-related effects on the focus has been found to be ∼2.2 µm per
oC (Jenkins et al., 2012). Fast modes in the systematic errors can also be caused by thermal
transients resulting from the desaturation of the reaction wheels on a three-day period and by

2PDC does not perform well for non-temporally correlated systematics that are unique to small numbers of stars such as
moiré pattern noise.
3In co-trending, time series representing systematic or instrumental signatures are projected out of the light curves alge-
braically. This operation is distinct from detrending where low-frequency signatures are removed by an arbitrary filter
designed to retain high frequency content.
4Note however that PDC-MAP and PDC-LS refer to the whole PDC module, rather than only the MAP or LS fitting
algorithms.
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pointing inaccuracies during the zero-crossings of the reaction wheels (due to enhanced rumble
during these episodes).

In addition to these systematic trends and modulations, the PA light curves suffer from local
errors such as outliers, discontinuities, Argabrightenings (Witteborn et al., 2011), gaps in the
data, and electronic image artifacts such as moiré pattern noise and rolling bands (see Chapter 4).
Further, there are also global corrections that have to be applied to the flux amplitude, such as
corrections for incompletely captured target flux (the flux fraction, see Subsubsection XIII of
Subsection 8.3.3) and excess light from neighboring stars into the aperture (crowding metric).
These effects are illustrated in Figure 8.2 and described in more detail below.

The task of the PDC module in Kepler is to identify and correct all these different kinds of
systematic errors, while preserving planet-transits and other astrophysical signals in the light
curves.

Figure 8.2 Examples for typical errors in PA light curves, which are corrected in PDC. A: long trend
(commonly due to DVA). B: thermal recovery, primarily an exponential recovery after an Earth-point,
quarterly roll, or safe mode. The corresponding gap of approx. 50 cadences can be seen right before the
recovery. C: fast oscillations (∼3-day cycle), such as from the reaction-wheel desaturation. D: outlier –
possibly a cosmic ray. E: discontinuity – a sudden pixel sensitivity dropout (SPSD), commonly caused by
radiation damage via cosmic rays or solar energetic particles. From Figure 2 of Stumpe et al. (2012).
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8.3 Architecture and Algorithms of PDC

8.3.1 Cotrending of Systematic Errors in PDC

The main component of PDC-MAP for removal of systematic trends in the light curves, and
arguably the most determinant factor for the significantly improved correction performance as
compared to PDC-LS, is the new cotrending routine based on a Bayesian maximum a posteriori
approach (DeGroot, 1970). In general, removal of systematic trends in Kepler data is based
on the assumption that the systematic error component in a light curve has a significant degree
of correlation with a set of other time series that can be exploited to identify and remove the
systematic error. For PDC-LS, this set of other time series was given by instrument readings on
the Kepler spacecraft, whereas for PDC-MAP correlations with other light curves are used. We
will give a brief review of the PDC-LS cotrending algorithm before describing the new PDC-
MAP algorithm introduced in Kepler SOC 8.0.

8.3.1.1 Cotrending in PDC-LS: Least squares fitting to ancillary engineering data – Stellar
Variability lost Removal of systematic errors in PDC-LS was previously performed based on
correlations with a set of ancillary engineering data. These data include the temperatures at the
local detector electronics below the CCD array and polynomials describing the centroid motion
of the targets from PA (Twicken et al., 2010b). This approach is based on the assumption that
systematic errors in the light curves can be explained by a combination of instrument effects that
are expressed in the engineering data and the motion of target centroids. A robust least squares
fit of each light curve to the design matrix constructed from these time series is performed to
identify and remove correlated signatures. For further details of the algorithm, see Twicken et al.
(2010a).

PDC-LS did a good job at at removing systematics in the light curves and allowed for many
of the plethora of new discoveries in planet detection (Borucki et al., 2010; Holman et al., 2010;
Doyle et al., 2011; Fressin et al., 2012; Lissauer et al., 2011; Welsh et al., 2012; Borucki et al.,
2012) and stellar astrophysics (Meibom et al., 2011; Beck et al., 2011; Stello et al., 2011; Chaplin
et al., 2011) based on Kepler data. However, it suffered from two deficiencies for a considerable
fraction of light curves.

First, the biggest problem observed with PDC-LS was overfitting of the data, which led to
removal of stellar variability – the corrected light curves of many stars appeared overly flat and
featureless. This overfitting was due to the least squares approach to cotrending the light curves.
With sufficiently many cotrending basis vectors5, coincidental correlations of instrument read-
ings with stellar variability happened frequently, and thus the stellar features in the light curves
were mistakenly identified as systematic errors and consequently removed. The Bayesian max-
imum a posteriori approach in PDC-MAP is specifically designed to prevent overfitting and in
fact solves this problem very well, as will be shown below. See Figure 8.3 for some examples
of the input light curve to PDC (the uncorrected flux output from PA), the (overfitted) output of
PDC-LS, and the (significantly improved) output of PDC-MAP. Note that the PDC-LS and PDC-
MAP light curves differ slightly in absolute magnitude, because the flux fraction correction (see
Subsubsection XIII) was performed differently in PDC-LS.

A second problem of PDC-LS was that high-frequency noise was sometimes injected by the
correction as an unwanted side effect of reducing the bulk root-mean-square (rms) deviation. A
self-check was in place to prevent too strong noise-injection, in which case PDC-LS rejected the
systematic error correction and instead returned a light curve where systematic trends were not
removed, but only other corrections (e.g. discontinuities, outliers) were applied. The fraction

5The cotrending basis vectors are a set of time series that describe the systematic errors and are used to remove these
systematic errors from the light curves by fitting the light curves against the basis vectors.
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Figure 8.3 Examples of light curves where the original PDC-LS overfitted the systematic trends and
removed stellar variability. In each of the three panels (1–3), top is the input to PDC (output from
PA), middle is PDC-LS (pre-Kepler SOC 8.0) using least squares cotrending, bottom is PDC-MAP using
maximum a posteriori cotrending. Example 3 also shows incomplete cotrending of smaller scale feature
in PDC-LS, as can be seen on the residual 3-day reaction wheel cycle signature (see Figure 8.2C). From
Figure 3 of Stumpe et al. (2012).
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of targets not cotrended at all was considerable. For instance, of all 162,926 targets observed
with Kepler during Q7, 25,411 (15.6%) light curves were not cotrended. The distribution of
non-cotrended targets per channel is displayed in Figure 8.4 and ranges from 7.7% to 25.4% per
channel. Figure 8.5 shows some examples of light curves that could not be corrected properly
with PDC-LS. The problem of noise-injection has been significantly reduced in PDC-MAP, as
can be seen in the bottom panels of these examples.

Figure 8.4 Fraction of targets per channel for which PDC-LS with least squares fitting to ancillary
engineering data failed (Q7 data).

8.3.1.2 Cotrending in PDC-MAP: Bayesian maximum a posteriori fitting to the ensemble of
light curves – Stellar Variability regained PDC-MAP uses a different approach to cotrending
out instrumental signatures than was used in PDC-LS in mainly two regards. First, instead of
employing ancillary engineering data, cotrending is performed against the ensemble of light
curves on the same channel. Secondly, rather than using a simple least squares fit, a Bayesian
maximum a posteriori (MAP) approach is used for fitting. Note that while this approach does not
use any engineering data explicitly, it is still based on the assumption that instrumental signatures
are the main cause for systematic errors in the data. Moreover, it assumes that these signatures
are highly correlated among targets that are in proximity on the same CCD channel. This second
assumption is a critical ingredient for the Bayesian MAP fit, as it allows for the generation of
constraints for the fit by using information about systematics in targets within a neighborhood
of the target under investigation. It is mainly these constraints that prevent overfitting, and thus
help to preserve stellar variability. Here we will only provide a brief overview to an extent that
is relevant in the context of the rest of this section.

Cotrending in PDC-MAP is performed by fitting each light curve to a set of basis vectors, and
constraining the fit coefficients by using prior information about the probability density func-
tions (PDF) of the coefficients. The basis vectors are generated from the 50% most correlated
target light curves on the channel in order to have only the strongest correlated trends in the
basis vectors and to largely exclude targets with substantial individual fluctuations due to stellar
variability. Using Singular Value Decomposition (SVD) on this set of light curves, the N largest
singular vectors are used as basis vectors. The number of basis vectors used can be specified as
an input parameter to PDC, with eight basis vectors being the default. By construction, these N
basis vectors represent the majority of the systematic errors contained in the light curves. Each
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Figure 8.5 Examples of light curves where PDC-LS did not perform cotrending because too much noise
was injected in the correction. Instead, the uncorrected flux from PA was returned, with only non-trend
corrections performed, such as discontinuities, outliers, and flux magnitude. From Figure 4 of Stumpe et al.
(2012).

of the light curves is projected onto these N basis vectors using a least squares fit. To make this fit
more robust and prevent overfitting; however, the fit is constrained using prior information from
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targets expected to be affected by similar systematic errors. For that purpose, a target neighbor
list is generated for each target with respect to their distance in a 3-D space spanned by stellar
magnitude (Kp), Right Ascension (RA), and Declination (Dec). The latter two coordinates, RA
and Dec, directly translate into the spatial proximity of two targets on the CCD. Further, Kp is
used as an additional dimension because systematic errors are not only correlated with location
on the CCD but also with signal amplitude.

The contribution of each basis vector j to each light curve i is described in the fit coefficient
Θi
j . However, instead of simply using the fit coefficient of the least squares fit, the most likely

coefficient given the observations in the neighborhood of the target is picked. In Bayesian ter-
minology, the posterior PDF, p(Θ|y), is maximized, given a prior PDF p(Θ) generated from fit
coefficients of all neighboring targets, weighted by their distance to target i:

p(Θ|y) =
p(y|Θ) · p(Θ)

p(y)
=

p(y|Θ) · p(Θ)∫
p(y|Θ)p(Θ)dΘ

. (8.1)

The Θ that maximizes p(Θ|y) is used as the fit coefficient for the MAP fit. Note that the de-
nominator p(y) is simply a normalization over all possible observations y and can in practice be
omitted in the maximization process. Taking the maximum a posteriori Θ effectively constrains
the fit and helps to avoid overfitting. This is a form of regularization or shrinkage in other con-
texts. In particular, only light curve features also present in targets in the neighborhood will be
removed, whereas any stellar variability that might have coincidental correlation with some of
the basis vectors will be constrained by the prior, and hence be preserved.

Figure 8.6 shows the first three basis vectors for each channel on the CCD for Q7. This
illustrates how the dominant systematic errors vary across the field of view (FOV) of the CCD.
However, some trends are observed on almost all channels.

8.3.2 Inputs to PDC

The inputs to PDC are the calibrated, uncorrected flux time series (measured in e− s−1), as
prepared by PA (see Chapter 6). One unit of work for PDC is a single module output (or readout
channel) from the CCD with the duration of nominally three months for LC data, with a sampling
period of 29.4 minutes. Thus, there are typically 1000–3500 targets per channel (see Figure 8.7),
and about 4500 data points (“cadences”) per target6. In addition to the flux time series, the target
data structure also contains per-cadence flux uncertainty values and gap indicators to denote
invalid cadences, per-target data such as the flux fraction and crowding metric (see below), as
well as bookkeeping information such as the Kepler ID (the “KIC” number) and other stellar
parameters of interest.7

8.3.3 Overview and Data Flow

The data flow in PDC-MAP is displayed in Figure 8.8. Figure 8.9 and Figure 8.10 show two
light curve examples as they are being processed throgh PDC. The individual operations of this
sequential processing are described below:

I Gap Data Anomalies The first step is to flag anomalies in the flux series and mark the
respective cadences as not usable (i.e., “gapped”). Anomalies may affect only one target or all

6This is for long cadence (LC) data, which is addressed here. Short cadence (SC) data is sampled at a rate of 57.8 seconds
for the duration of ∼one month and there are only 512 such targets in total on all 84 module outputs.
7The updated Kepler Input Catalog (KIC) is the primary source of information about targets observed with Kepler, and
contains their RA/Dec coordinates, estimates for a star’s radius, temperature, surface gravity, and other information.
URL: http://archive.stsci.edu/kepler/kepler_fov/search.php

http://archive.stsci.edu/kepler/kepler_fov/search.php
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Figure 8.6 First three cotrending basis vectors for each channel on the Kepler CCD, data from Q7. Note
that the four channels of module 3 are missing because that module failed during Q4 in January 2010. From
Figure 6 of Stumpe et al. (2012).

targets on the channel (e.g., monthly downlinks, quarterly rolls, attitude adjustments, spacecraft
safe modes, loss of fine-pointing, Argabrightenings (Witteborn et al., 2011), and can have a
duration of one to several hundred cadences. The information about the gaps and the type of
anomaly is provided separately by PA. Gapped data is labeled as such and is not exported to the
Mikulski Archive for Space Telescopes (MAST).

II Fill Gaps Even though gapped data is not being exported, some operations in PDC require
contiguous data over the whole time series. Therefore, gaps are filled by piecewise cubic Hermite
interpolation (PCHIP) for internal use. Since PCHIP does not work well at extrapolation, if there
happens to be any gapped cadences at the beginning or end of the time series, a linear nearest-
neighbor approach is used to fill those cadences separately. Note that these simply interpolated
gap values are filled a second time in TPS, using a more sophisticated algorithm to prepare the
light curves for planet searching.

III Correct Attitude Tweaks Occasionally during Q2 (20 June 2009 – 16 September 2009) the
spacecraft drifted too far off true pointing and an “attitude tweak” correction was made. These
adjustments result in a sudden shift in the pointing as illustrated in Figure 8.39. Although rare,
they result in a dramatic perturbation to the time series. If these steps are presented to MAP
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Figure 8.7 Number of targets per channel in Q7. Each of the 25 modules is divided into four module
outputs (channels). Modules 1, 5, 21, and 25 are used for fine pointing control and not for collection of
science data. Module 3 failed in Q4 in January 2000, leaving a total of 80 channels. There are significantly
more targets in the upper left corner because that section of the FOV is closer to the galactic plane during
this season. From Figure 7 of Stumpe et al. (2012).

then the basis vector will reflect their existence and PDC-MAP will do its best to remove them
on each target. However, this correction was found to be poor if performed simultaneously with
the other corrections in PDC-MAP. We therefore correct for them right at the beginning of the
PDC procedure. All attitude tweak locations are available from mission spacecraft operations
and supplied to PDC as a data anomaly flag.

This attitude tweak correction method first tests each tweak location on each target to see if a
tweak actually exists. A simple step function filter is used to detect the tweak. If the response to
the step function is greater than 4σ compared to the neighborhood about the tweak then a tweak
is detected and the correction is performed. The reason for the existence test is because targets
with fast oscillating stellar signals can look like steps at the tweak. The tweak correction would
then try to remove both the actual tweak (if it exists) and the oscillation at the tweak. So, with
the filter test, only tweaks that appear large compared to the oscillation signals about the tweak
are attempted to be removed. This means for many highly oscillating targets the tweaks will not
be removed (nor visible in the data).

Another potential issue is the transits of giant planets. If there are giant transits near the tweak
then the filter detector will also falsely not detect the legitimate tweak. To protect from this
behavior all known cadences within transits are filled using the same gap filler as in Subsubsec-
tion II above before the step filter is applied.

For those tweaks that pass the filter, the following three steps are used to fix the attitude tweak:

1. Apply a Savitsky-Golay filter to smooth the data before and after the tweak (separately, in
two parts, so not to smooth out the tweak!). The flux value difference between the end of
the first part before the tweak and the beginning of the second part after the tweak is used to
find the offset due to the tweak. The smoothing is not saved to the flux, but is just intended
to find the offset.
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Figure 8.8 Architecture and Data Flow of PDC-MAP as of Kepler SOC 8.0. From Figure 8 of Stumpe
et al. (2012).

2. Add the found offset to all cadences after the tweak to line up the ends about the attitude
tweak.

3. The attitude tweak cadence itself can have some intermediate flux value between the before
and after values. We therefore interpolate over the single tweak cadence using simple linear
interpolation.

IV Coarse Cotrending A first coarse cotrending is performed, using the Bayesian maximum
a posteriori (MAP) approach described in Section 8.4. This coarse cotrending is only applied
temporarily to the flux series to enhance the performance of the next three (Subsubsection V,
Subsubsection VI, Subsubsection VII), and then the coarse correction is restored in Subsubsec-
tion IX afterwards in order to perform the proper MAP correction in Subsubsection XI.

V Sudden Pixel Sensitivity Drop-out (SPSD) Correction Approximately 3% of the light
curves contain one or more noticeable downward step discontinuities per quarter. The vast ma-
jority of these discontinuities are the result of cosmic rays or solar energetic particles striking the
photometer and causing permanent local changes in CCD pixel sensitivity, although partial ex-
ponential recovery is often observed (Jenkins et al., 2010b). Depending on the incident angle and
the energy of the cosmic ray, up to a few pixels can be affected, and the net decrease in quantum
efficiency is typically∼0.5% for a light curve. Since these SPSDs are not correlated systematics,
they can not be removed by the MAP algorithm (see Section 8.4), and instead a specific submod-
ule exists to detect and correct SPSDs. The discontinuity correction algorithm used in PDC-LS
had a considerable false-negative rate, and was moreover performing a rather crude correction
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Figure 8.9 Example for light curve processing of a quiet star in PDC from the output of PA and input to
PDC (top right) to the output of PDC (bottom right). The numbers above the arrows denote the operations
as defined in Subsection 8.3.3 to get from the previous state (which is shown again in gray for comparison)
to the current state (blue curve). A: Input to PDC. B: Gaps have been linearly filled. C: The coarse
MAP trend has been removed, a temporary correction to facilitate discontinuity correction and outlier
removal. D: Discontinuities have been corrected. E: Outliers have been removed. F: The coarse MAP
trend has been restored. G: The final MAP fit has been removed. H: Gaps have been filled using a more
sophisticated algorithm and the absolute flux magnitude has been adjusted by flux fraction and crowding
metric corrections. From Figure 9 of Stumpe et al. (2012).
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Figure 8.10 Example for light curve processing of a variable star in PDC from the output of PA and
input to PDC (top right) to the output of PDC (bottom right). The numbers above the arrows denote the
operations as defined in Subsection 8.3.3 to get from the previous state (which is shown again in gray for
comparison) to the current state (blue curve). A: Input to PDC. B: Gaps have been linearly filled. C:
The coarse MAP trend has been removed, a temporary correction to facilitate discontinuity correction and
outlier removal. D: Discontinuities have been corrected. E: Outliers have been removed. F: The coarse
MAP trend has been restored. G: The final MAP fit has been removed. H: Gaps have been filled using
a more sophisticated algorithm, and the absolute flux magnitude has been adjusted by flux fraction and
crowding metric corrections. From Figure 10 of Stumpe et al. (2012).
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that did not take partial recoveries into account. The new SPSD module in PDC-MAP is sig-
nificantly more sophisticated and performs markedly better at detecting and correcting SPSDs.
The details of this new algorithm are described in KADN-26304. In brief, SPSD detection is
performed by fitting a window of the data to a combination of basis functions, with one of the
basis functions modeling a step discontinuity in the flux. The fit coefficient of this basis func-
tion is evaluated in the context of flux variability of the light curve ensemble on that channel,
to determine the probability for an underlying SPSD. Further checks are performed to prevent
false positive detection of transit-like features as discontinuities. Correction then proceeds as a
two-stage process, with the first stage estimating the step size (based on analysis of the entire flux
series) and the second stage modeling the recovery process. The sum of these two components is
the total correction applied to the light curve. In the Q9 data, SPSDs were detected on 5,252 out
of 167,404 targets (3.1%). Figure 8.11 shows a histogram of the fraction of targets with detected
SPSDs.

Figure 8.11 Fraction of targets per channel for
which an SPSD has been detected in Q9. The total
number of channels is 80, and not 84, because module
3 failed in Q4, reducing the number of data channels
by four.

VI Harmonics Removal (optional) Har-
monic content can be identified and removed
from the light curves of harmonically variable
targets. This step was a mandatory opera-
tion in PDC-LS in order to prevent harmonic
content from corrupting the least squares fit-
ting in the cotrending routine. In PDC-MAP
the maximum a posteriori fitting approach
is robust against uncorrelated target-specific
harmonics and this step is therefore not per-
formed per default but can be requested with
an input parameter. If harmonics are removed
for further processing in PDC they are re-
stored later after cotrending.

From a theoretical point of view, one might
expect that this (previously required) opera-
tion of harmonics removal prior to cotrending
would improve the cotrending – simply be-
cause it reduces the feature complexity of the
light curves. However, we found that it has
virtually no effect with the new MAP cotrending method. In a direct comparison of 1075 light
curves processed with and without harmonics removal, we found no difference at all for 97%
of the targets. For the remaining 3%, performing harmonics removal before cotrending resulted
in weak residual long-term trends, which had been identified as very low-frequency harmonics
by the harmonics detector. Thus, by removing them before cotrending, and restoring them after-
wards, these long-term trends were preserved in the light curves. Without knowing the ground
truth, one obviously cannot know with certainty whether these long-term trends are actually as-
trophysical effects (in which case they should be preserved) or systematics errors (in which case
they should be removed). However, for most of these cases the low-frequency trends seemed
to be systematic errors, as judged by comparison with the systematic trends identified for other
targets, and therefore performing harmonics removal appeared to actually decrease the quality of
the error correction.

In summary, while harmonics removal was a required step in the least square based cotrending
in PDC-LS, it seems that this operation does not improve the error correction (and may even do
harm in a few cases) in the new Bayesian approach of PDC-MAP. Therefore, this step is skipped
by default.
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VII Outlier Correction Outliers in each flux time series are identified by thresholding a slid-
ing window-based detrended time series. The time series is detrended by splitting it into small
chunks of 72 hours in length and robustly fitting polynomials to each chunk. The optimal polyno-
mial order for a fit to each chunk is detemined using the AI criteria. This fitting is then repeated
after shifting the chunks by half a chunk. The fitted time series for the shifted and non-shifted
cases are then added together after tapering using a Bartlett window. This robust fit polynomial
time series is then subtracted from the original time series to get the residuals. All cadences 10
times the median absolute deviation of the redidual are then flagged as outliers. Only isolated
(single cadence) points above the threshold are considered to be outliers in order to prevent flag-
ging of planet transits or stellar flares as outliers. These outlier values are corrected by replacing
them with PCHIP interpolated values just as with the gaps in Subsubsection II. The purpose
of this correction is to prevent false triggering of Threshold-Crossing-Events (TCE) in TPS and
also to improve the performance of other operations downstream in PDC. Before export to the
MAST, the original outlier values and uncertainties are restored to the corrected light curves and
propagated through the PDC correction steps like all regular data points.

VIII Iteration of SPSD Correction, Harmonics Removal, Outlier Correction The operations
of SPSD Correction (Subsubsection V), Harmonics Removal (Subsubsection VI), and Outlier
Correction (Subsubsection VII) are non-orthogonal to each other. In theory, performing them
simultaneously rather than sequentially should yield optimal correction, however at the expense
of a substantially more complex algorithm, and so was not developed. Iteration of these opera-
tions is an approximation to such a joint fitting approach, and an input parameter was included to
iterate the Subsubsection V-Subsubsection VII for improved correction performance. In partic-
ular, at the time of the design of the architecture it was expected that Harmonics Removal would
improve the performance of the SPSD correction (Kolodziejczak & Morris, 2012) (Subsubsec-
tion V), and hence that iterating Subsubsection V–Subsubsection VII would be beneficial for
the overall correction. However, it was found that the presence of harmonics in the frequency-
and amplitude-range that is observed in the Kepler data does not decrease the detection per-
formance of the SPSD module by more than 1%, while removing them would come with the
disadvantages mentioned above for Subsubsection XI. For these reasons, the Subsubsection V-
Subsubsection VII are per default only performed once in PDC-MAP, while leaving the option
to perform an iteration in case future design changes should make this desirable.

IX Restore the Coarse MAP Correction As with the other corrections above, the ideal PDC
method would apply all correction at the same time in a joint fit. As a first approximation to
this we iterate MAP with the other corrections by first applying a coarse MAP correction before
removing SPSD, harmonics, and outliers. We then restore the coarse MAP correction before
proceeding.

X Remove Systematic Spikes The Transiting Planet Search (TPS – see Chapter 9) compo-
nent has in the past identified many features in the light curves that consistently produce high
SNR multiple event statistics (MES). TPS fortunately will veto most of these events; however,
their presence results in the masking of potentially legitimate TCEs. It is therefore to our ad-
vantage to remove these systematic features before the transit search. An illustration of these
systematic events is shown in the “wedge plot” in Figure 8.12. The figure plots the TPS maxi-
mum MES trigger epoch (in KJD) versus period (in days) for 9650 random non-TCE targets. A
Hough Transform is used to identify strong lines in the scatter plot. Each line is indicative of a
single event in time that is causing systematic features on multiple targets. The x-axis intersec-
tion of each line indicates the epoch of the feature. These features are very short (1–3 cadence)
impulses in the light curves. Such features are very difficult to remove using PDC-MAP, even in
band 3. A completely separate method was therefore developed to remove these specific features.
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Figure 8.12 A “Wedge Plot” of 9650 random target TPS trigger showing the strong lines caused by
systematic sharp features in the data.

The method first finds “spike basis vectors” derived from the coarse MAP basis vectors. The
coarse MAP basis vectors are passed through a wavelet-based de-noiser to isolate strong features
in the vectors using the following steps:

1. Extend the basis vectors by reflection to mitigate boundary effects.

2. Compute an overcomplete wavelet transformation of the basis vectors, which yields a set of
wavelet coefficients at all relevant scales.

3. Apply a “universal hard threshold” (Donoho & Johnstone, 1994) to the wavelet coefficients
at each scale. Coefficients with values below the threshold are presumed to be noise, and
are therefore replaced with zeros.

4. Apply the inverse overcomplete wavelet transformation to the ‘thresholded’ wavelet coeffi-
cients to estimate the de-noised basis vectors.

The de-noised basis vectors are then reanalyzed to find the significant number of basis vectors
using the method described in Subsection 8.5.1 (i.e. find the number of basis vectors that still
have signal after de-noising). Extracting the spike basis vectors from these de-noised coarse
basis vectors involves the following steps:

1. Gap 10 cadences around each Earth-point so that they are not identified as spikes.

2. Pass the de-noised basis vectors through a 15-cadence median filter to isolate only high
frequency signals.

3. Take the second derivative of the basis vectors (second differences) to identify sharp spikes.

4. Calculate the median absolute deviation (scaled by 1.254 to convert to standard deviation
units) and flag all cadences above 100σ.
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5. Also flag all cadences within one cadence of an existing cadence flag in the previous step.

6. The spike basis vectors are the median-filtered de-noised basis vectors where all non-flagged
cadences are zeroed.

Note that the coarse MAP basis vectors are not altered in any way. Instead after the restoration
of the coarse MAP correction we remove the spikes in the data separately. For each target we
high pass filter the flux time series using the same 15 cadence median filter. This is to reduce the
risk of overfitting the spike basis vectors. We then robust fit the spike basis vectors to the median
filtered flux time series and then use the resulting robust fit coefficients to subtract the spike basis
vectors from the flux time series after Subsubsection IX.

Figure 8.13 shows the coarse MAP basis vectors and the derived spike basis vectors. The
spikes are mostly visible in the coarse basis vectors but are small compared to most features and
therefore MAP does not effectively remove them. In isolation we can very effectively remove the
spikes. An illustration of performance can be found in Figure 8.14. Here we plot in blue circles
the wedge plot points for 590 TCE targets that all line up on lines. In red circles we plot the same
targets but after applying the spike remover. We clearly see the targets have a much more evenly
spread out distribution. About 40% of targets still lie on lines but the lesser extent illustrates that
the systematic spikes have been greatly attenuated. The other 60% of the targets were “freed up”
to search for other potential planet candidates.
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Figure 8.13 Q12 mod.out 2.1 Coarse MAP basis vectors and the derived spike basis vectors.

XI Bayesian MAP Approach for Cotrending to Remove Systematic Errors This opera-
tion constitutes the main step for the correction of systematic trends in the light curves. Each
flux time series is cotrended against the ensemble of light curves in order to remove correlated
trends using a Bayesian maximum a posteriori approach as described in Section 8.4. The main
cotrending procedure (this step) is the same as the routine performed in the Coarse Cotrending
(Subsubsection IV), but with three important differences that make its correction significantly
more accurate. First, only “clean” targets, for which no discontinuities had been found (Subsub-
section V), are considered to generate the basis vectors. Secondly, discontinuities, harmonics (if
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Figure 8.14 Wedge Plot comparison of 590 TCE targets with and without the spike remover.

enabled), and outliers have been removed from the light curves before the fit, which improves
the quality of the correction. Thirdly, two applications of MAP are performed, a single-scale
MAP as described in Section 8.4 and a multi-scale wavelet-based band split MAP as described
in Section 8.6.

Once finished we have two cotrended light curves 1) single-scale MAP and 2) multi-scale
MAP. We select the best light curve for each target based on the goodness metric (Subsubsec-
tion XIV). We use three of the goodness metric components to make our selection: i) Introduced
Noise, ii) Delta Variability, and iii) Earth-Point Removal. See Subsubsection 8.6.4.1 for details
on the target vetting process.

XII Restore Harmonics (optional) If harmonic content had been removed from the light
curves (optional Subsubsection VI), then it will be added back here, after properly cotrended
with MAP. Per default, harmonics removal is not performed in PDC-MAP.

XIII Crowding Metric and Flux Fraction Correction When generating flux series from pixel
data in PA, the optimal aperture (Twicken et al., 2010b) for each target may include additional
light from nearby light sources. If not removed, this excess flux would decrease the appar-
ent planet transit depth and lead to a systematic underestimation of planet radii. The so-called
crowding metric for each target is computed in TAD and PA-COA, and reflects which fraction
of the flux in the optimal aperture is due to the target itself. It is a scalar value representing the
average over the effective date range. Note that using a scalar average for the crowding metric is
an approximation since background sources of light may enter or exit the optimal aperture over
the course of the three-month data period. Similarly, using a scalar value for the flux fraction is
an approximation because the centroid of the point-spread-function (PSF) of a target can move
over the course of a quarter8.

Similar to excess flux leaking into the optimal aperture, a fraction of the PSF of the target may
not be captured in its optimal aperture. To account for this missing fraction, the flux fraction,
computed by PA, is used to normalize the flux.

8The maximal motion of a target is ∼0.6 pixel over 3 months.
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Together, these two corrections can be expressed as:

ỹ(t) =
y(t)− (1− c) ·median {y(t)}

f
, (8.2)

where ỹ(t) is the corrected cotrended flux, y(t) is the cotrended flux, c is the crowding metric, and
f is the flux fraction. The median is used here, rather than the mean, to make the normalization
robust against mathematical outliers. This is important in Kepler light curves because transits
from planets or eclipsing binaries represent mathematical outliers.

XIV Goodness Metric Characterizing the performance of systematic trend removal in PDC
can be highly subjective which emphasizes the difficulty in the cotrending task. A human can
peruse a selection of light curves and identify poorly cotrended examples to rate performance.
Obvious trends and features can be evaluated but subtle issues with the performance will likely
be overlooked. So, in an effort to minimize the subjective analysis, a numerical goodness metric
has been developed. There are four critical aspects of the cotrending performance to consider
in the metric: 1) removal of systematic trends, 2) no introduced noise, 3) preservation of stellar
variability and 4) removal of the Earth-point thermal recovery. A successful cotrend occurs when
all four conditions are met, so one cannot rely solely on target-to-target correlation, for example,
to determine acceptable performance. Overfitting, and hence flattening of stellar features, results
in zero correlation but would not be considered a “good” correction. We expect the goodness
metric to represent a coarse estimate of the correction quality, rather than a perfectly accurate
quantification of the correction performance (which in fact would require the ground-truth light
curves). In particular, the goodness metric should help to achieve four goals:

1. For each light curve (e.g. processed with both regular MAP and msMAP), to decide which
of two possible corrections is more likely to be the better correction.

2. For each module output decide which set of PDC parameters on average produces better
results.

3. To detect cases where the correction of a target was very poor, so that the respective target
can be corrected differently or investigated further.

4. To give users of Kepler data an estimate of the quality of the PDC correction for any partic-
ular light curve.

The goodness metric calculates the cotrending performance in each of the four components using
the following methods developed experimentally to agree with observations of critical features.

Removal of systematic trends is evaluated by the target-to-target correlation. If the correla-
tion is near zero then in principle no systematics can remain9. The Pearson correlation, C, is
computed over the entire module output and the correlation goodness, Gc, is computed as the
arithmetic mean of the cube of the absolute value of the correlation between the target under
study and all other targets,

GC,i = αC
1

N

∑

j 6=i

(
|Cij |3

)
, (8.3)

where i refers to the target under study, j is summed over all other targets, N is the total number
of targets, and αc is a scaling factor. The purpose of the cube is to over-emphasize any strong
correlations.

9The root sum-square mean of off-diagonal correlations of white Gaussian noise is exactly 1/
√
Nsample so even with

no systematics the off-diagonal correlation matrix will not be exactly zero.
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Introduced noise is determined by examining the change in the power spectral density (PSD)
of the noise floor for each light curve before and after the correction:

∆PSD(freq) =
PSD (Nfafter)

PSD (Nfbefore)
, (8.4)

GN,i = αN

∫

∆PSD>1

log (∆PSD(freq)) dfreq , (8.5)

where Nf is the noise floor of the light curve, here defined as the first differences between adja-
cent flux values. The noise floor is used because removal of trends can result in large changes in
the PSD, but signals close to the Nyquist frequency are dominated by noise. The integral is also
only taken about regions where the change in power is greater than one, implying an increase in
noise.

The third component, preservation of stellar variability, is the most difficult of the four to nu-
merate. An exact determination would require knowledge of the intrinsic signal. Since it is not
possible to make this determination, an estimate is made by assessing a mid-frequency band re-
gion where light curve signals are dominated by stellar features. High-frequency components are
removed via a Savitzky-Golay Filter and the low-frequency components via a third-order polyno-
mial removal. What is left is almost always overwhelmingly dominated by stellar signals.10 The
exception being the Earth-point recovery regions, which can be quite strong and so these regions
are masked. The standard deviation of the difference between the resultant mid-frequency light
curves before and after the correction, ỹbefore and ỹafter respectively, is then computed:

GV,i = αV std (ỹi,after − ỹi,before)
2
√
Vi, (8.6)

where V is the variability as calculated by PDC-MAP (see Equation 8.20) and is used to empha-
size targets with greater variability.

The final component is the removal of the Earth-point thermal recoveries. Because the thermal
transients after an Earth-point roughly follow an exponential shape, we base the calculation of
this component on the strength of the exponential character of the light curve in this region. For
that purpose, we pre-process the light curve by normalizing it with its median and performing a
simple linear detrending. Then a non-linear least-squares fit is used to fit an exponential function
f(t) = a · exp(b · t), where a and b are fit parameters to the recovery window after the Earth-
point, which is defined as the 150 cadences after an Earth-point gap. We use the curvature of
the fitted exponential, calculated by the average of its second derivative in the recovery region,
d2f(t)
dt2 , to quantify the strength of the exponential character. As with the other goodness metric

components, the goodness shall be expressed as a value in the interval [0,1), which we achieve
by the regularization:

G′EP =
1

1 + αEP · d
2f(t)
dt2

, (8.7)

where αEP is a weighting parameter to adjust the relative emphasis of this component in the
total goodness metric G, which is the geometric mean of the four components. We also tried
other metrics to quantify the Earth-point correction, including measuring the deviation of the
150 cadences window after an Earth-point from an auto-regressive estimate of this window, and
another similar approach to the current one in which we also compare to an exponential fit of
the region before the Earth-point gap and after the recovery window for reference. Out of the
different metrics we tried, the current one is most in line with the perceived correction quality
found upon manual investigation.

10As the residuals are typically only very poorly correlated.
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The above four components increase in value (in the range of [0,∞) ) as the performance
becomes more poor. But we wish for the “goodness” to vary between 0 and 1, 1 being perfect
goodness, and so each component is inverted:

G′k,i =
1

Gk,i + 1
. (8.8)

The total goodness is then the geometric mean of the four components for residual correlations
(GC), noise (GN ), stellar variability (GV ), and Earth-point recoveries (GEP ):

G = 4

√
G′C ·G′N ·G′V ·G′EP . (8.9)

The four weighting parameters are used to adjust the relative emphasis of the four components.
They have been empirically tuned to agree with observations of cotrending performance, with
the weighting parameters being αC = 12.0, αN = 1.0 × 10−4, αV = 1.0 × 104, and αEP =
5.0× 106.

The above computed goodness metric has been experimentally developed. It is used for target
vetting, when reviewing data products, and as an aid to data users to give an estimate of how well
to trust the cotrending performance.

8.3.4 Outputs of PDC

The output of PDC is a data structure containing the corrected light curves. If Harmonics Re-
moval was performed (Subsubsection IV), a second set of corrected light curves without har-
monic content is exported as well. In addition to these flux time series, PDC outputs data pro-
cessing details such as the target and cadence indices of all SPSDs that were identified, the
location of outliers, and diagnostic information such as the Bayesian prior weighting for each
target. Of these data, TPS uses the corrected flux time series with filled gaps. The corrected
flux times series, cotrending basis vectors, and additional processing data such as the goodness
metric for each target are exported to the MAST.

8.3.5 Processing Times

The unit of work for PDC (long cadence) is one channel per quarter, typically 1000–3500 targets
with ∼4500 data points each. Processing of Kepler data is performed on the Kepler SOC com-
puter clusters and on the NASA Advanced Supercomputing Division’s Pleiades supercomputer
at NASA Ames Research Center. The relative processing times of the different PDC components
is displayed in Figure 8.15A and shows that the MAP-fit and the final gap filling are the com-
putationally most expensive operations. Within MAP (Figure 8.15B), the maximization of the
posterior PDF consumes the most time. Processing of a typical module output with 1,000–3,500
targets with PDC-MAP takes between 20 and 30 hours on a modern 3 GHz CPU with four cores.

NOTE: The processing times in this section are from SOC 8.0, when the proper gap filling was
still performed in PDC and there was no multi-scale MAP. Processing times have since changes
since this analysis. These figures are kept since they provide some information on the relative
computational time of PDC components.

8.3.5.1 A Note on Gap Filling TPS requires contiguous data points for all cadences in a light
curve, and moreover assumes statistical continuity of the wavelet coefficient variances of the
flux time series. The simple linear gap filling operation (Subsubsection II) does not meet this
requirement. Therefore, a more sophisticated gap filling algorithm is employed in TPS to refill
the gaps of the corrected light curves. The filling occurs in TPS because it is very time consuming
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and TPS must have multi-quarter continuous time series. Filling the gaps properly in PDC would
require a repeat of this very time consuming step in TPS anyway, so PDC produces light curves
with the simple gap filling in Subsubsection II.

Figure 8.15 Fractions of total processing time for
PDC (panel A), and for the MAP part of PDC (panel
B). From Figure 12 of Stumpe et al. (2012)

In TPS, the gap filler automatically distin-
guishes between gaps with “short” and “long”
duration. The boundary for short and long
gaps is determined by the gap filling mod-
ule parameter set, and typically about 125 ca-
dences. Gaps shorter than this threshold are
filled with an autoregressive algorithm that es-
timates sample values in the gaps with a lin-
ear prediction based on the correlation in the
neighborhood of the gap. For gaps longer
than this threshold, samples away from the
edges would tend to become white noise sam-
ples, and a different algorithm is therefore
used to estimate the gap values. Segments
on either side of the gap are reflected onto
the gap, and a weighted sum of the two seg-
ments is taken, where the weighting factor
for each segment is a sigmoid function with
the distance to respective edge of the gap.
This procedure preserves statistical continu-
ity of the data, and in particular, the correla-
tion structure. However, some smoothing at
small scales occurs due to the averaging of
two noisy signals. To compensate for this ef-
fect, the variances of the wavelet coefficients
of the filled gap are adjusted to match those
of the original data in the neighborhood of the
gap. Preserving the wavelet coefficient statis-
tics is of particular relevance because TPS
uses a wavelet-based approach for transit de-
tection (Jenkins et al., 2010c, 2002; Tenenbaum et al., 2010).

8.4 A Bayesian Approach to Correcting Systematic Errors

The systematic errors observed in Kepler light curves exhibit a range of different timescales,
from a few hours, to several days to many days and weeks. Such errors include, for example,
temperature variations of the reaction wheel housing over the three-day momentum manage-
ments cycles and the resultant focus changes of ∼2.2 µm per ◦C. Large thermal effects can be
observed in the science data for ∼5 days after recovering from intermittent safe modes, and for
∼3 days after attitude changes required to downlink the data each month, due to different sides
of the spacecraft being heated during downlinks and subsequent thermal recoveries. Another
prominent systematic error is DVA, which results in gradual trends in the data over each quarter.
The principle objective of PDC is to remove these systematic effects by cotrending.11 The fact

11Detrending is the removal of arbitrary low-frequency signal content regardless of origin (intrinsic or systematic). In
contrast, cotrending is the removal of specific signal content correlated across multiple targets, which can better preserve
intrinsic low-frequency signals while removing wide-band systematic signals.
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that most systematic errors such as these affect all the science data simultaneously, though to
differing degrees, provides significant leverage in dealing with these effects.

8.4.1 The Basic Problem and the Principle Behind the Solution

It is standard practice when removing systematic errors in stellar data to use robust LS on a set of
basis vectors, exemplified in methods such as SYSREM (Tamuz et al., 2005) and TFA (Kovács
et al., 2005). A robust LS approach, as outlined below in Subsection 8.4.2, can find a chance
linear combination of the systematic error model components that reduces the bulk rms at the
expense of distorting the intrinsic stellar variations and introducing additional noise on short
timescales. The fundamental problem with this approach is the fact that the implicit model fitted
to the data for each star is incomplete. Least-squares cotrending projects the data vector onto the
selected basis vectors and removes the components that are parallel to any linear combination of
the basis vectors. This process is guaranteed to reduce the bulk rms residuals, but may do so at
the cost of injecting additional noise or distortion into the flux time series. Indeed, this occurs
frequently for stars with high intrinsic variability, such as RR Lyrae stars, eclipsing binaries, and
classical pulsators. For example, if one of the model terms is strongly related to focus variations
and the long-term trend for the width of the stellar PSF is to broaden over the observation interval,
then the flux for all stars should decrease over time. A LS fit, however, may invert the focus-
related model term for a star whose flux increases over the observation interval, thereby removing
the signature of intrinsic stellar variability from this light curve because there is a coincidental
correlation between the observed change in flux and the observed change in focus. Given that
the star would be expected to dim slightly over time, if anything, due to the focus change, PDC
should be correcting the star so that it brightens slightly more than the original flux time series
would indicate.

The situation is analogous to opening a jigsaw puzzle box and finding only 30% of the pieces
present. LS gamely tries to put the jigsaw pieces together in order to match the picture on the box
cover by stretching, rotating, and translating the pieces that were present in the box. The result is
a set of pieces that roughly overlap the picture on the box cover, but one where the details don’t
necessary match up well, even though individual pieces may obviously fit. In order to improve
the performance of robust LS, we need to provide the fitter with constraints on the magnitudes
and the signs of the fit coefficients. These constraints can be obtained by using the ensemble
behavior of the stars to develop an empirical model of the underlying physics. For example, the
photometric change that can be induced by a pointing change of 0.1 arcsec must be bounded,
and this bound can be estimated by looking at how the collection of stars behaves for a pointing
change of this magnitude.

As an example of this analysis and to demonstrate systematic trends in the Kepler data, take
channel 2.1, the most thermally sensitive CCD channel in Kepler’s focal plane. Nearly all stars
on this channel exhibit obvious focus- and pointing-related instrumental signatures in their pixel
time series and flux time series. Figure 8.16 shows several characteristic light curves for typical
targets12 on channel 2.1 during Q7, normalized by the median flux value. Note the long-term
increase for all flux curves over the 90-day interval. This is due to seasonal changes in the shape
of the telescope and therefore its focus as the Sun rotates about the barrel of the telescope while
the spacecraft orbits the Sun and maintains its attitude fixed on the FOV. All light curves exhibit
these long term trends but to differing degrees. Also present are some short-term oscillations
evident but mainly obscured in variable targets, due to focus changes driven by a heater cycling
on and off to condition the temperature of the box containing reaction wheels 3 and 4 on the
spacecraft bus. This component was receiving more and more shade throughout this time interval

12The light curves are referred to as “targets” and not stars since not all objects in the Kepler FOV are stellar. Galactic
studies are also performed with Kepler data.
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and the thermostat actuated more frequently over time. A target that is varying on levels and
periods similar to these systematic effects can obscure the systematics making identification
difficult. Looking at a single quiet target shown in Figure 8.17 (the same target shown in solid
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Figure 8.16 Selection of typical light curves on channel 2.1. Notice the long-term trend exhibited in all
light curves. However, for highly variable targets the trend is not entirely clear. This illustrates the need to
separate intrinsic stellar variability from systematic trends. From Figure 1 of Smith et al. (2012).

blue in Figure 8.16) allows us to more clearly see the systematic trends exhibited in all the targets
in Figure 8.16 but obscured by variability. Each Earth-point, one at the beginning of the quarter
(cadence index 0) and after each monthly downlink (cadences 1,500 and 2,800) results in a
heating of different sides of the telescope as the spacecrafts re-orients the antennae to downlink
data. The Earth-points themselves are gaps in the data that result in periods of local heating and
cooling distorting the telescope. A characteristic recovery time is evident, as are other trends
as described above. A final short data gap is also evident at cadence 3950, but this was not
due to a reorientation of the spacecraft so no thermal recovery is present. As a counterexample,
Figure 8.18 shows the same highly variable target in solid black in Figure 8.16. Notice how
this highly variable star almost completely obscures the long-term trend. The targets shown in
Figure 8.17 and Figure 8.18 will hereby be referred to as the quiet target and the variable target
and used as canonical example targets in Section 8.5.

How can we separate intrinsic stellar variability from instrumental signatures? We do not
expect intrinsic stellar variability to be correlated target to target, except for rare coincidences,
and even then one would not expect a high degree of correlation for all timescales. However,
we do expect instrumental signatures to be highly correlated from target to target and can exploit
this observation to provide constraints on the cotrending that PDC performs.

Figure 8.19 shows a histogram of the absolute value of the correlation coefficient for 1864
targets on channel 2.1. The targets’ light curves are highly correlated as evidenced by the near
complete pile-up near an absolute correlation coefficient of 1. Examination of individual light
curves indicates that these light curves are contaminated to a large degree by instrumental sig-
natures, as evidenced in Figure 8.16 and Figure 8.17. But not all the targets are dominated by
systematic errors. The trick is to come up with a method that can distinguish between intrinsic
stellar variability and chance correlations with linear combinations of the diagnostic time series
used to cotrend out systematic errors.
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Figure 8.17 A particularly quiet target on channel 2.1 showing almost purely systematic trends. The
long-term trend is due to the seasonal changes to the shape of the telescope as the sun rotates around the
barrel. Other spacecraft systematics are also visible such as monthly Earth-point downlinks and heater
cycling. Data gaps and their thermal recoveries during the monthly downlinks are evident at cadences 1500
and 2800. From Figure 2 of Smith et al. (2012).
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Figure 8.18 A highly variable target where the variability completely obscures the systematic trend.

8.4.2 The MAP Approach, An Analytical Solution

The PDC-MAP method allows us to provide PDC with constraints on the fitted coefficients to
help prevent overfitting and distortion of intrinsic stellar variability. In this exposition we follow
the notation of Kay (2012).

The PDC-MAP technique examines the behavior of the robust LS fit coefficients across an
ensemble of targets on each CCD readout channel in order to develop a description for the “typ-
ical” value for each model term. This description is a PDF that can be used to constrain the
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Figure 8.19 Median Absolute Correlation for all targets on channel 2.1 for Q7.

coefficients fitted in a second pass. To develop this approach, we build on a maximum likelihood
approach.

The maximum likelihood approach models each light curve, y, as a linear combination of
instrumental systematic vectors, referred to as Cotrending Basis Vectors or CBV, arranged as the
columns of a design matrix, H, plus zero-mean, Gaussian observation noise, w:

ŷ = Hθ + w. (8.10)

The Maximum Likelihood Estimator (MLE) seeks to find the solution, θ̂MLE, that maximizes
the likelihood function, p (y;θ), given by

p (y;θ) =
1

(2π)
N
2 |Cw|

1
2

exp

[
−1

2
(y −Hθ)

T
C−1

w (y −Hθ)

]
, (8.11)

where Cw is the covariance of w and N is the number of data points. Taking the gradient of the
log of Equation 8.11, setting it equal to zero, and solving for θ yields the familiar LS solution:

θ̂MLE =
(
HTC−1

w H
)−1

HTC−1
w y. (8.12)

This solution assumes the model H is a complete model to the data. We will show that the
Bayesian model accounts for an incomplete model, the common case when removing systematics
from stellar signals.

Adopting the Bayesian approach allows us to incorporate side information, such as knowledge
of prior constraints on the model, in a natural way. Bayesianists view the underlying model as
being drawn from a distribution and the data as being one realization of this process. In this case
we wish to find the MAP estimator of the model coefficients given the observations (data):

θ̂MAP = arg max
θ

p(θ|y) = arg max
θ

p (y|θ) p (θ) , (8.13)

where we’ve applied Bayes’ rule (D’Agostini, 2003) to simplify the expression. In this equation,
p (θ) is the prior PDF of the model coefficients. The mathematical form for p(y|θ) is the same
as for the non-Bayesian likelihood function p (y;θ) in Equation 8.11.
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For illustration purposes, if we adopt a Gaussian form for the coefficient distribution, θ, then
p(θ) takes a closed form solution:

p(θ) =
1

(2π)
M
2 |Cθ|

1
2

exp

[
−1

2
(θ − µθ)

T
C−1
θ (θ − µθ)

]
, (8.14)

where Cθ and µθ are the covariance and mean of θ, respectively, and we assume that the co-
efficients are uncorrelated (which will hold true for orthogonal basis functions). We can then
maximize Equation 8.13, using Equation 8.14, by maximizing its log likelihood:

ln[p(y|θ) p(θ)] = ln[p(y|θ)] + ln[p(θ)]

= −N
2

ln (2π)− 1

2
ln |Cw| −

1

2
(y −Hθ)

T
C−1

w (y −Hθ)

− M

2
ln (2π)− 1

2
ln |Cθ| −

1

2
(θ − µθ)

T
C−1
θ (θ − µθ) . (8.15)

Taking the gradient of Equation 8.15 with respect to θ, setting it to zero, and solving for θ yields

θ̂MAP =
(
HTC−1

w H + C−1
θ

)−1 (
HTC−1

w y + C−1
θ µθ

)
. (8.16)

If the observation noise, w, is zero-mean, white Gaussian noise with variance σ2, then Equa-
tion 8.16 can be rewritten as

θ̂MAP =
(
HTH + σ2C−1

θ

)−1 (
HTy + σ2C−1

θ µθ
)
. (8.17)

The key to this Bayesian technique is to determine when to preference, or weight, the prior
PDF over the conditional PDF. If the variance in the data is large compared to the “spread”
allowed by the prior PDF for the model, then the MAP estimator gives more weight to the prior
so that θ̂MAP → µθ as σ2 → ∞. This case would correspond, for example, to targets with
large stellar variability such as those with the target given in Figure 8.18. In this case, the MAP
weighting constrains the fitter from distorting the light curve and introducing noise on a short
timescale. Conversely, if the variance in the data is small compared to the degree to which the
prior PDF confines the model, the MAP estimator “trusts” the data over the prior knowledge and
θ̂MAP → θ̂MLE as σ2 → 0. This case would correspond to targets with small stellar variability
such as with the target in Figure 8.17 where there is little risk of overfitting and distortion of the
light curves and it is a “safe” bet to use the conditional, LS fit.

8.5 The Empirical Bayesian MAP Approach and Implementation

The above analytical solution to the Bayesian posterior PDF restricts the prior PDF to a Gaussian
form. There is no a priori reason to make this assumption and in general, since we are developing
an empirical prior PDF, the fewer analytical constraints on the form, the more complete will be
the empirical model.

If a Gaussian form to the prior is no longer assumed then the prior formalism in Equation 8.14
can no longer be used. We can, however, still take the log form of Equation 8.13 to obtain

θ̂MAP = arg max
θ

p(θ|y) = arg max
θ

(log (p (y|θ)) + log (p (θ))) . (8.18)

Using the MLE in Equation 8.11 for p(y|θ), removing the constant terms, inserting a weighting
parameter, and using normalized light curves, ŷ, we obtain

θ̂MAP = arg max
θ

[
− 1

2σ2
(ŷ −Hθ)

T
(ŷ −Hθ) + Wpr log p(θ)

]
, (8.19)
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where we assume the observation noise, w, is zero-mean, white Gaussian noise and has variance
σ2. Since p(θ) is no longer in closed form, the “spread” in the prior PDF (i.e., the covariance
of θ, Cθ in Equation 8.17) can no longer be expressed succinctly. In its stead, a generalized
weighting parameter, Wpr, is used to characterize the “spread” in the prior PDF. Equation 8.19
must now be evaluated numerically.

The overall flow of the algorithm is shown in Figure 8.20. We start by normalizing the flux
light curves and calculating a relative stellar variability. We then find basis vectors using SVD
based on a reduced set of flux light curves where cuts are made on target-to-target correlation
and stellar variability. A robust LS fit is then performed on each target using these basis vectors.
This ensemble of robust fit coefficients is used to generate the prior PDF. The conditional PDF is
also found based on the same basis vectors. Once both prior and conditional PDF are found they
are combined to generate the posterior PDF, where a weighting parameter, based on the stellar
variability and the “goodness” of the prior fit, is used to weigh the prior relative to the conditional
PDF. Details are elucidated in the following subsections.

8.5.1 Finding the Cotrending Basis Vectors

Normalized Light Curves

Find Prior PDF 

using Robust Fit

Find Conditional 

PDF

Maximize 

Posterior 

Estimator

p(θ)

Calculate Stellar Variability

Basis Vector 

Generation

Robust Fit to basis vectors

H

H

ŷ

p(ŷ|θ)

θ̂

θ̂robust

Figure 8.20 Flowchart of the PDC-MAP cotrending
algorithm.

The CBVs are obtained using SVD. In or-
der to have equal representation for all light
curves independent of their absolute magni-
tude, we first normalize the targets by their
mean flux values

(
∆flux

mean(flux)

)
. We then se-

lect the 50% most highly correlated targets
based on the median absolute Pearson cor-
relation. This cut generates a set that ex-
hibits the strongest trends in the data. It
mostly removes targets with large variability
but not completely. A variable star exhibiting
a strong trend can still remain in the reduced
list. We therefore first make a cut on the esti-
mated variability of each target.

An estimate of the intrinsic stellar vari-
ability of each target must be found. Herein
lies the fundamental chicken-and-egg prob-
lem of the cotrending method. We need to
know the stellar variability of each target in
order to know how much to rely on the prior.
But if we already knew the stellar variabil-
ity then we would have no need for the prior
– the cotrending solution would simply be
the intrinsic stellar variability subtracted from
the light curve, minus a Gaussian noise esti-
mate. This issue is not specific to this par-
ticular cotrending method either. Whenever
a system is characterized with an incomplete
model there exists the problem of identifying
the components in the system not represented
in the model. We fortunately do not need to
absolutely know the variability; we only need
an estimated metric in order to weigh the prior. This estimate can be obtained by comparing
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a third-order polynomial to the light curve. The polynomial will remove any long-term trends
leaving behind a roughly detrended curve. The standard deviation of this polynomial removed
light curve results in a rough calculation of the variability of the target. Removing a low-order
polynomial is essentially a high-pass filter; we are therefore assuming any long-term trends are
systematic and short-term trends are stellar. There are numerous counterexamples of short-term
trends that are actually systematic – reaction wheel zero crossings is a good example. How-
ever, short-term systematic trends tend to be small in magnitude whereas long-term systematics
tend to result in large diversions in the flux amplitude. Likewise, there are examples of intrin-
sic long-term trends but they are generally smaller than the systematic trends. Since we are
only concerned with the relative amplitude of stellar versus systematic variability, we are using
the low-pass filter to distinguish two characteristic realms of influence: long-term trends domi-
nated by systematics and short term trends dominated by intrinsic stellar variation. An example
is shown in Figure 8.21. Here, a highly variable target is compounded with a long-term DVA
and thermal trend. For periods less than 400 cadences the variance in the flux is dominated by
stellar features. The long-term variance and the general trend to higher flux values are due to
systematics. The variance of the residual after removing the polynomial fit, labeled as “Coarsely
detrended light curve” in the figure, gives a rough estimate of the stellar variability of this target.
Note that there are still systematic features in the detrended light curve. They are, however, small
in magnitude compared to the stellar variability13.
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Figure 8.21 By removing a third-order polynomial fit to the raw light curve an estimate of the intrinsic
variability of the target can be calculated. From Figure 6 of Smith et al. (2012).

The variability, V , is measured using

V =
σŷ

∆yṼ
, (8.20)

where σŷ is the standard deviation of the third-order polynomial detrended light curve, ∆y is the
uncertainty of the flux data as determined by the PA pipeline component (Clarke et al., 2010) and
Ṽ is the median variability over all light curves in the sample. The normalization by the uncer-

13This does not lessen the ability of PDC-MAP to remove short-term systematics. Such short-term systematics are still
present in the basis vectors and so when the PDF fit is performed the short-term trends are removed.
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tainty is to ensure the noise in the data is not included in the stellar variability. The normalization
by the median variability is so that a variability of 1 is considered typical, thereby simplifying
the analysis parameterization. Figure 8.22 shows a histogram of the measured variability for all
targets on channel 2.1. The median of all of these values is evidently 1 and the distribution is
typical for all channels, where most are close to typical variability but with a long tail to high
variability (note the log scale for the x-axis). There are two cutoff thresholds plotted as well.
The upper (in dashed red) is the threshold to determine if a target is “highly variable.” The lower
(in solid green) is to determine if a target is “very quiet.” The very quiet targets have such a
low amount of variability that using the prior PDF when generating the fit has been found to be
problematic. Any targets above the high variability threshold are removed from the reduced list.
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Figure 8.22 Histogram of estimated variability for all targets on channel 2.1. This distribution is typical
for all Kepler channels. The quiet targets below the “SVD and Prior Generation” threshold are used to
generate the cotrending basis vectors. From Figure 7 of Smith et al. (2012).

The remaining targets are sorted with respect to median absolute correlation and the 50% most
highly correlated are used for SVD.

It should be noted that if the targets are normalized by their median before SVD then most
targets pass through zero amplitude at the midpoint, as can be seen as a “node” in the light curves
at cadence 2200 in Figure 8.16. If SVD was performed on this set, as is, then all the strong
cotrending basis vectors would have zero amplitude at the midpoint. The basis vectors would
therefore be unable to remove systematics in the minority of targets that do not pass through zero
at the midpoint. The light curves could be dithered slightly by a zero-mean Gaussian dithering
magnitude in order to slightly “spread” the light curves about the zero flux value. Since the
dithering is zero-mean, this has no effect on the resultant basis vectors other than to remove
the artificial zero-crossing node at the midpoint. Note that the dithering would only be used to
generate the basis vectors. The cotrending would still be performed on the non-dithered, but
median-normalized, light curves. An alternative method, and the method currently used in PDC
is to mean normalize the light curves for SVD and basis vector generation. This removes the
“node” midway through the quarter and the need for dither. However, median normalized light
curves are still ideal for the cotrending due the better regularization of the light curves. So, the
cotrending is still performed on median normalized light curves. The absolute magnitude of the
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basis vectors is irrelevant during cotrending and we find no conflict in having the light curves
normalized in two different ways for each step.

Figure 8.23 shows the singular values from the singular value decomposition. This figure is
characteristic of all channels: two or three strong singular values, then a slowly tapering region
for about another dozen values until finally asymptotically approaching zero (as is expected with
SVD). The first several left singular vectors are selected (typically the first eight) to become the
Cotrending Basis Vectors. These first singular vectors exhibit the principle trends in the data
due to DVA, pointing errors, impulses due to Argabrightenings (Witteborn et al., 2011), focus
errors and reaction wheel zero crossings among other trends. The number of basis vectors used
is generally eight; however a signal-to-noise ratio (SNR) test is performed, where the SNR is
determined by

SNRdb = 10 log10

(
A2

signal

A2
noise

)
. (8.21)

Asignal and Anoise being the rms of the light curve and noise floor, respectively. The noise floor
is approximated by the first differences between adjacent flux values. Any of the eight basis
vectors with a SNR below a threshold of 5 decibels are removed but only a small number of
basis vectors over the entire field of view are removed by the SNR test. Most have high SNR. A

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

Singular Values from SVD for reduced Normalized Flux

Figure 8.23 The singular values from SVD on the reduced set of “cleaned” targets that are highly
correlated and quiet. From Figure 8 of Smith et al. (2012).

second dimensionality method is used based on Bayesian Model Selection (BMS, Minka, 2008).
In most cases this method will pick too high a dimensionality so we always pick the lesser
number of basis vectors given by either the SNR or BMS test. We wish to find only the singular
vectors with systematics; the lesser singular vectors do contain light curve signal information,
but not necessarily systematics. The Bayesian prior performs well at reducing the application of
these lessor basis vectors but we have found including them in the MAP fit adds no value yet
slows down the algorithm.

For a minority of basis vectors, a few target light curves can dominate the signal. The nor-
malization process attempts to “equalize” the strength of all targets, but a small number of light
curves can be over-represented in the singular vectors from SVD. To eliminate this we calculate
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an entropy metric for each basis vector using the following entropy calculation:

h(pi) = −
∫
p(x) log p(x)dx, (8.22)

where p(x) is a probability distribution function created from the right singular vectors from
SVD (referred to as the V-Matrix),

pi(x) = {Vki}. (8.23)

The V-Matrix contains the contribution of the signal in the basis vector from each target light
curve. We must first normalize the entropy calculation to a Gaussian distribution, which has the
highest entropy of any continuous distribution with the same 2nd moment. The entropy of a
Gaussian is

H0(σ) =
1 + log(2π)

2
+ log(σ), (8.24)

σ being the 2nd central moment of Vki for fixed i. The resultant relative entropy is therefore

h′(pi) = h(pi)−H0(σ). (8.25)

If one (or a few) targets dominate, then they will have much larger values in the V-Matrix than
all the other targets. A negative value of the entropy calculation will identify this condition. Bad
entropy is somewhat arbitrary, but we have found that a value below −0.7 is poor. For any basis
vectors with identified poor entropy, the V-matrix column for that basis vector is examined for
stand-out targets. The offending targets are removed and SVD is re-computed on the remaining
targets. The process is iterated until the entropy of all basis vectors is below −0.7. Typically,
no more than a couple of iterations is necessary and fewer than 20 targets are removed (out of
2,500 total targets).

Figure 8.24 shows the first eight cotrending basis vectors generated for channel 2.1 and Fig-
ure 8.25 shows just the first basis vector. Trends can be found in all the vectors but it is useful
to concentrate on the first and strongest. Here the most characteristic trends and systematics in
the data can be found. The general trend toward higher flux is due to seasonal change and solar
orientation. The short recovery periods at cadence indices 0, 1500, and 2800 are due to monthly
downlinks. The short spikes at 700 and 1450 are due to artifacts from correcting cosmic rays
near reaction wheel zero-crossing periods.14 The periodic oscillation is due to heater cycling.
Notice how the basis vector in Figure 8.25 closely follows the flux light curve in Figure 8.17.
This signifies that virtually all the features in this flux light curve are due to systematic effects
and not intrinsic stellar variability. In theory, any features in the light curves in Figure 8.16 that
are not represented in the basis vectors in Figure 8.24 are intrinsic to the target. However, a
simple LS projection of the light curves on the basis vectors will not produce desirable results
for all targets as will be shown below.

Once the cotrending basis vectors are found a robust LS fit is performed on each target. This
creates the empirical data used to generate the prior PDF.

8.5.2 Numerically Generating p(θ)

The prior PDF is based on the distribution of robust fit coefficients of the basis vectors for all
light curves using the method described in Bowman & Azzalini (1987). This method computes
a probability density estimate of the sample data based on a normal kernel function using a

14These artifacts have been resolved in a recent version of the PA pipeline component but Argabrightenings still persist.



164 PRESEARCH DATA CONDITIONING

Figure 8.24 First eight Cotrending Basis Vectors for channel 2.1. The gaps in the data have been linearly
filled so these curves are continuous. From Figure 9 of Smith et al. (2012).

window that is a function of the number of points in the data sample. The form of the prior
PDF will depend on the parameterization of the robust fit coefficients. We must thus decide
how to parameterize the coefficients to best extract the correlations. Some systematic effects
are caused by focal plane irregularities, others by thermally induced focus changes, which are
stronger near the edges of the CCD frame due to the outer edges being further away from the
optical ring of best focus. There are also other issues that are dependent on the physical position
of each pixel on the CCD. Therefore, the targets’ locations in the sky as characterized by RA
and Dec are reasonable parameters to characterize target location with respect to the sources
of systematic effects. The targets’ influence by systematic effects is also directly related to the
stellar magnitude since different magnitude targets result in different saturation levels of the CCD
pixels. For example, the readout electronics for the CCD are sensitive to temperature drift but
the sensitivity is non-linear with respect to CCD flux levels. So brighter targets are affected by
instrument temperature differently than dim targets. We therefore parameterize the prior PDF
with three independent variables: 1) stellar magnitude (Kp), 2) right ascension (RA), and 3)
declination (Dec).
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Figure 8.25 First Cotrending Basis Vector for channel 2.1. The amplitude of the basis vector is arbitrary.
From Figure 10 of Smith et al. (2012).

Figure 8.26, Figure 8.27, and Figure 8.28 show the robust fit coefficients for a basis vector
plotted against Kp, RA, and Dec. The blue star data is for all targets whereas the red circle data
are just for those targets remaining for SVD after the cuts discussed in Subsection 8.5.1. The
solid blue and dashed red curves in Figure 8.27 and Figure 8.28 are the traveling window means
of the blue star and red circle data, respectively. The cuts clearly produce a bimodal distribution
in Kp for this basis vector. A simple Gaussian fit would not reproduce this, demonstrating that
the systematic trends are correlated with Kp but variable targets are masking the true correlation
when a simple robust fit is performed. The correlations in RA and Dec are also evident but
to a lesser extent. Notice also that the mean (solid blue curves) are biased compared to the
dashed red. This is again because the variable targets are masking the true trends in the data.

Some basis vectors exhibit stronger trends in Kp, RA, or Dec but not necessarily all three
simultaneously, as is expected if the different systematics represented by the basis vectors have
different instrumental sources. Plotting different basis vectors and/or channels reveals different
trends and correlations.

We want to mainly rely on targets in the neighborhood around the target that we are fitting,
referred to as the target under study (TUS), in RA, Dec, and Kp space when generating the prior
PDF. If we simply found an evenly weighted PDF then a large cluster of targets with a certain
coefficient value, even if non-local to the TUS, would always dominate the peak of the prior
PDF. We therefore use a weighted probability density estimate based on the standard Euclidean
distance between targets x and y:

D =

√
(x− y) Λ−1 (x− y)

T
, (8.26)

where Λ is a diagonal matrix whose diagonal elements give the relative weighting for each
dimension. A straight normalization in each dimension by its standard deviation would result in
equal weighting of all three dimensions, but we wish to accentuate the prior PDF in dimensions
that exhibit greater correlations, and in our case, the robust fit coefficients exhibit a stronger
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Figure 8.26 Robust fit coefficients for Basis Vector 1 for all targets (blue stars) and only those targets used
for SVD (red circles) plotted against Kepler magnitude. Taking cuts on stellar variability, target-to-target
correlation, and entropy results in a bimodal distribution that would not be evident without the cuts. From
Figure 11 of Smith et al. (2012).
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Figure 8.27 Robust fit coefficients for Basis Vector 1 for all targets (blue stars) and only those targets
used for SVD (red circles) plotted against Right Ascension. From Figure 12 of Smith et al. (2012).

correlation in Kp than in RA or Dec. The Λ matrix diagonals are therefore:

Λi =
mad (θi)

Si
, (8.27)
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Figure 8.28 Robust fit coefficients for Basis Vector 1 for all targets (blue stars) and only those targets
used for SVD (red circles) plotted against Declination. From Figure 13 of Smith et al. (2012).

where mad (θi) is the median absolute deviation of the coefficient distribution along dimension
i, and Si is the scaling factor for dimension i. (Si = {2, if i⇒ Kp or 1, otherwise.}) The above
weighting results in the Kp dimension weighted twice as much as RA and Dec when generating
the prior PDF. That is, targets farther away in the Kp dimension are weighted proportionately
less than in RA and Dec. This effectively results in taking a tighter cut in Kp space to emphasize
the greater correlation in that dimension. Since the PDF is weighted by this distance metric,
the PDF will emphasize the correlation in Kp and yet still be sensitive to the trends in RA and
Dec. The median absolute deviation is used instead of the standard deviation in order to ignore
outliers.

The weighting by Equation 8.26 and how it affects the prior PDF is illustrated in Figure 8.29,
Figure 8.30 and Figure 8.31, the latter two being the prior PDFs for the same two targets in
Figure 8.17 and Figure 8.18. The blue histogram in all three figures is exactly the same since they
are generated from the same distribution of coefficients. However, the prior PDF (red curve) is
dramatically different. In Figure 8.29 a bimodal PDF is evident due to targets nearby to the TUS
containing two clusters around -1.3 and -0.85, which suggests that the coefficient value for the
TUS should be one of these two values. The value that is actually chosen will be dependent on the
form of the conditional PDF and the weighting of the prior PDF as discussed in Subsection 8.5.3.
In Figure 8.31 the targets near the TUS have coefficients clustered around -0.34, which is far from
the peak in the unweighted PDF. Using the unweighted PDF would have completely missed the
actual systematic trend in the data near the TUS. The log of the prior PDF is plotted in these
figures for direct comparison with Equation 8.19, which results in a compression of the PDF
near the top.

In summary, the prior PDF is developed by generating a 3-D weighted distribution of robust
LS fit coefficients in RA, Dec, andKp space. This methodology makes no assumptions, Gaussian
or otherwise, on the form of the PDF, and allows PDC-MAP to identify and characterize the form
of the systematic trends across the full distribution of targets.
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Figure 8.29 Histogram of Basis Vector 2 robust fit coefficients for all 1,864 targets on channel 2.1 and the
weighted probability density for a particular target. The weighting by distance in Kp, RA, and Dec clearly
affects the PDF. From Figure 14 of Smith et al. (2012).
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Figure 8.30 Histogram of Basis Vector 2 robust fit coefficients for all 1,864 targets on channel 2.1 and
the weighted probability density for the Quiet Target shown in Figure 8.17. From Figure 51 of Smith et al.
(2012).

8.5.3 Finding the Weighting Parameter Wpr

For each light curve the weighting parameter, Wpr, in Equation 8.19 is an empirical weighting
parameter that is principally based on the variability of each target. The greater the variability,
the greater we need to constrain the LS fit. However, there is another complication. One factor
influencing the “goodness” of the prior fit is the sparseness of the targets in certain regions in
RA, Dec, and Kp space. A sparse distribution will result in poor prior statistics. There are also
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Figure 8.31 Histogram of Basis Vector 2 robust fit coefficients for all 1,864 targets on channel 2.1 and
the weighted probability density for the Variable Target light curve shown in Figure 8.18. From Figure 16
of Smith et al. (2012).

other unknown causes resulting in poor priors for some targets, and so an additional parameter in
the prior weighting is an evaluation of the “goodness” of the prior fit. The goodness is evaluated
using a method similar to the variability calculation above. The prior fit is compared to a third-
order polynomial fit to the light curve with a soft-wall cutoff using the following equation:

Gpr =





1−
(
Graw
αG

)3

, if Graw < αG

0, otherwise
(8.28)

where Graw is the “raw” goodness given by

Graw = std
(

(Fpr − Fpoly)

mad (y − Fpoly)
− 1

)
, (8.29)

and Fpr and Fpoly are the prior PDF fit and the third-order polynomial fit to the data respectively.
Normalization by the median absolute deviation (mad) of the polynomial fit removed light curve
allows for a comparison of the difference between the polynomial fit and the prior fit with respect
to the variance of the target. The soft cutoff is to ensure that small changes in the light curve will
not have dramatic changes in the weighting. The scaling parameter αG is determined by when
the deviation of the prior fit to the polynomial fit becomes too poor to be useful in constraining
the a posteriori fit. An example of a poor prior fit is given in Figure 8.32. Notice how both the
long-term trend and the Earth-point recoveries are much larger in the prior fit than in the actual
data. Examples such as this are in the minority, but frequent enough to require the additional
test for prior goodness. It could be supposed that this target is trending downward, canceling
out the upward trend of the prior fit. This is unfortunately not the case. Examination of Q6 and
Q8 reveals that this target is not experiencing a general trend in Q7. The prior fit is indeed poor
and should not be used to any large degree. The unfortunate side effect of the prior goodness
test is that PDC-MAP is less sensitive to very long-term trends in the data. A true long-term
trend in the data that cancels out the systematic trend can confuse the prior goodness metric that
would interpret the fit as a bad prior. The only way to surely know the actual long-term trend
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Figure 8.32 An example of a poor prior PDF fit to the trend in the target. From Figure 17 of Smith et al.
(2012).

is to examine multi-quarter data. Future versions of the PDC module may indeed provide this
functionality.

The resultant full form to the prior weighting is:

Wpr = V βV GβG
pr (8.30)

the parameters βV and βG being scaling factors for the variability and prior goodness, respec-
tively.

In cases where the prior goodness is near zero, the fit reverts to a reduced robust fit where
the number of basis vectors is limited to just the first several (the default is four). A MAP fit
features a large number of basis vectors that can be used. The prior PDF restricts the fit from
drifting drastically in function space, searching the large set of basis vectors for a combination
that reduces the bulk rms at the expense of distorting stellar features. If the prior cannot be used
then there is no such restriction and the posterior PDF becomes a LS fit, so a more limited number
of basis vectors must be used in order to constrain the fit. The first several basis vectors have very
strong trends in most of the data and have low noise components so they are generally safe to use
even with an unrestricted LS fit. It is also generally true that a target has a bad prior because it is
quiet and any small deviation in the prior from a true trend is very noticeable; therefore the prior
is neither necessary or desirable to use.

If the target is below the variability threshold shown in Figure 8.22 then the target is very quiet.
In many cases the use of the prior fit only worsens the fit over a LS fit, so the prior weighting
is zeroed. This is due to the prior fit never being an exact match to the target trend; even small
deviations can “pull” the posterior fit away from a good fit. In such cases there is little risk of a
quiet target biasing a LS fit away from a proper cotrending fit. The majority of targets do not fall
into either of the above two cases, so the prior is used to the degree dictated by the prior weight
and a Bayesian MAP fit is performed.
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8.5.4 Maximization of the Posterior PDF

Once the prior weighting is determined the posterior PDF can be assembled using Equation 8.19.
Due to the empirical, and therefore non-analytical, form of the prior PDF, the posterior must
be maximized numerically. In general, a multidimensional maximization is difficult and time
consuming due to the risk of only finding local maxima. Fortunately, due to the use of SVD, the
basis vectors are all orthogonal so the various coefficients θ̂i can be maximized sequentially. The
process is therefore straightforward. The strongest singular vector is maximized first and then all
subsequent singular vectors are maximized in turn.

Following along with the same two examples of a quiet and a variable target, Figure 8.33
and Figure 8.34 show the final posterior PDF along with the prior and conditional PDF. The
black dots and magenta stars are the maxima of the prior and conditional PDF and the blue
circle is the maximum of the posterior PDF. Due to the varying scales of the three curves, for
illustration purposes, the prior and conditional curves have been renormalized to the same scale
as the posterior. The conditional fit has the smooth quadratic form characteristic of a LS fit.
The prior appears Gaussian on this scale but in general is not. The title of each plot gives the
prior weight. For the quiet target the variability is low so the prior weight is only 4.65, resulting
in a minor correction to the conditional curve and so the conditional and posterior curves are
virtually identical. Also, in cases where the width of the prior PDF is large, the maximum is
low and makes little contribution to the posterior. A “wide” prior is equivalent to saying that
the prior information results in little added information to a good fit, the extreme case being a
“naive” prior PDF which provides no additional information. This is in contrast to the variable
target where the conditional maximum is near the prior PDF, meaning the fit almost completely
relies on the prior data, due to the high weight on the prior PDF of 976, resulting in only a slight
influence of the conditional fit. In the case of the variable target in particular, if the prior PDF

Figure 8.33 Posterior, prior and conditional PDFs for the Quiet Target. The prior and conditional curves
have been renormalized to the same scale as the posterior for legibility. This target is quiet so the prior PDF
weighting is low and does not influence the posterior much. The maximum of the posterior is therefore very
close to the conditional maximum. The width of the prior PDF can also influence its height and amount of
influence on the conditional. From Figure 18 of Smith et al. (2012).

was not determined using a weighted distribution (inKp, RA, and Dec space) then the maximum
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Figure 8.34 Posterior, prior, and conditional PDF for the Variable Target. The prior and conditional
curves have been renormalized to the same scale as the posterior for legibility. This target is highly variable
so the prior PDFs is highly weighted at 976, which influences the posterior considerably. The maximum of
the posterior is therefore close to the prior maximum. From Figure 19 of Smith et al. (2012).

of the prior would have been at about 0.6, as shown by the unweighted histogram in Figure 8.31.
This would have resulted in a poor fit to the systematics. The actual prior fit takes into account
the location of the TUS and the systematic trends in nearby targets.

Once the maximum of the posterior PDF is found for each basis vector the MAP fit is a linear
combination of the basis vectors. The resultant fits are in Figure 8.35 and Figure 8.36. For the
quiet target, all three fits roughly overlap the actual trend in the data. The prior fit is not an exact
match and the slight disagreement is to be expected since the prior is purely formulated using
targets other than the TUS. For a quiet target such as this one, highly weighting the prior PDF
would result in a degradation of the fit, and so instead the PDF relies mainly on the conditional
PDF (i.e. the red dashed and green solid curves overlap). The resultant light curve after the trend
removal is in the bottom figure for both the MAP fit and the conditional fit, the latter being a LS
fit. For the quiet target notice how the resultant curve is nearly featureless above the noise floor.
Some slight artifacts are not fully removed and methods to correct these could be implemented.
In the case of the variable target the conditional PDF results in a fit that attempts to remove all
features in the light curve, whereas the prior PDF correctly identifies just the systematic trends
in the data. In this case it is beneficial to rely principally on the prior PDF. The prior cannot be
well discerned in the figure because it lies under the MAP fit. The conditional fit also introduces
a considerable amount of noise into the corrected light curve due to its being constructed more
from lesser basis vectors (shown in Figure 8.24) that contain larger noise components.

8.5.5 Iterating the Posterior with the Goodness Metric

The weighting on the prior is critical to the performance of MAP. The Prior Weight in Equa-
tion 8.30 has been found to not always be optimal. To better optimize the prior for each indi-
vidual target, we iterate the posterior maximization with the goodness metric. In general, due to
the clean nature of the prior, the greater the weight on the prior the lower the introduced noise.
In contrast, the greater the weight on the prior the greater the bias and hence the more residual
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Figure 8.35 Resultant fits to the prior, conditional, and posterior (MAP) PDF for the Quiet Target. Target
variability is low at 1.17 and Wpr is also low at 4.65. Quiet targets rely principally on the conditional PDF.
From Figure 20 of Smith et al. (2012).
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Figure 8.36 Resultant fits to the prior, conditional and posterior (MAP) PDFs for the Variable Target.
Target variability is high at 30.25 and Wpr is also high at 976.2. Variable targets rely principally on the
prior PDF. It is evident that the Posterior (MAP) fit finds the systematic trend yet preserves the variability.
From Figure 21 of Smith et al. (2012).

correlation due to a poorer LS fit to the trends. Therefore, we concentrate on the two goodness
metric components: introduced noise, GN , and residual correlation, GC . We begin by maximiz-
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ing the posterior with the prior weight as given in Equation 8.30. We then evaluate the goodness
metric and scale the prior weight using the following case structure:

δWpr =





min
(

1
20∆GC

, 0.9
)
, if GC < 0.8;

max (20∆GN , 1.1) , if GN < 0.8;
1 otherwise,

(8.31)

where

∆GC = 0.8−GC (8.32)
∆GN = 0.8−GN (8.33)

and poor correlation goodness takes precedence over poor introduced noise. The new prior
weight will thus be:

W′
pr = WprδW

′
pr. (8.34)

We then re-maximize the posterior and repeat the iteration until any of the following conditions
is met:

GC > 0.8 and GN > 0.8, or

Wpr > 1.0× 107, or

Wpr < 1.0×10−3, or stop if goodness is no longer improving. This speeds up the algorithm
by not continuing to iterate with no improvements, or

Iteration limit of 40.

8.5.6 Propagation of Uncertainties

Propagation of uncertainties is not necessarily straightforward because a covariance matrix is
difficult to formulate for an empirical prior PDF. As a first approximation, the propagation can
be assumed to be through a LS solution – which is close to the solution for most targets. If
Craw and Ccot denote the covariance matrices for the temporal samples of the raw and cotrended
flux time series for a given target, then the uncertainties may be propagated (disregarding the
uncertainty in the mean level which can be considered to be negligible) by:

Ccot = TcotCrawT
T
cot, (8.35)

where the transformation Tcot is defined by

Tcot =
(
I −HHT

)
. (8.36)

H has the same design matrix as in Equation 8.19. This is overly conservative since the posterior
PDF is more constrained than a simple LS fit. A more accurate propagation of uncertainties
would take into account the attenuation of the uncertainties due to the prior PDF.

8.5.7 Application of PDC-MAP to Short Cadence Data

The principle issue with applying the MAP technique to SC data is the limited number of targets
per module output. No more than 512 SC targets are collected at any time; these are spread over
the entire FOV, so the number of SC targets per channel is small and at most about a dozen.
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A dozen is too small of a sample for the prior PDF or basis vectors to be properly formulated.
Fortunately, all SC targets are also LC targets, so priors are already developed for them. A simple
way to extend MAP to SC data is simply to use the basis vectors interpolated from LC data and
the LC fit coefficients as the prior. This method is referred to as “quickMAP” since it utlizes
a Bayesian-like PDF with a prior and a conditional PDF. A “Bayesian” formula can then be
assembled as follows:

θsc = (1− α)θMLE + αθlc, (8.37)

where Θlc is the coefficient fit to the basis vectors from the LC PDC-MAP run (i.e. “the prior”),
θMLE is a LS fit to the SC time series of the interpolated LC basis vectors, and α is a weighting
parameter to determine to what extent to rely on the prior. As with normal MAP, the prior is
weighted more for highly variable targets:

α = 1− 1

max(1.0, variability)2
, (8.38)

where variability is calculated for the SC data using the same method as described for LC data
in Subsection 8.5.1, except here, we do not normalize by the median variability (Ṽ ). The greater
the variability the more the prior is weighted – just as occurs in PDC-MAP.

The basis vectors must be interpolated from LC to SC. The interpolation is performed with
a simple spline function at a ratio of 30 to 1, which is high for a spline, but provides stable
results. There is a potential concern that frequencies could be introduced above the LC Nyquist
frequency; however, Fourier analysis has shown there to be virtually no introduced signals above
this frequency. Provided that the LC data properly bracket the SC data with no gaps, the spline
is well behaved. The interpolation means that no signals shorter than LC Nyquist frequency are
corrected in SC data. Improvements to this method would be to include additional basis vectors
that specifically address trends shorter than LC generated from the SC target data. However, with
so few targets generating the trends, this will be difficult and prone to poor SNR.

For quiet targets θsc relies principally on a simple robust LS fit to the interpolated LC basis
vectors. For variable targets the LC fit is relied upon to control the posterior fit. For targets where
the LC MAP fit was not performed, α = 0 and the fit relies solely on the robust LS fit.

Two examples of performance are given in Figure 8.37 and Figure 8.38.

8.6 Multi-Scale MAP

The PDC-MAP algorithm described in Section 8.4 performs very well for the majority of tar-
gets in the Kepler FOV. However, for an appreciable minority, PDC-MAP has its limitations.
To further minimize the number of targets where PDC-MAP fails to perform admirably, we de-
veloped a new method, called multi-scale MAP, or msMAP. Utilizing an over-complete discrete
wavelet transform, the new method divides each light curve into multiple channels, or bands.
The light curves in each band are then corrected separately, allowing for a better separation of
characteristic signals and improved removal of the systematic errors.

8.6.1 Shortcomings of PDC-MAP

Correction of systematic errors in Kepler light curves has seen a dramatic improvement with
the new Bayesian MAP detrending algorithm in the completely rewritten PDC module of Ke-
pler.̇ The main improvement of PDC-MAP over the previous PDC-LS method (Twicken et al.,
2010a) is that the latter was prone to partially removing astrophysical signals and introducing
significant noise for many processed light curves. The Bayesian MAP approach of the new al-
gorithm makes it more robust against such overfitting. It can thus reliably remove the systematic
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Figure 8.37 Example of a highly variable SC target. In this case, quickMAP principally relies on the LC
MAP fit since Wpr = α = 0.96.

Figure 8.38 Example of a quiet SC target. In this case, quickMAP principally relies on the robust LC
MAP fit since Wpr = α = 0.013.

errors while at the same time preserving the astrophysical features of the light curves. Despite
this and other significant improvements to PDC, the corrected time series still exhibit some ar-
tifacts. First, about 20% of the light curves show some residual systematic errors. They also
commonly exhibit incompletely corrected thermal transients from “Earth-point recoveries” (see
Figure 8.39A). These are 100–200 cadence (2–4 days) long trends in the light curves that are
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caused by the thermal settling of the photometer after the monthly Earth-pointing events of the
spacecraft or after its quarterly roll (Haas et al., 2010). A similar type of artifact can be seen in
the recovery from safe mode events. For quarters that suffer from multiple interruptions of oper-
ation and commanded adjustments to photometer pointing, such as the highly challenging Kepler
Q2 (June 2009 – September 2009), PDC-MAP will sometimes not perform error correction to
a satisfactory degree (see Figure 8.39B). Second, for roughly 5%-10% of targets the systematic
error correction introduces high-frequency noise, which can make detection of planet transits or
analysis of astrophysical signals more difficult. The introduced noise is generally small but can
be quite large for a handful of targets.

The above artifacts have the same origin: The MAP cotrending basis vectors, used to fit
and remove the systematic errors in the light curves, usually contain features on very different
timescales (see Figure 8.40), ranging from only a few cadences or hours (e.g., Argabrightenings,
Witteborn et al., 2011), over several days (e.g. Earth-point recoveries, reaction-wheel zero cross-
ings), to several weeks or even months (e.g. long trends due to DVA or focus changes). Thus,
corrections of errors on different scales cannot be independent, and so the removal of errors on
one scale can have the side-effect of injection or incomplete removal of errors on another scale.
As a second issue, some basis vectors contain very high-frequency components and noise. This
leads to injection of high-frequency noise in the MAP correction. In mathematical terms, these
issues can be regarded as a consequence of the set of cotrending basis vectors not forming an
independent basis. The basis set is quite complete in the sense that all the trends are represented
in the basis vector set. But because they are convolved with each other, proper removal is not
always possible. Simply increasing the number of cotrending basis vectors in the fit does not
only quickly render it computationally infeasible, but further has not been found to significantly
increase the overall performance of the systematic error removal (see Subsubsection 8.6.3.4).
If anything, increasing the number of basis vectors just results in more stellar features being
removed.

We note that, since the Earth-point recoveries are the most obvious type of residual systematic
errors in PDC-MAP, other approaches to mitigate their detrimental effect on the light curve
quality are conceivable. One approach would be to simply ignore the recovery phase and discard
the respective cadences. However, this would discard a substantial portion (about 10%) of all data
points in each time series. It is important to realize that this loss could not be mitigated by longer
Kepler observation times because the recurring gap in the data would create a blind spot for
planet transits with a corresponding epoch and period to fit into these gaps. Another conceivable
approach could be to change the unit of work in Kepler PDC from quarter-long light curves to
only month-long light curves. This would yield only one strong thermal transient signal at the
beginning of the time series which might be easier to correct. However, this approach would
limit the maximum length of systematic errors that PDC can identify and correct to one month
because the maximum length scales of stellar features that can be preserved are limited by the
length of the unit of work. Further, this approach would only work for recoveries from scheduled
events (such as the monthly Earth-point), but not with recoveries from unplanned events such as
safe modes or loss of fine point (e.g. Q2), which lead to similar recovery artifacts. To avoid these
and other potential shortcomings of simpler approaches, we have designed a more sophisticated
algorithm that sacrifices neither data quality nor quantity.

8.6.2 The Solution: Multiscale Error Correction

In this section we present a solution to these problems, which we have first implemented as
a major improvement to Kepler PDC in version 8.2. The approach we take is to perform a
separation of scales in the time series, such that small scale features and large scale features are
described by different cotrending basis vectors. Figure 8.41 illustrates this approach: Each time
series is split into multiple channels (bands). The set of light curves in each band is corrected
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Figure 8.39 Worst case scenario examples of incomplete systematic error removal. A) A common case
where Earth-point recoveries, and to a lesser extent the quarterly roll recovery, are not completely corrected.
B) A light curve from Q2 with multiple imperfect corrections of safe modes, Earth-points, quarterly-rolls,
attitude-tweaks, and loss of fine-point. From Figure 1 of Stumpe et al. (2014).

separately with the MAP error correction algorithm. The corrected light curve bands are then
combined again to generate the corrected light curves. Since many different systematics occur
on different timescales this band splitting is useful in isolating the systematics. For example,
thermal stresses on the spacecraft due to its orbit about the sun results in systematics on a yearly
timescale, whereas the reaction wheel heater cycling occurs on a three-day cycle. These two
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Figure 8.40 Example of a set of eight non-multi-scale MAP Cotrending Basis Vectors (shown here for
module output 7.3, Q10) exhibiting the issues motivating the development of multi-scale MAP. Systematics
are present in the same basis vector on different timescale as is high-frequency noise for the latter basis
vectors. From Figure 2 of Stumpe et al. (2014).

systematic effects are independent of each other and since they occur on different timescales
they can be isolated using the band splitting method described below.

To decompose each light curve into a set of light curves on dyadic (power of two) scales, we
use an overcomplete discrete wavelet transform (Jenkins et al., 2002). As a joint time-frequency
representation, it is a natural choice for such a multiscale analysis. Similar to the short-time
Fourier transform (STFT), the wavelet transform is a windowed analysis technique that allows
for the analysis of non-stationary signals. In contrast to the STFT, however, the wavelet transform
uses variable-sized windows to tile the time-frequency plane. In particular, the wavelet transform
employs basis functions Ψτ,λ(t) that are scaled (by λ) and shifted (by τ ) versions of a mother
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wavelet Ψ(t), and that are finite and vary in both duration and bandwidth. Because of these
properties, the frequency and temporal resolution vary across scales in such a way that their
product (the area of the time-frequency tile) is constant at all scales. This property, that the
bandwidth at each channel divided by its center frequency is constant, is also known as the
Constant Quality (“Constant-Q”) property (Vetterli & Kovacevic, 1995). As a result, the wavelet
decomposition achieves the best time resolution at the shortest scales (highest frequencies) and
the best frequency resolution at the longest scales (lowest frequencies).

Figure 8.41 The Multiscale PDC-MAP correction
scheme. Each light curve y(t) is decomposed into
k bands yi(t) (i = 1 . . . k) using an analysis filter.
The MAP systematic error correction algorithm is
performed on each band yi(t) separately to generate
the corrected light curve band ỹi(t). Finally, the
corrected light curve bands are combined again with a
synthesis filter, yielding the corrected light curve ỹ(t).
From Figure 3 of Stumpe et al. (2014).

Convolution of a signal y(t) with the
wavelet basis functions Ψτ,λ(t) via the
Wavelet Transform, WT , produces a series of
wavelet coefficients w(τ, λ) for each wavelet
basis function (characterized by its shift τ and
scale λ),

w(τ, λi) = WT [y(t)] . (8.39)

The scales are chosen as powers of two (λi =
0, 1, 2, 4, 8, . . . , N ), leading to a doubling of
the characteristic scale in each band and the
constant-Q property. By taking all possible
shifts in each band (τj = 1 . . . T , where T
is the length of the discrete input time se-
ries y(t)), we perform an overcomplete dis-
crete wavelet transform (Jenkins, 2002). Fig-
ure 8.42 shows the original light curve and the
set of wavelet coefficients for the light curve.
The wavelet coefficients w(τ, λ) are propor-
tional to the power of the signal at each partic-
ular shift τ and scale λ. Here we can see that
distinct events, such as the Earth-point ther-
mal recoveries, are spread out as we move to
longer length scales. Long-term trends are in
the longest scale (1,024 cadences); however,
the colormap has been saturated at large values in order to show the details at smaller scales.
Intermediate length features appear in the 128, 256, and 512 cadence scales. High-frequency
features are in the 1–4 cadence scales. Also note that the single spike in the light curve at ca-
dence 1,150 exhibits itself as a streak along many scales.

Wavelet coefficients are not used for MAP directly, but instead we immediately perform an in-
verse wavelet transform in each band, reconstructing a band-split light curve in the time domain.
It is this band-split signal in the time domain to which MAP is applied. With the overcom-
plete wavelet transform the reconstruction of the whole signal y(t) from the wavelet coefficients
w(τ, λ) can be done by applying the inverse transform WT−1 in each band i separately:

yi(t) = WT−1 [w(τ, λi)] . (8.40)

Taking the linear sum over yi(t) for all scales i would result in the original light curve before
band splitting:

y(t) =

N∑

i=1

yi(t). (8.41)
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Figure 8.42 Wavelet analysis of the light curve for KIC 5356467 Q10. The top panel shows the input
light curve flux. The lower panel shows the wavelet coefficients w(τ, λ), where τ is the shift, plotted
horizontally, and the scale, which is 2λ−1, on the vertical axis. Distinct features in the light curve can
clearly be seen extending across multiple scales in the wavelet coefficients. In order to show details at
shorter scales, the 1024 scale is saturated in the colormap. From Figure 4 of Stumpe et al. (2014).

But because this reconstruction and the MAP correction are both linear operations, we can per-
form a MAP correction in each band separately:

ỹi(t) = MAP [yi(t)] (8.42)

and then take the sum of the corrected light curve bands, ỹi(t), to obtain the total corrected light
curve ỹ(t):

ỹ(t) =

N∑

i=1

ỹi(t). (8.43)

Note that even though the MAP operation is linear it is not commutative:

N∑

i=1

MAP [yi(t)] 6= MAP

[
N∑

i=1

yi(t)

]
, (8.44)

and so the band-split msMAP operation results in a distinct correction to regular MAP.
The process of a wavelet transformation followed by a inverse wavelet transformation can be

interpreted as an octave filterbank that iteratively splits a signal Vi(t), with the input signal y(t) =
V0(t) into a ‘detail’ layer Wi+1(t) and an ‘average’ layer Vi+1(t) as illustrated in Figure 8.43A.
The ith “detail” layer captures changes in the input signal on a scale of 2i−1, while the ith

‘average’ layer captures the smoothed structure on a scale of 2i. The perfect reconstruction
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property of the wavelet decomposition guarantees that the original signal is the sum of the ‘detail’
layers and the last “average” layer:

y(t) = Vn(t) +

N∑

i=1

Wi(t). (8.45)

y(t)

W1(t) W2(t) Wn(t)

V1(t) V2(t) Vn−1(t) Vn(t)...

...
A

B

Figure 8.43 Illustration of the wavelet
transformation. A) Represented as an octave
filterbank which decomposes the input signal into
successive ‘detail’ layers Wi(t) and “average” layers
Vi(t). B) Daubechies 12-tap wavelet, which is chosen
as the mother wavelet in this work. From Figure 5 of
Stumpe et al. (2014).

In light of Equation 8.45, we can now refer
back to Figure 8.42 to discover that the plot-
ted wavelet coefficient scales 1–512 are the
‘detail’ layers Wi(t), whereas the 1024 scale
is actually the final ‘average’ layer Vn(t).

As the mother wavelet, we use the
Daubechies 12-tap wavelet (Cohen et al.,
1992) (see Figure 8.43B). It is important to
note that the MAP fit is not performed in
the wavelet domain, but in the regular time
domain. The process is illustrated in Fig-
ure 8.6.2. A further detail not shown in the
figure is that the uncertainties are split using
the same method as on the light curve data and
then the propagation of uncertainties method
as used in MAP is applied in each band. The
uncertainties are then combined to produce
the output uncertainties for msMAP.

Figure 8.44 Bandsplitting example. From Figure 6 of Stumpe et al. (2014).

A wavelet decomposition of a typical light curve into its channels (1–11) is shown in Fig-
ure 8.45. Each channel has a characteristic scale that is twice as large as that of the next channel.
Rather than performing a MAP correction directly on each individual channel, however, it is
preferable to group a number of adjacent channels together and perform the MAP correction
on each of these combined bands. In the case illustrated in Figure 8.45, for instance, 11 chan-
nels are combined into 4 bands. Aside from the MAP correction being relatively expensive to
perform on 11 channels individually, we found that the correction performance is better when
grouping channels together this way. The main reason for this is that when having many bands,
the errors and features in the time series are spread across band boundaries and are distributed
across multiple bands. Thus, different parts of the same feature are subjected to different MAP
fits, which can lead to imperfect corrections. We therefore choose the groupings so that char-
acteristic features are wholly contained in a single band. Also, overfitting can occur if all 11
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channels are fit separately, due to the large number of degrees of freedom in the correction (see
Subsubsection 8.6.3.4).

Figure 8.45 Decomposition of the input light curve (left) into a set of sub-bands with dyadic scale.
Multiple sub-bands are combined (dashed boxes) by summation to yield the final bands (right). The
numbers on the sub-bands denote the characteristic scale in units of cadences for the respective sub-band.
From Figure 7 of Stumpe et al. (2014).

Figure 8.46 gives the first four MAP cotrending basis vectors in a three-band decomposition.
The cotrending basis vectors in the different bands separate the scales of the systematic errors
very neatly, allowing independent correction of the errors. In particular, band 1 contains long-
term trends, band 2 contains artifacts of medium duration (such as the Earth-point recoveries and
the three-day reaction wheel cycle), and band 3 contains very high-frequency features such as
Argabrightenings and high frequency oscillations. For band 3, which contains the characteristic
scales of 1 and 2 cadences, the SNR test discussed in Subsection 8.5.1 finds no significant basis
vectors, due to the noise floor being approximated by the first differences in the flux. For a set
of vectors with signals only up to 2 cadences long, there is not enough of a distinction between
the first differences and the true signal for the SNR test. Instead we rely on Bayesian Model
Selection (Minka, 2008) to find the proper dimensionality in Band 3. Typically only one or two
basis vectors are found that contain high-frequency oscilations. When MAP finds no significant
systematic signals among the light curves, it vetoes all cotrending basis vectors. With no surviv-
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ing cotrending basis vectors, no correction is performed and the light curve signals are simply
preserved. This aids in separating the noise from the systematic errors.

Figure 8.46 The first four MAP cotrending basis vectors in a three-band decomposition for Q5 Module
Output 7.3. Signals are principally in the first two bands but there are slight signals in band 3. From Figure
8 of Stumpe et al. (2014).

8.6.3 Choice of Parameters

The PDC-MAP algorithm has a set of parameters, such as the number of basis vectors and certain
weighting coefficients that can be chosen by the pipeline operator to achieve optimal correction
performance. The multiscale extension presented here introduces more parameters and detail
choices for the algorithm that have to be characterized and optimized for correction performance.
In particular, the most important parameter choice is the grouping of channels to combine into
bands, which determines the number of bands as well as the scale range of each band. Moreover,
the PDC-MAP parameters can be chosen independently for each band, leading to a significantly
larger parameter space. We have tested a wide range of parameter choices to investigate their
effects on the correction performance and we discuss our main findings here.15

8.6.3.1 Number of Bands The number of bands directly determines the number of degrees
of freedom for the overall MAP correction, and thus the “flexibility” of the fit. The two border
cases are: 1) performing a MAP fit on each channel without any grouping of bands and 2)
grouping all channels together into one band, equivalent to the regular version of PDC-MAP.
We found that the best results are usually achieved by using a decomposition into either three or

15It should be noted that the current Kepler Pipeline architecture does not allow for specific parameters for individual
channels but only for individual quarters where all channels in each quarter use the same parameters.
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four bands. Fewer bands lead to residual artifacts as in the case of regular PDC-MAP, whereas
more than five bands can lead to unconstrained fits, splitting of features across multiple bands,
and either overfitting or introduction of artifacts in extreme cases. A general trend we observed
is that time series suffering from more and stronger artifacts (e.g. heavily corrupted observation
quarters such as Q2, more sensitive CCD channels) benefit from corrections with four or even
five bands, whereas for time series with fewer systematic errors, three bands are usually the
best choice. To perform a comprehensive comparison between 3- vs 4-band decomposition, we
performed both on all CCD channels of quarters Q5–Q8, (i.e. a time span of one full year to
exclude potential seasonal effects) and evaluated the correction quality using visual investigation
of a subset of light curves, as well as with the PDC goodness metric to obtain aggregate statistics
(see Subsubsection XIV for details of the goodness metric).

The PDC goodness metric quantifies the performance of the cotrending in PDC with four
basic performance qualities: 1) removal of target-to-target correlations, 2) injection of noise,
3) preservation of stellar signals, and 4) removal of Earth-point thermal recoveries. The study
concluded that the absolute magnitude of the differences in the goodness metric between the 3-
and 4-band decomposition is only marginal and is almost negligible in practice. This is evident
when comparing the total goodness between 3 and 4 bands as shown in Figure 8.47. This shows
that for almost all CCD channels the difference between 3-band and 4-band average correction
performance is on the order of only 1%. In the visual comparison of the corrections for indi-
vidual targets, we did find some examples where the correction was better using four bands (see
Figure 8.48A for an example), and in rare cases the 4-band correction was significantly worse
than the 3-band correction (see Figure 8.48B for an example). The bottom line of this compari-
son is that either three or four bands should be used and they both yield very similar correction
performance.

Figure 8.47 Comparison of the total goodness between a 3-band vs. a 4-band correction for all four
quarters Q5–Q8. From Figure 9 of Stumpe et al. (2014).
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Figure 8.48 Comparison of a 3-band vs a 4-band correction. A: a 4-band correction can sometimes lead
to better results when the 3-band correction has residual systematic errors. B: on the other hand, 4-band
corrections can sometimes introduce artifacts. Both of these cases are rare, and usually both corrections
perform similarly well. From Figure 10 of Stumpe et al. (2014).

8.6.3.2 Channel Grouping, Band Boundaries The second central parameter choice involves
selecting which channels – and thus characteristic scales – to group together and treat in the same
MAP fit. For example, Figure 8.45 shows a decomposition where band 1 contains only the scale
of 1024 cadences, band 2 contains the scales 512, 256, 128, 64, 32; band 3 contains the scales 16,
8, 4; and band 4 contains the scales 2, 1. We abbreviate this here as “(1024 / 512,256,128,64,32
/ 16,8,4 / 2,1)”. Alternative 4-band decompositions could be (1024 / 512,256,128 / 64,32,16,8,4
/ 2,1) or (1024,512,256 / 128,64,32 / 16,8 / 4,2,1). We systematically varied the band boundaries
for 3- and 4-band decompositions, and identified two important factors.

First, the most important separation is between 1) very long trends on the scale of weeks or
months (> 800 cadences) and 2) the three-day (∼ 150 cadences) Earth-point recoveries and the
∼3-day reaction wheel desaturation cycles (see Van Cleve & Caldwell, 2016). It is therefore
favorable to not have the 1024 channel in the same band as the 256 or 128 channel. Second, it
is beneficial to have a separate band for very short scale features, such as the (2,1) band. This
helps to decouple the noise from the correction of intermediate-scale or large-scale errors and
helps to reduce the problem of noise injection in PDC-MAP significantly. We also found that
having most of the spectrum of a particular systematic error in the same band helps to improve
the correction quality. For instance, Earth-point recoveries have a strong signal on the scales
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(128,64,32) (see Figure 8.42). Since Earth-point recoveries are the most prominent residual
systematic errors in PDC-MAP, grouping the channels with scales (128,64,32), and possibly
also 256, in the same band appears useful for the correction. Based on these observations, we
found (1024 / 512,256,128,64,32 / 16,8,4 / 2,1) to be a good 4-band decomposition and (1024
/ 512,256,128,64,32,16,8,4 / 2,1) to be a good 3-band decomposition for most cases. However,
as with the number of bands, the overall correction performance was not overly sensitive to this
parameter choice within small variations.

8.6.3.3 Modification of MAP Parameters An investigation of several MAP parameters, in
particular the number of basis vectors per band, showed that most MAP parameters should re-
main unchanged and the same for each band. One parameter that had to be changed is the light
curve normalization method for the SVD and the MAP fit. We use normalization by the mean
only in the longest-scale band, because the other bands have zero mean. Instead, the medium-
scale bands are normalized by the standard deviation of each light curve. With no long-term
trends (or high-frequency noise) in the medium scale bands the standard deviation remains the
best metric for normalization. The shortest scale band is normalized by the noise floor which is
estimated by the first differences between the cadence flux values. Another MAP parameter that
must be tuned is the prior PDF goodness weighting component in the prior weighting calculation.
The gain in the prior PDF goodness must be increased for the shorter bands relative to the stellar
variability component of the prior weight.

A final noteworthy parameter change is that we perform a robust LS fit, rather than a full
MAP fit, in the longest scale band. We found that a MAP fit in the longest scale band can lead
to artifacts in the form of low-frequency waves. These waves, which are usually very small, are
exacerbated by non-ideal MAP fit priors in this band. In the case of bad priors, MAP usually sets
the weight of the prior to zero, effectively reverting back to a robust LS fit. This successfully
reduces the artifact. However, in the case of the longest scale band, even a slight error on the prior
can bias the posterior fit too far away from the conditional resulting in an artifact residual wave in
the light curve. The robust LS fit does introduce the real risk of overfitting but we have found that
the additional attenuation of long period signals in msMAP is small compared to regular MAP
and acceptable given the much greater performance at shorter frequencies relevant to transit
detection. Therefore the default configuration is to perform a robust LS fit in the longest band. It
is difficult to distinguish between systematic and intrinsic stellar signals at periods approaching
one observing quarter in length and so we believe the forced robust fit is acceptable, but we are
investigating methods to improve the prior in the longest scale band and preserve signals out to
longer periods.

8.6.3.4 Discussion of Alternative Approaches In addition to the optimization of parameters,
we have also investigated alternative approaches and modifications to the algorithm. We will
briefly describe the most relevant ones here.

Increasing the number of basis vectors without employing a multiscale framework
Because the systematic errors we want to correct are on a variety of different timescales,
a multiscale approach seems very natural. However, it is an interesting question whether
the dramatic performance improvements achieved by our new algorithm are really due to
the multiscale aspect of our approach. One side effect of the multiscale approach is that
it effectively increases the total number of basis vectors, and thus the degrees of freedom
in the MAP fit. Could similar performance be achieved by simply increasing the number
of basis vectors in a regular MAP fit? We have tested the effect of the number of basis
vectors in the original PDC-MAP work and found that going beyond eight basis vectors does
usually not improve the correction performance. PDC-MAP chooses the optimal number of
basis vectors automatically based on the eigenvalue spectrum, and tests where we explicitly
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forced the number of basis vectors to be larger (e.g. 16, 24) did in fact not show any
performance improvement.

Using multiscale basis vectors in a joint fit

Another conceivable option, and in fact an alternative design that we tried initially would
be to generate the basis vectors separately for each band – as is done here – but instead of
performing one MAP fit in each band separately, just do one MAP-fit with the joint set of
basis vectors on the original unsplit light curves. We have tried this approach, but found
that it does not perform well. Almost all light curves showed strong residual systematic
errors or even injection of artifacts, such as enhancement of the Earth-point thermal tran-
sients. This is due to overfitting since the number of basis vectors used is expanded by a
factor of three. Thus, the basis vectors for each band should be fit separately on band-split
light curves. Essentially, this approach suffers from similar problems as the original PDC-
LS (Twicken et al., 2010a), the predecessor of PDC-MAP, and these deficiencies were the
initial motivation to develop the latter.

Processing of all channels without grouping them into bands

One central step in our algorithm is the grouping of several adjacent octave channels into
bands (see Figure 8.45). This additional step introduces additional parameters (i.e. the band
composition, see Subsubsection 8.6.3.2) and it is questionable whether a simpler design
without this step would work equally well. We tested this and performed a msMAP cor-
rection on all individual channels, but found that the results are significantly worse. In
particular, using such a large number of bands renders each individual fit too unconstrained
and leads to substantial overfitting and removal of many astrophysical signals. In some rare
cases where Earth-point artifacts were not fully corrected with a 3-band or 4-band fit, this
approach performed better at removing those artifacts at the expense of severe overfitting.

Choice of the wavelet family for band-splitting, and alternative filterbanks

Daubechies-wavelets have several useful characteristics that make them a common choice
for a mother wavelet. One of their major advantages is that an orthogonal set of Daubechies-
wavelets can be created (Cohen et al., 1992), which renders the synthesis process into a
simple summation of the individual bands – a fact that we exploit (Eq. Equation 8.41 and
Equation 8.43). Two other commonly used wavelet families are the simple Haar-wavelets,
and the Gabor-wavelets. Both are widely used in image processing and computer vision,
for instance in feature-based object detection (Zeng et al., 2009). Gabor-wavelets have the
disadvantage that they are not orthonormal and thus the signal synthesis is a more complex
operation. While this does not play a role in its intended application where synthesis is usu-
ally not required, it would complicate processing in our case application here. Therefore,
we have only investigated using Haar-wavelets as alternative to Daubechies-wavelets. The
correction performance using Haar-wavelets was similar but inferior in most cases, most
likely due to it having poor frequency response, resulting in large leakage out of each band.
Finally, simpler approaches for constructing the filterbank for band-splitting are also con-
ceivable. In particular, we tested band-splitting using mean-filters, median-filters, Gaussian-
filters, and Savitzky-Golay filters (Savitzky & Golay, 1964), but we found that the overall
correction performance was best when using wavelets. This result is not surprising, given
that the scale-invariance of wavelets makes them intrinsically suited for multiscale-related
problems and accounts for their great success in these applications.

8.6.4 Further Algorithm Details
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8.6.4.1 Cases of Bad Corrections: Vetting In some cases (1–2% of all targets) it can happen
that msMAP fails in correcting a light curve and that systematic errors or noise are enhanced.
Fortunately, these bad corrections are usually not subtle imperfections but rather notable failures
that are obvious upon inspection. In these cases, the more conservative correction of the original
PDC-MAP usually yields a better correction. Figure 8.49 shows two representative examples of
such cases. In the first case (Figure 8.49A), the msMAP correction (lower panel) substantially
enhances the Earth-point recovery artifacts and the three-day reaction wheel cycle. In contrast,
the regular PDC-MAP correction (middle panel) does not correct the Earth-points recoveries
completely, but the overall correction quality is much better. In the second case (Figure 8.49B),
the msMAP correction shows significant injection of high-frequency noise, and also exhibits
overfitting. The regular PDC-MAP correction, in contrast, appears nearly flawless. The main
cause for these bad corrections are bad priors for the MAP fit, mostly in the middle bands. Many
of the targets with bad corrections are very bright (Kp ≤ 10). Since the magnitude has a strong
influence on the MAP prior, the sparsity of correlated targets at low magnitude used to generate
the prior can explain the bad priors for many of these targets.

Figure 8.49 Two cases of bad corrections with msMAP, showing strong residual artifacts such as Earth-
point recoveries and three-day reaction wheel cycles (panel A), as well as noise-injection and overfitting
(panel B). From Figure 11 of Stumpe et al. (2014).

PDC tries to identify these bad corrections using the goodness metric and in the case of a
bad correction reverts back to a regular PDC-MAP correction. For this purpose, a regular MAP
correction is performed for each target in addition to the msMAP correction. Then the goodness
metric is calculated for both corrections and PDC decides for each target individually whether
it should use the msMAP correction or revert to regular MAP. The process is illustrated in Fig-
ure 8.50. Decisions for each target are made on a quarterly basis, one quarter being one unit
of work for PDC. Thus, a multi-quarter stitched light curve can have PDC data for individual
quarters using both regular MAP and msMAP processed data. The threshold values can be set as
input parameters to PDC. The vetting is biased toward preserving transit signals if a choice must
be made (Kepler is primarily a transit-finding mission); however, for individual targets either
regular MAP or msMAP may be more desirable for specific types of analysis.

By manual validation of the vetting results, we found that almost all of the bad corrections
– about 90% – are successfully detected (using the threshold parameters shown in Figure 8.50),
in which case PDC reverts back to the regular PDC-MAP correction. The confusion matrix
of this vetting process is shown in Table 8.1 for the 2919 targets of channel 7.3 in Q10. Spot
tests of other channels and quarters gave similar numbers. With this process, the number of bad
corrections is reduced to only a handful (∼0.2%) per channel. For the false negatives that revert to
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Figure 8.50 The logic flow of the vetting process, which decides whether the regular MAP or msMAP fit
is used. Includes a selection bias of 0.1 towards msMAP. From Figure 12 of Stumpe et al. (2014).

Table 8.1 The confusion matrix of the vetting process for the 2919 targets of channel 7.3 in Q10.a

msMAP correction is good msMAP correction is bad
correction identified as good 2775 (95.1%) 6 (0.2%) 2781 (95.3%)
correction identified as bad 95 (3.2%) 43 (1.5%) 138 (4.7%)

2870 (98.3%) 49 (1.7%)
aFrom Table 1 in Stumpe et al. (2014).

regular MAP when the msMAP fit is actually good, we find the regular MAP fit is generally good
as well and no harm is done reverting to regular MAP. It is interesting that for a large fraction
of targets where regular MAP performs better than msMAP, the targets are highly variable. For
such targets, msMAP has a tendency to either attenuate the stellar signals or introduce some
high-frequency noise. These same targets are precisely the ones the original MAP method was
designed to correct.

8.6.4.2 Edge Effect Mitigation An essential step in computing the wavelet transform of a
discrete time series is circular convolution with a scaling filter (Percival & Walden, 2000). Wrap-
ping the signal around from the end to the beginning gives rise to undesirable ‘edge effects’ at
the boundaries, when there is discontinuity between the first and last parts of the time series.
One way to mitigate these edge effects is to extend the time series by reflection, or to append a
time-reversed copy of the time series at its right end (Percival & Walden, 2000). This ensures
continuity, although it does tend to form cusps at the boundary, which also give rise to edge
effects. Another extension method is zero-padding, or adding zeros at the end of the signal to
pad its length (Jensen & la Cour-Harbo, 2000). Zero-padding introduces edge effects due to
the discontinuity between the ends of the signal and the zeros. When extension methods are
used, the time series of wavelet coefficients and of the multiresolution analysis at each scale are
subsequently truncated at the boundaries of the original time series.

Another concern regarding edge effects is their temporal extent. When a discrete time series is
transformed to the wavelet domain, wavelet coefficients near the boundaries are unreliable, since
they are influenced by extrapolated data (if an extension method is used) or by wrap-around (if
there is no extension). There is a “zone of influence” in the timeseries of wavelet coefficients at
each scale near the boundaries, the temporal extent of which increases with scale and also with
the length of the wavelet filter (Percival & Walden, 2000). Wavelet coefficients at the largest
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scales are the most affected. The size of the zone of influence at all scales is reduced by using
a shorter wavelet filter. We are currently using a Daubechies wavelet with a filter of length 12,
which seems to adequately reduce the zone of influence.

We experimented with several extension methods to gauge their effectiveness in edge effect
mitigation. We sought a method that would smoothly stitch together the signal and its extensions
without the discontinuities and cusps that can give rise to severe edge effects. The method we
settled on, which achieves this goal in most cases, involves extending the flux time series at each
boundary using a sign-inverted, time-reversed copy of itself, explained in detail below.

Matching up the extrapolated signal at the boundaries when the original signal contained an
appreciable amount of noise or high-frequency variability introduced an added complication. We
addressed the problem by estimating the flux-level at each boundary by low-pass filtering the 500
nearest cadences via linear interpolation. The right and left flux extensions are shifted vertically
by the appropriate offsets so that they will match the estimated input flux at the boundaries. This
makes the flux extension relatively robust to high-frequency variation or noise in the signal.

The extensions at the left and right boundaries are

L(t+ T ) =
[
−G(t) + F (t1) + F̂ (t1)

]
r(t) + [F (t)] [1− r(t)] , and (8.46)

R(t− T ) =
[
−G(t) + F (t2) + F̂ (t2)

]
[1− r(t)] + [F (t)] r(t), (8.47)

where F (t) is the flux time series, t1 and t2 are its left and right boundaries, T is the length
of the flux time series, G(t) is the reflected version of F , F̂ (t1) is the interpolated estimate of
F (t1), and r(t) = (t− t1) / (t2 − t1) is a linear ramp from 0 to 1 over the domain of the flux
time series. The value of L at its right boundary (where it is to be stitched to the left boundary of
the input flux) is Lt1 = F̂ (x1). Similarly, for R, F̂ (t2) is the interpolated estimate of F (t2) and
the value of R at its left boundary (where it is to be stitched to the right boundary of the input
flux) is Rt2 = F̂ (x2). See Figure 8.51 for an example of the flux extension and subsequent band
1 light curve. Notice that the edges of the band 1 curve are well behaved.

8.6.4.3 Application to Short Cadence Data The primary mission for Kepler is detection of
Earth-like planets, and so development effort on the Pipeline emphasizes LC data. However,
systematic error-corrected SC data from PDC is also provided to the users. The principal issue
with applying the MAP technique to SC data is the limited number of targets per module output.
No more than 512 SC targets are collected at any time and these are spread over the entire FOV
so that the number of SC targets per channel is small and at most about a dozen. This is too
small of a sample for the prior PDF or basis vectors to be properly formulated. However, all
SC targets are also LC targets, and so priors are already developed for all SC targets. A simple
way to extend MAP to SC data is to use the basis vectors interpolated from LC and also the long
cadence fit coefficients as the prior as discussed in Subsection 8.5.7. However, multiscale MAP
is not utilized for SC data.

8.6.5 Performance Evaluation

With the presented multiscale extension to PDC-MAP, we observe a significant improvement in
correction quality compared to the previous version of PDC-MAP. In particular, the two main de-
ficiencies of PDC-MAP, residual systematic errors and noise injection, are improved in msMAP.

Figure 8.52 shows several example cases of light curves where regular MAP did not perform
an optimal correction, but a substantially better correction with the new msMAP. Panels A and
B show the initially discussed example from Figure 8.39. Note that we have deliberately picked
cases where the regular PDC-MAP did not perform as well, which as a reminder, is only about
every fifth light curve. In the other cases, the corrected time series of regular MAP and msMAP
are usually very similar or almost identical.
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Figure 8.51 Edge effect mitigation showing the original light curve, the Band 1 light curve without
extended regions, and then the edge effect mitigation extensions and the subsequent Band 1 light curve
when utilizing the edge extensions. The Band 1 light curve with edge extensions is clearly well behaved at
the light curve edges. From Figure 13 of Stumpe et al. (2014).

The PDC goodness metric is invaluable in comparing cotrending methods. Here we can use it
to compare the performance of a regular MAP run and a new multi-scale MAP run. Figure 8.53
shows the performance of regular MAP versus multi-scale MAP for the three goodness compo-
nents: 1) Residual Correlation, 2) Injected Noise, and 3. Earth-point Recovery Removal. These
figures are for Q10 module output 2.1 data. Goodness values are plotted as a “cumulative distri-
bution function” where the horizontal axis gives the goodness value and the vertical axis gives
the percent of targets with this goodness or above. The goodness metric is calibrated such that
0.8 or above is considered a “good” correction. There is a clear performance gain in the resid-
ual correlation and Earth-point components. There is a modest overall performance gain for the
noise injection, and the “tail” of targets with noise goodness below 0.8 is reduced by over half.
The stellar preservation goodness component does not change substantially and is not shown in
the figure. The fraction of targets with residual correlation (defined by a correlation goodness
below 0.8) has been reduced from about 20% down to near zero. The fraction of targets with
residual Earth-point recoveries has been reduced from about 40% to 20%.

8.6.6 Outlook

One remaining issue is that the Earth-point recoveries have a very strong signal on the order
of 150 cadences, which is the same scale as the oscillations from the three-day reaction wheel
desaturation cycle (see Figure 8.2B and Figure 8.2C for illustrations of these errors). Conse-
quently, these two systematic errors cannot be separated based on their characteristic scale. This
is generally not a serious problem, but it does lead to one of those two errors not being per-
fectly corrected in some cases. One option to improve this situation is to explicitly add either of
these signals as an additional basis vector. On first sight, the blatant artifact from the Earth-point
recoveries might seem like a good candidate to model with a simple exponential following the
monthly Earth-point gap. However, their magnitude and shape can vary significantly between
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Figure 8.52 Examples of msMAP correction performance improvements. The top row in each panel
shows the PDC input time series, the middle row the PDC-MAP corrected time series, and the bottom row
the msMAP corrected time series. Vertical scales are rescaled between panels to show detail. Panels A, C,
E show examples with regular data quality (Q10 data), and panels B, D, F show cases with discontinuities
due to attitude tweaks (Q2 data). The example in panel A and B are the same ones as in Figure 8.39. From
Figure 1 of Stumpe et al. (2014). From Figure 14 of Stumpe et al. (2014).

light curves, and therefore injecting an artificial basis vector for the whole set of light curves
of one CCD channel would likely be non-ideal. Another choice would be to add a basis vector
for the rather subtle 3-day reaction wheel desaturation cycle, but the resulting trend is not quite
periodic or highly regular since its strength varies from the beginning to end of each quarter. One
of the core principles of PDC-MAP has so far been to not use manually designed signals for the
basis vectors but rather to generate them solely from the light curve data. However, augmentation
to provide explicit known trends might prove useful and could be investigated in future work: an
example is the explicit attitude tweak correction in Subsubsection III. There is also the option to
perform the entire MAP fit in the transformed wavelet domain, whereas we currently transform
back into the time domain after band-splitting. This may allow us to cleanly separate the reaction
wheel desaturation from the Earth-point recoveries.

We would also desire to get a proper MAP fit working for the longest bands. There is no
fundamental reason we cannot or should not. For the longest band the principal obstacles are
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Figure 8.53 Comparison of three of the goodness metric components between regular MAP and multi-
scale MAP. The top plot is regular MAP the bottom is multi-scale MAP. From Figure 15 of Stumpe et al.
(2014).

resolving the issue with wavelet artifacts (see Subsubsection 8.6.3.3) and obtaining better long-
period priors.

Perhaps the most promising candidate for further improvement is the generation of better
priors for the MAP-fit. As has been discussed for the original version of PDC-MAP and again
in this work (see Subsubsection 8.6.4.1), bad priors can sometimes lead to a very low correction
quality. This problem is mitigated here in the new msMAP, because cases of poor performance
are identified automatically by the goodness metric quality control and the better of the two
corrections (msMAP or regular MAP) is used. However, even better would be to avoid these
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corrections in the first place. Furthermore, better priors would most likely also solve the problem
where using a MAP-fit in the longest-scale band can lead to an artifact.

8.7 Conclusions

We have presented the Kepler Presearch Data Conditioning module, a central part of the Ke-
pler Science Processing Pipeline that is tasked with correcting systematic errors in the light
curves. Our approach, using wavelet-based bandsplitting to decouple errors on different scales
and perform a multiscale correction, generates high-quality light curves. In a sense, the correc-
tion characteristics of PDC can be regarded as the best of both worlds. The first version of PDC-
LS (Twicken et al., 2010a) only rarely exhibited residual systematic errors in the light curves
but was prone to overfitting and removing astrophysical features. The single-scale PDC-MAP
represented a milestone improvement and was not sensitive to overfitting at all, but was some-
times too conservative in preserving residual systematics in the light curves. The performance of
PDC can be tuned to both of these extremes by setting the parameters accordingly, in particular
the number of bands. Between these extremes, we found that there is an optimal parameter set
(i.e. 3 or 4 bands) that delivers excellent correction of systematic errors without removal of as-
trophysical signals and without injection of high-frequency noise. Further, our extensive testing
of the parameter range showed that this optimal parameter set is sufficiently broad and robust
and that excellent correction quality can be achieved for almost all CCD channels and data quar-
ters without the need for individual fine-tuning of the parameters for each situation. Rare cases
where the multiscale correction fail are caught by an automatic quality control process via the
PDC goodness metric, and the single-scale MAP is used instead. In summary, PDC is capable
of producing error-corrected light curves of unprecedented quality from which we expect users
of the Kepler data to benefit, furthering the study of stellar astrophysics as well as the search for
extrasolar planets.

Bibliography

Beck, P. G., Bedding, T. R., Mosser, B., et al., 2011. “Kepler Detected Gravity-Mode Period
Spacings in a Red Giant Star,” Science, 332, 205

Borucki, W. J., Koch, D., Basri, G., et al., 2010. “Kepler Planet-Detection Mission: Introduction
and First Results,” Science, 327, 977

Borucki, W. J., Koch, D. G., Batalha, N., et al., 2012. “Kepler-22b: A 2.4 Earth-Radius Planet in
the Habitable Zone of a Sun-like Star,” ApJ, 745, 120

Bowman, A. W., & Azzalini, A. 1987. Applied Smoothing Techniques for Data Analysis (Oxford
University Press)

Chaplin, W. J., Kjeldsen, H., Christensen-Dalsgaard, J., et al., 2011. “Ensemble Asteroseismol-
ogy of Solar-Type Stars with the NASA Kepler Mission,” Science, 332, 213

Clarke, B. D., Allen, C., Bryson, S. T., et al. 2010. “A Framework for Propagation of Un-
certainties in the Kepler Data Analysis Pipeline,” in Proc. SPIE, Vol. 7740, Software and
Cyberinfrastructure for Astronomy, 774020

Cohen, A., Daubechies, I., & Feauveau, J.-C., 1992. “Biorthogonal Bases of Compactly Sup-
ported Wavelets,” Communications on Pure and Applied Mathematics, 45, 485

D’Agostini, G. 2003. Bayesian Reasoning in Data Analysis (World Scientific)

http://science.sciencemag.org/content/332/6026/205.full
http://science.sciencemag.org/content/332/6026/205.full
http://science.sciencemag.org/content/327/5968/977.full
http://science.sciencemag.org/content/327/5968/977.full
http://iopscience.iop.org/article/10.1088/0004-637X/745/2/120/pdf
http://iopscience.iop.org/article/10.1088/0004-637X/745/2/120/pdf
https://www.researchgate.net/publication/237067972_Applied_Smoothing_Techniques_for_Data_Analysis_The_Kernel_Approach_with_S-PLUS_Illustrations
http://science.sciencemag.org/content/332/6026/213.full
http://science.sciencemag.org/content/332/6026/213.full
https://ntrs.nasa.gov/search.jsp?R=20100037969
https://ntrs.nasa.gov/search.jsp?R=20100037969
http://onlinelibrary.wiley.com/doi/10.1002/cpa.3160450502/pdf
http://onlinelibrary.wiley.com/doi/10.1002/cpa.3160450502/pdf


196 BIBLIOGRAPHY

DeGroot, M. 1970. Optimal Statistical Decisions (Wiley-Interscience)

Donoho, D. L., & Johnstone, I. M., 1994. “Ideal Denoising in an Orthonormal Basis Chosen
from a Library of Bases,” Comptes Rendus Acad. Sci., Ser. I, 319, 1317

Doyle, L. R., Carter, J. A., Fabrycky, D. C., et al., 2011. “Kepler-16: A Transiting Circumbinary
Planet,” Science, 333, 1602

Fressin, F., Torres, G., Rowe, J. F., et al., 2012. “Two Earth-sized planets orbiting Kepler-20,”
Nature, 482, 195

Haas, M. R., Batalha, N. M., Bryson, S. T., et al., 2010. “Kepler Science Operations,” ApJL, 713,
L115

Holman, M. J., Fabrycky, D. C., Ragozzine, D., et al., 2010. “Kepler-9: A System of Multiple
Planets Transiting a Sun-Like Star, Confirmed by Timing Variations,” Science, 330, 51

Jenkins, J. M., 2002. “The Impact of Solar-like Variability on the Detectability of Transiting
Terrestrial Planets,” ApJ, 575, 493

Jenkins, J. M., Caldwell, D. A., & Borucki, W. J., 2002. “Some Tests to Establish Confidence in
Planets Discovered by Transit Photometry,” ApJ, 564, 495

Jenkins, J. M., Smith, J. C., Tenenbaum, P., Twicken, J. D., & Van Cleve, J. 2012. “Planet Detec-
tion: The Kepler Mission,” in Advances in Machine Learning and Data Mining for Astronomy,
ed. M. J. Way, J. D. Scargle, K. M. Ali, & A. N. Srivastava (Chapman and Hall, CRC Press),
355–381

Jenkins, J. M., Caldwell, D. A., Chandrasekaran, H., et al., 2010. “Initial Characteristics of
Kepler Long Cadence Data for Detecting Transiting Planets,” ApJL, 713, L120

—, 2010. “Overview of the Kepler Science Processing Pipeline,” ApJL, 713, L87

Jenkins, J. M., Chandrasekaran, H., McCauliff, S. D., et al. 2010c. “Transiting Planet Search in
the Kepler Pipeline,” in Proc. SPIE, Vol. 7740, Software and Cyberinfrastructure for Astron-
omy, 77400D

Jensen, A., & la Cour-Harbo, A. 2000. Ripples in Mathematics: The Discrete Wavelet Transform
(Springer)

Kay, S. M. 2012. Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice
Hall)

Koch, D. G., Borucki, W. J., Basri, G., et al., 2010. “Kepler Mission Design, Realized Photomet-
ric Performance, and Early Science,” ApJL, 713, L79

Kolodziejczak, J. J., & Morris, R. L. 2012. “Methods for Detection and Correction of Sudden
Pixel Sensitivity Drops (KADN-26304),” Tech. Rep. KADN-26304, NASA Ames Research
Center Kepler Mission
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Abstract. The Kepler Mission simultaneously measured the brightnesses of ∼165,000 stars ev-
ery 29.4 minutes during each of seventeen 93-day “quarters” over a 4-year mission with the aim
to discover Earth-size planets transiting Sun-like stars in the habitable zone.1 The Transiting
Planet Search (TPS) component of the SOC Science Pipeline conducts the actual search for sig-
natures of transiting planets in the systematic error-corrected light curves. Potential transiting
planets identified by TPS are subjected to further analysis and scrutiny by the Data Validation
(DV) pipeline component. Detecting transits is a signal detection problem in which the signal of
interest is a periodic pulse train and the predominant noise source is a non-white, non-stationary
1/f-type process of stellar variability. The situation is complicated by the fact that many stars
exhibit coherent or quasi-coherent oscillations. In addition, instrumental effects pose a substan-
tial source of false alarms, which motivated substantive effort to develop mitigations in TPS
to screen out anomalous detections while preserving a high detection rate for true planetary
signatures. This paper details the results of that effort, which culminated in the SOC 9.3 ver-
sion of TPS and delivered 34,032 potential transiting planet signatures to the NExScI Exoplanet
Archive.

Keywords: Kepler Mission, exoplanet, transit, detection algorithm

9.1 Introduction

The Transiting Planet Search (TPS) module is responsible for identifying transit-like features in
the systematic error-corrected, long cadence (LC) flux time series produced by the Photometry
Pipeline (see Part II). Detecting ∼100 ppm-deep transit signatures of Earth-size planets is a
daunting task even for the exquisite Kepler photometric dataset, where the typical observation
noise is ∼30 ppm on 6.5-hour timescales for a Kp = 12 main-sequence star (Gilliland et al.,
2011, 2015). The transit detection algorithm must contend with outliers, highly variable stars
such as flare stars and giant stars, radiation-induced transients, and instrumental effects such as
rolling bands (see Chapter 4) that can mimic transit signatures from the standpoint of a linear

1The first quarter, Q1, was only 34 days long due to the launch date and commissioning period. The last quarter, Q17,
was only 31 days long due to the mission-ending loss of reaction wheel #4 and contained a 10-day rest period to attempt
to increase the lifetime of this reaction wheel.
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transit detection algorithm. Figure 9.1 shows TPS in the context of the SOC Science Processing
Pipeline. Science Operations Center
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Figure 9.1 Data flow diagram for the SOC Science Processing Pipeline. TPS in the context of the
architecture of the SOC. TPS searches the systematic error-corrected light curves produced by the Presearch
Data Conditioning (PDC) module for transit-like features that are then subjected to physical modeling and
a suite of diagnostic tests in the Data Validation (DV) module. DV also calls TPS internally to enable a
search for multiple planets within each light curve.

Several processing steps must be completed before TPS, which lies at the heart of the Pipeline,
can perform its search for signatures of transiting planets. First, Dynablack (DYN – see Chap-
ter 4) and Calibration (CAL – see Chapter 5) calibrate the raw pixels downlinked from the space-
craft to remove on-chip artifacts and to place the measurements on a linear scale with estimated
uncertainties. Second, Photometric Analysis (PA – see Chapter 6 and Chapter 7) identifies and
removes cosmic rays from the pixel time series, estimates and subtracts the background flux and
then sums the resulting pixel values over the photometric aperture containing each target star
image. Third, Presearch Data Conditioning (PDC – see Chapter 8) identifies and removes signa-
tures of systematic effects in the photometric time series, such as changes in pointing or focus,
and fills any intraquarter gaps to condition the time series for TPS. TPS fills the inter-quarter gaps
then searches the corrected flux time series for signatures of periodic pulse trains indicative of
transiting planets. Potential transit signals are designated threshold crossing events (TCEs) and
are subsequently examined in detail by the Data Validation (DV – see Chapter 11 and Chapter 12)
component to establish or break confidence in these transit-like features as planetary signatures.
TPS is also called within DV to iteratively search for additional planetary signatures in a light
curve after each TCE is analyzed and its transit pulses are removed from the light curve.

As illustrated in Figure 9.2, there are three major subcomponents in TPS needed to facilitate
the full transit search. Since each target star falls on a different CCD in each quarter, TPS needs
to combine the quarterly segments together in such a way as to minimize the edge effects and
maximize the uniformity of the apparent depths of planetary transit signatures across the entire
data set. The first component of TPS “stitches” the quarterly segments of each flux time series
together before presenting it to the transit detection component. The second component charac-
terizes the observation noise as a function of time from a transit’s point of view and correlates a
transit pulse with the time series to estimate the likelihood that a transit is occurring at each point
in time. These tasks are accomplished by a wavelet-based, adaptive matched filter as per Jenkins
et al. (2002). The third and final component of TPS uses the noise characterization and correla-
tion time series to search for periodic transit pulse sequences by folding the data over trial orbital
periods spanning the range from one day to half the length of the time series.
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Figure 9.2 Block diagram for TPS, which has three major blocks of functionality. The first major
block of TPS preprocesses the light curves to identify residual outliers and astrophysical transients, identify
and remove harmonic signatures, correct for pointing tweak-induced discontinuities, detrend edge effects,
and finally, fill gaps created by these steps as well as intra-quarter gaps. The second major block of
TPS transforms the light curve into the wavelet domain to analyze the time-varying characteristics of the
observation noise and to generate the single event statistics, which indicate the likelihood that a transit of the
given pulse duration is occurring at any given time in the light curve. A by-product of the generation of the
single-event statistics is Combined Differential Photometric Precision (CDPP), a measure of the photometric
precision for each star on transit timescales. When run in planet search mode, the single event statistics are
folded over trial orbital periods to test the significance of repeating transit-like features. Stars for which these
multiple-event statistics (MES) exceed 7.1σ and that pass a set of statistical tests are designated Threshold
Crossing Events (TCEs) and are persisted to the Kepler File Store, along with the CDPP time series and
other information, such as the epoch and period of the most likely transit pulse train. For monthly datasets,
TPS measures the photometric precision achieved for as many as 169,000 target stars, in which case the
third subcomponent was skipped. This flow is executed independently for each trial transit pulse duration,
which varied from 1 to 15 hours.

TPS applies an adaptive, wavelet-based matched filter to detect potential transiting signa-
tures (Jenkins, 2002). The detector analyzes the power spectral density (PSD) of the observation
noise as a function of time to design and implement a whitening filter. The detector then applies
the whitening filter, flattening the PSD and transforming the observation noise into white Gaus-
sian noise to a good approximation. TPS applies a simple matched filter against the whitened
transits to formulate single event statistics representing the likelihood that a transit of a given
duration is occurring at each time step. These single event statistics are folded over trial orbital
periods to formulate the multiple event statistics as a function of period and phase. This process
is repeated for 14 separate pulse durations ranging from 1.5 to 15 hours long.

When the detection statistic for a trial transit signature exceeds the 7.1 σ threshold,2 it is
subjected to additional statistical tests within TPS that are designed to eliminate spurious false

2The threshold of 7.1 σ was established by a Monte Carlo approach to establish the threshold required to control the false
alarm rate due to statistical fluctuations to <1 for the Kepler campaign, assuming the observation noise is well modeled
as broadband, colored Gaussian noise (Jenkins et al., 2002).
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alarms while maximizing the sensitivity of the transit search to true planetary signals (Seader
et al., 2013). These tests include a robust version of the multiple-event statistic (MES) that
keyed off the detection in the first place, and two chi-square vetoes, dubbed χ2

(2) and χ2
GOF

for ”Goodness of Fit” (Seader et al., 2013). If the event is discarded, TPS “notches” out the
period and epoch associated with the failed TCE and examines up to 1,000 other multiple event
statistics that exceed 7.1 σ in descending order. If a detection is caused by a single strong feature
that does not fold onto comparably strong features, it is masked out of the time series. Up to two
such features can be identified and removed from the light curve. Signatures that pass all three
of these additional tests are recorded as TCEs and then submitted to DV for physical modeling
and additional diagnostic tests.

Monitoring the photometric precision obtained by Kepler has also been a high priority and
was obtained on a monthly (and quarterly) basis as a by-product of the noise characterization
performed by TPS. The photometric precision metric is called Combined Differential Photomet-
ric Precision (CDPP) and is defined as the inverse signal-to-noise ratio (SNR) of a 1 ppm-deep
transit of a given duration (Jenkins et al., 2010b; Christiansen et al., 2012). This is essentially
the effective photometric noise “seen” by a transit of a given duration from a detection point of
view. That is, a 20 ppm CDPP at 6.5 hours indicates that a 100 ppm-deep 6.5-hour transit would
be expected to produce a 5 σ detection. Each month, CDPP, along with a suite of performance
metrics developed during processing as the data proceed through the pipeline, was monitored and
reported by the Photometric Performance Assessment (PPA) component (Li et al., 2010). The
SOC was required to monitor CDPP for transit durations of 3, 6, and 12 hours as key indicators
of Kepler’s sensitivity to small, rocky transiting planets. The typical duration of transit varies
from a few hours for close-in planets to 16 hours for a Mars-size orbit (Koch et al., 2010). Thus,
TPS contributes in two primary ways: 1) it produces 3-, 6- and 12-hour CDPP estimates for each
star each month, and 2) it searches for periodic transit pulse sequences.

A number of issues identified since science operations commenced on May 12, 2009 have
required significant modifications to the Science Pipeline and to TPS. Indeed, the development
of TPS continued throughout the Kepler flight operations and into the close-out of the mission.
Many of these improvements have been periodically reported in Jenkins et al. (2010b) and the
articles documenting the TCE catalogs (Tenenbaum et al., 2012, 2013, 2014; Seader et al., 2015;
Twicken et al., 2016), but there have been several major enhancements to TPS in the final soft-
ware development cycle for the SOC build 9.3. Some of the most important modifications include
a modification to the method by which the noise power is estimated in the whitener, the use of
quarter-by-quarter whitening to reduce edge effects and associated false positives, and a modifi-
cation in the long gap fill algorithm to reduce edge effects and bias in the noise power estimates.
This paper describes the final, as-built SOC 9.3 version of TPS and gives special attention to the
latest developments incorporated therein. We also describe the performance of TPS for the final
Kepler transiting planet search through all 17 quarters of data, called Data Release 25 (DR25).

This article is organized as follows: Light curve preprocessing is discussed in Section 9.2.
Section 9.3 discusses the joint time-frequency domain characterization of the observation noise,
the generation of the single event statistics and photometric precision metics, and summarizes
the core detection algorithm. Section 9.4 describes the folding of the detection statistics, the
application of the vetoes, and the iterative transit search. Section 9.5 discusses the performance
of TPS for the final Kepler transiting planet search. Concluding remarks are given in Section 9.6.

9.2 Light Curve Preprocessing

As effective as PDC is at identifying and removing instrumental signatures and outliers, it is
necessary for TPS to make an additional pass at removing these effects from the light curves
prior to the transit search in order to minimize the number of spurious detections due to edge
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effects and residual instrumental transients. TPS can be more aggressive at doing so than PDC,
often at the expense of other, non-transit astrophysical signatures, since the light curves TPS
searches are not archived to MAST for the astronomical community.

The first stage of TPS conditions each quarterly light curve to remove residual instrumental
effects, and non-transit astrophysical signatures that tend to generate false alarms, normalizes the
baseline in each quarter, fills both intra- and inter-quarter gaps, and stitches the quarterly light
curves together into one single flux time series. This stage also identifies eclipsing binary and
giant planetary transit signatures to protect them from being removed by these filters.

9.2.1 Identification of Outliers and Astrophysical Transients

TPS identifies signatures of eclipsing binaries and deep planetary transits by robustly fitting a
piecewise polynomial to each quarterly light curve and looking for points that are more than 10
median absolute deviations (MAD) below the trend line. The order of the polynomial fitted to
each 72-hour interval is set by Akaike’s Information Criterion (AIC– Akaike, 1974). If the points
identified are isolated, they are identified as outliers and removed from the light curve. If they
are not isolated outliers, the locations are saved and used to selectively ignore these events in the
next step, where harmonic content is identified and removed, and in the formulation of the CDPP
estimates.

In addition to identifying eclipses and strong transit features, TPS inverts the light curves
and performs the same analysis to identify potential microlensing events, which are similarly
protected in the next processing step.

9.2.2 Identifying and Removing Phase-Shifting Harmonics

The adaptive, wavelet-based matched filter employed by TPS to search for transiting planet sig-
nals is not well suited to compact signals in the frequency domain, such as sinusoidal signals
due to highly periodic pulsations. Therefore, harmonic signals are fitted and removed from each
light curve on a quarter-by-quarter basis prior to conducting the transit search. This process sig-
nificantly reduces the number of false alarms that would result from retaining these harmonic
signatures but may also degrade or remove short-period (< 3 days) transit signals (Christiansen
et al., 2013, 2015). The harmonic fitting is conducted iteratively and is numerically intensive; a
maximum number of harmonic components are therefore permitted to be fitted and removed in
order to manage the time spent on this process and also to avoid overfitting.

Once the deep transits and eclipses have been identified (as described in Subsection 9.2.1),
the cadences containing such events are temporarily filled using an autocorrelation-based short
data gap fill algorithm (Chandrasekaran, 2004). The time series is extended to the next power
of 2 (in length) using the approach of Jenkins et al. (2002) and a Hanning window-weighted
periodogram is formed.3 The background Power Spectral Density (PSD) of any broadband, non-
white noise process in the data is estimated in a two-step process. First, a (47-point) median filter
is applied to the periodogram and then the result is smoothed with a (47-point) moving average
window.4 The median filter ignores isolated peaks in the periodogram. Next, this background
PSD estimate is divided point-wise into the periodogram. The whitened PSD is then examined
for statistically significant peaks, and the frequency bins of such peaks are fed to a nonlinear
least squares fitter as the seed values for a fit in the time domain to phase-shifting harmonic
signals. These are sinusoids in time that allow for the center frequency to shift linearly in time.
For complex harmonic signals, this process can be computationally intensive.

3The times series must be extended to a length equal to a power of 2 to allow for the use of FFTs. It is also essential to
conserve the power spectral distribution while doing so, thus motivating the use of an autocorrelation-based approach.
4The window lengths for median and moving average filters are programmable and had values of 47 for the DR 25 run.
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Figure 9.3 shows two examples of light curves with strong, coherent harmonic features as
they are fitted and removed with this approach. The resulting harmonic-cleaned flux time series
is then ready for the wavelet-based matched filter.
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Figure 9.3 Harmonic removal and extension of two flux time series. A: A star with low-frequency
oscillations. B: A star with high-frequency oscillations and amplitude modulation. a (left and right):
Original flux time series. b (left and right): Detected harmonic signature. c (left and right): Flux time series
with harmonics subtracted. d (left and right): Harmonic-free time series extended to 8192 samples. From
Figure 3 of Jenkins et al. (2010b).

Previous versions of the software allowed a fixed maximum number of harmonics (25) to be
removed from each quarterly light curve, regardless of the length of the quarter. This led to
inconsistent fitting of periodic stellar variability wherein short quarters (e.g., Q1, Q4 for stars on
CCD Module 3, and Q17) had significantly more harmonic content removed, artificially reducing
the apparent observation noise and thereby biasing the transit search.5 The SOC 9.3 codebase
adjusts the maximum number of harmonic components fitted in each quarter to be proportional
to the length of the quarterly dataset, leading to more consistent harmonic fitting results across
the full four-year dataset. The maximum number of harmonic components removed per target
and quarter in the DR25 run ranged from 8 in Q17 and 9 in Q1 at the low end, to 25 in Q9, Q11,
Q14, and Q15.

9.2.3 Edge Detrending of Contiguous Blocks of Flight Data

The Kepler photometer is sensitive to changes in its thermal state that can induce changes in the
shape of the telescope and thereby introduce focus changes that affect the photometry. While the
Earth-trailing, heliospheric orbit is extremely benign from a thermal standpoint, the spacecraft
turned towards Earth every month to downlink data and performed a 90◦ rotation about its bore-
sight every three months in order to reorient the sunshade and solar panels. When the spacecraft
returned to the science attitude, it experienced thermal transients due to the attitude changes and
the time spent at Earth-point (or in safe mode, in the case of unplanned departures from science
attitude).

5Q1 began on May 13, 2009 immediately after the commissioning activities were completed and was only 33.46 days
long. Module 3 died on January 9 2010, ∼10 days into Q4. The second reaction wheel failed on May 11 2013 during the
second month of Q17. In addition, Q17 has a 10 day gap imposed by an attempt to improve the reaction wheel’s health
with a rest period prior to its ultimate failure.
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To remove trends at the ends of single-quarter data segments, TPS performs a robust fit of the
form:

y = P1 exp (−x/P2) + P3x+ P4 + P5 exp [(x− 1) /P6] , (9.1)

where y is the median-corrected flux, x is the sample time normalized to the unit interval [0, 1],
and P1 through P6 are the parameters of the fit. This is then subtracted from the light curve.
Equation 9.1 fits a line plus two exponential edge trends, one at the leading edge of the data region
and one at the trailing region, with both the amplitude and the time constant of the exponentials
as fit parameters. The form in Equation 9.1 was found to match the actual edge trends as well
as the constrained polynomial fit which had been used in early versions of the software. The
advantages of the reformulated edge-trend removal are: a reduced number of assumptions and/or
configuration parameters for the fit, use of the full data segment for the entire fit, robust fitting,
and the fact that this fit cannot introduce a polynomial “wave” into the data segment in an attempt
to correct the edges (i.e., over fitting). Additionally, whereas in the past the edge detrending was
applied only to full quarters of data, in the current implementation it is applied at any time when
there was an interruption of data acquisition to change the spacecraft orientation. This was done
to mitigate the thermal transients that occur when the spacecraft attitude is changed.

9.2.3.1 Normalization Because the PSF and the sensitivity of the CCD varies across the focal
plane, the mean flux level for a target star can vary as a function of the observing season from
quarter to quarter. To partially mitigate these effects, TPS normalizes each quarterly light curve
segment by its median and then subtracts 1.

9.2.3.2 Long Gap Filling The quarterly segments are then stitched together prior to the plan-
etary search. Because the Fast Fourier Transforms (FFT) is used by TPS to implement the Over-
complete Wavelet Transform (OWT), it is necessary to fill all gaps to prevent the occurrence of
artifacts in the joint time-frequency domain in which the observation noise is characterized and
the transit detection is performed. Another important change to TPS in SOC 9.3 is a modification
to the long gap fill algorithm. The new algorithm applies a narrow sigmoid taper for the periodic
extension of time series across long data gaps (> 2.5 days) prior to application of the FFTs for the
wavelet filter bank. The sigmoid occupies the central 10% of the gap to be filled; data are simply
reflected from the left and right hand sides of the gap, then weighted by the sigmoid taper and
added together in the central 10% region. Note that any eclipses or deep planetary transits iden-
tified in the first step of this stage are not allowed to be reflected into the filled data gaps, which
avoids false alarms due to “ringing” of the single event statistics from eclipses or deep transits in
the gap filled data to the valid data outside the gaps. The former long gap fill algorithm used a lin-
ear taper across the entire gap, resulting in a systematic reduction in noise power estimates near
gap edges. This artificial drop in noise power was tolerable when the entire four-year time series
was whitened at once but resulted in significant biases in the sensitivity to transits or transit-like
features near quarterly boundaries with the introduction of quarter-by-quarter whitening in SOC
9.3. Modifying the long gap fill algorithm also improved the performance of TPS for long data
gaps within quarterly datasets.

After the long gap filling is complete, the quarter-stitched light curves are ready for the next
processing stage.

9.3 Generation of Single Event Statistics and CDPP

Once the preprocessing is complete, TPS transforms the light curve into a joint time-frequency
domain to analyze the PSD as a function of time to formulate a time-varying whitening filter and
generate the single event statistics. This also provides an opportunity to identify residual positive
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impulsive outliers that have in the past generated significant numbers of spurious detections
due to “ringing” effects in the wavelet domain. We begin this section with an overview of the
wavelet-based matched filter.

9.3.1 A Wavelet-Based Matched Filter

While the transit detection is not performed until the third stage of TPS, the generation of the
CDPP time series and the formulation of the single event statistics can be understood only in
the context of the detection algorithm. Thus we provide a full explication of the wavelet-based
adaptive matched filter in this section.

The optimal detector for a deterministic signal in colored Gaussian noise is a pre-whitening
filter followed by a simple matched filter (Van Trees, 1968; Kay, 1999). In TPS we implement
a wavelet-based matched filter as per Jenkins et al. (2002) using Daubechies’ 12-tap wavelets
(Daubechies, 1988). The wavelet-based matched filter uses an octave-band filter bank to separate
the input flux time series into different band passes to estimate the PSD of the observation noise
process as a function of time. This scheme is analogous to a graphic equalizer for an audio
system. TPS constantly measures the “loudness” of the signal in each bandpass and then dials
the gain for that channel so that the resulting noise power is approximately flat across the entire
spectrum. Flattening the power spectrum transforms the detection problem for colored noise into
a simple one for white Gaussian noise (WGN) but also distorts transit waveforms in the flux
time series. TPS correlates the trial transit pulse with the input flux time series in the whitened
domain, accounting for the distortion resulting from the pre-whitening process. This is analogous
to visiting a funhouse “hall of mirrors” with a friend of yours and seeking to identify your friend’s
face by looking in the mirrors. By examining the way that your own face is distorted in each
mirror, you can predict what your friend’s face will look like in each particular mirror, given that
you know what your friend’s face looks like without distortion.

Let x(n) be a flux time series. The OWT of x(n) is given by

W{x(n)} = {x1(n), x2(n), . . . , xM (n)}, (9.2)

where

xi(n) = hi(n) ∗ x(n), i = 1, 2, . . . , M, (9.3)

‘∗’ denotes convolution, and hi(n) for i = 1, . . . ,M are the impulse responses of the filters in
the filter bank implementation of the wavelet expansion with corresponding frequency responses,
Hi(ω), for i = 1, . . . ,M . The filters are generated recursively as described in Appendix 9-A.

Figure 9.4 is a signal flow graph illustrating the process. The filter, H1, is a high-pass filter
that passes frequency content from half the Nyquist frequency, fNyquist, to the Nyquist fre-
quency ([fNyquist/2, fNyquist]). The next filter, H2, passes frequency content in the interval
[fNyquist/4, fNyquist/2], as illustrated in Figure 9.5. Each successive filter passes frequency
content in a lower bandpass until the final filter, HM , the lowest bandpass, which passes DC
content as well. The number of filters is dictated by the number of observations and the length of
the mother wavelet filter chosen to implement the filterbank. In this wavelet filter bank, there is
no decimation of the outputs, so that there are M times as many points in the wavelet expansion
of a flux time series, {xi(n)}, i = 1, . . . ,M , as there were in the original flux time series x(n).
This representation has the advantage of being shift invariant, so that we need only compute the
wavelet expansion of a trial transit pulse, s(n), once. The noise in each channel of the filter bank
is assumed to be white and Gaussian and its power is estimated as a function of time by a moving
variance estimator with an analysis window chosen to be significantly longer than the duration
of the trial transit pulse (7× the trial transit pulse duration for DR 25). Note that the analysis
window for estimating the noise power increases by a factor of two from bandpass to bandpass,
until the window covers the entire time series.
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3.3 A Wavelet-Based Matched Filter
The wavelet-based matched filter uses an octave-band filter bank to separate the input flux time series into different band
passes for analysis as per Ref. 16. Figure 5 is a signal flow graph illustrating the process. The filter H1 is a high-pass
filter that passes frequency content from half the Nyquist frequency, fNyquist to the Nyquist frequency ([ fNyquist/2, fNyquist]).
The next filter, H2, passes frequency content in the interval [ fNyquist/4, fNyquist/2]. Each successive filter passes frequency
content in a lower bandpass until the final filter, HM , the lowest bandpass, which passes DC content as well. The number
of filters is dictated by the number of observations and the length of the mother wavelet filter chosen to implement the
filterbank. In this wavelet filter bank there is no decimation of the outputs so that there are M times as many points in
the wavelet expansion of a flux time series {xi(n)}, i = 1, . . . ,M as there were in the original flux time series x(n). This
representation has the advantage of being shift invariant, so that we need only compute the wavelet expansion of a trial
transit pulse, s(n), once.

The noise in each channel of the filter bank is assumed to be White Gaussian Noise (WGN) and its power is estimated
as a function of time by a moving variance estimator (essentially a moving average of the squares of the data points) with
an analysis window chosen to be significantly longer than the duration of the trial transit pulse. To compute the detection
statistic, T (n), for a given transit pulse centered at all possible time steps, we simply “doubly whiten” W{x(n)} (i. e., divide
it point-wise by �̂2

i (n)), correlate the results with W{s(n)}, and apply the dot product relation, performing the analogous
operations for the denominator, noting that �̂-2

i (n) is itself a time series:

T (n) =
N(n)⌅
D(n)

=
PM

i=1 2- min(i,M-1) [xi(n)/�̂2
i (n)]� si(-n)qPM

i=1 2- min(i,M-1) �̂-2
i (n)� s2

i (-n)
. (2)

Note that the “-” in si(-n) indicates time reversal. The numerator term, N(n), is essentially the correlation of the reference
transit pulse with the data. If the data were WGN then the result could be obtained by simply convolving the transit
pulse with the flux time series. The expected value of Eq. 2 under that alternative hypothesis for which xi(n) = si(n) isqPM

i=1 2- min(i,M-1) �̂-2
i (n)� s2

i (-n). Thus, D(n) is the expected Signal to Noise Ratio (SNR) of the reference transit in the
data as a function of time. The CDPP estimate is obtained by taking D(n) and dividing it into the assumed depth of the
reference transit pulse.

For stars with identified giant planet transits or eclipses, an alternate route is taken to estimate the correlation and
expected SNR. The data located in transit are removed and filled by a simple linear interpolation. The resulting time series
is then high-pass filtered to remove trends on timescales >3 days and then a simple matched filter is convolved with the
resulting time series. A moving variance supplies the information necessary to inform the expected SNR.
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4. FOLDING DETECTION STATISTICS
The third and final stage of TPS is to fold the single event detection statistics developed in Sec. 3 over the range of potential
orbital periods. Applying a matched filter for a deterministic signal with unknown parameters is equivalent to performing a
linear least-squares fit at each trial point in parameter space, which for transit sequences is the triple composed of the epoch
(or time to first transit), orbital period, and transit duration, {t0, Tp, D}. Clearly, we can’t test for all possible points so we
must lay down a grid in parameter space that balances the need to preserve sensitivity with the need for speed. As given
in Ref.,18 one measure of sensitivity is the correlation coefficient between the model planetary signatures of neighboring
points in parameter space. If we specify the minimum correlation coefficient, ⇢, required between neighboring models, then
we can derive the step sizes in period, epoch, and duration. A real signal will have a correlation coefficient with the best-
matched model of no worse than ⇢+ (1 -⇢)/2 in the case of simple rectangular pulse trains. The default choice for TPS is
⇢ = 0.9. The correlation coefficient as a function of the change in epoch, �t0, is given by c(�t0) = (D-�t0)/D = 1-�t0/D.
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DSN pass. These “reference pixel” data are used by the Science Operations Center4 (SOC) pipeline component
Photometer Data Quality (PDQ) to produce metrics related to the health and performance of the photometer,
such as measurements related to the bias level, background flux level, dark current, photometer throughput, focus,
and pointing stability and accuracy. Similar metrics are monitored by the SOC software module Photometer
Performance Assessment (PPA) which can only be run after new science data have been downlinked to the DSN
at Ka-band nominally once per month.5 Table 1 contains a list of the principal metrics calculated by PDQ
and their purpose. PDQ tracks and trends these metrics throughout each 93-day quarterly segment to identify
sharp discontinuities in their behavior, or long-term drifts that cross pre-determined hard bounds. In essence,
PDQ plays the role of the “canary in the coal mine” to allow us to identify either abrupt changes in behavior
that may signal hardware failures or issues, or to spot gradual degradation in the performance of the spacecraft
or photometer that might otherwise not be identified in the tracking and trending of the engineering data by
the Mission Operations Center (MOC). The SOC Operations sta� run PDQ when a new set of reference files
arrive at the SOC and notify the Science O⌅ce (SO) of the arrival and processing status of the files.6 When the
processing is complete, the report files and all the task files, including input files, intermediate data products,
and output files, are copied over to a server accessible by SOC and SO sta� for analysis. The PDQ reports
contain a plethora of information and graphics on the status of the photometer and are broken into a summary
report for the entire focal plane and individual reports for each CCD readout channel. Figure 1A shows the
“dashboard” plot for one PDQ run during Q3 observations.

Table 1. Performance Metrics Calculated by PDQ

Metric Name Units Purpose

Dynamic Range ADU Simple check for “aliveness” of each CCD readout channel

Black Level ADU Monitors drift in CCD readout channel bias voltages

Smear Level e� Monitors the average shutterless readout smear level

Dark Current e� s�1 Monitors drift in dark current

Brightness n/a Monitors change in photometer throughput

Residual Centroid Rows & Columns pixels Monitors drift in pointing

Encircled Energy pixels Monitors focus and high-frequency pointing jitter

Plate Scale arcsec Monitors drift in photometer focus

Photometer Attitude (ra, dec, roll) degrees Reconstructed attitude

Maximum Attitude Residual pixels Monitors pointing discrepancies

Module 3 of the Focal Plane Array (FPA) died abruptly on January 9 of 2010. Its failure was identified
immediately when PDQ was run on the four new reference pixel files brought down on the next X-band contact.
The availability of science data from the two a�ected CCDs assisted in the diagnosis of the likely mode of failure
in the immediate aftermath and also heralded the continued healthy status of the remaining 40 CCDs on 20
modules in the FPA.

�
One of the most important tasks that PDQ supports is the analysis of the spacecraft’s pointing attitude

following a break in science operations to perform a quarterly roll maneuver to reorient the sunshade and solar
arrays, to downlink data from the spacecraft, or due to an unplanned safe mode event. The pointing precision
required of the Attitude Determination and Control System (ADCS) is 0.009⇥⇥at 3� on timescales of 15 min
and longer,2 whereas the absolute pointing knowledge required is at the 12⇥⇥ level (3�). The pixel budget for
the target stars is rather tight, permitting only a one-pixel “halo” around the pixels that are needed for the
photometric measurements. PDQ is required to reconstruct the spacecraft’s actual attitude and compare that
to the nominal one, furnishing a pointing “tweak” capable of bringing the pointing to better than 0.1 pixel or
0.4 arcsec of the desired attitude across the focal plane.
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Figure 9.4 Signal flow diagram for TPS. The wavelet-based matched filter is implemented as a filter bank
with bandpass filters H1, . . . ,HM progressing from high frequencies to low frequencies. The flux time
series, x(n), is expanded into M time series xi(n), for i = 1, . . . ,M . Noise power, σ̂2

i (n), i = 1, . . . ,M
is estimated for each bandpass and then divided into the channel time series, xi(n), in order to “doubly”
whiten x(n) in the wavelet domain. The trial transit pulse, s(n), is processed through a copy of the filter
bank and convolved with the “doubly” pre-whitened flux time series, xi(n)/σ̂2

i (n), in each bandpass. Since
the whitening is a property of the observed noise process, normalizing the flux time series in each bandpass
by the noise variance estimates effectively whitens both the signal of interest, s(n), as well as x(n), since the
whitened version of xi(n) and si(n) are xi(n)/σ̂i(n) and si(n)/σ̂i(n), respectively. Parseval’s theorem
for undecimated wavelet representations allows us to combine the results for each bandpass together to form
the numerator term, N(n) of Equation 9.6. A similar filterbank arrangement is used to furnish D(n) from
Equation 9.6 by replacing the flux time series x(n) in this flow diagram with the trial transit pulse s(n)
and by using the same bandpass noise estimates to inform the pre-whitening. The single-event detection
statistic, Z(n), is obtained by dividing the correlation term, N(n), by the square root of the denominator
term, D(n). From Figure 4 of Jenkins et al. (2010b).

One of the most important improvements to TPS in SOC 9.3 is the incorporation of a non-
decimated (in time) moving MAD filter for estimating the rms noise power time series, σ̂i(n),
in each of the wavelet filter bank’s band passes. This change was motivated by the observation
that there was a measurable and significant duration dependent bias in the noise power estimates;
the noise power for short duration transits was underestimated relative to that for long duration
transits. Prior to SOC 9.3, TPS employed a decimated moving MAD filter due to computational
run time constraints, so the moving MAD was not calculated for each sample in each of the
wavelet band passes. We were able to implement the moving MAD filter algorithm more effi-
ciently and perform the computation without decimation; this eliminated the bias in the noise
power estimates while maintaining adequate computational throughput.

These changes to TPS increase the sensitivity to transiting planet signatures, improve the
uniformity of the sensitivity of the search, and enhance the performance and characteristics of
the statistical bootstrap analysis (Jenkins et al., 2015) performed for each TCE in Data Validation.

The detection statistic is computed by multiplying the whitened wavelet coefficients of the
data by the whitened wavelet coefficients of the transit pulse:

Z =
x̃ · s̃√
s̃ · s̃

=

∑M
i=1 2−min(i,M−1)

∑N
n=1[xi(n)/σ̂i(n)] [si(n)/σ̂i(n)]√∑M

i=1 2−min(i,M−1)
∑N
n=1 s

2
i (n)/σ̂2

i (n)
, (9.4)
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Figure 9.5 Frequency responses of the filters in the octave-band filterbank for a wavelet expansion
corresponding to the signal flow graph in Figure 9.4 using Daubechies’ 12-tap filter. Left: Frequency
responses on a linear frequency scale. Right: Frequency response on a logarithmic frequency scale,
illustrating the “constant-Q” property of an octave-band wavelet analysis. From Figure 5 of Jenkins et al.
(2010b).

where the time-varying channel variance estimates are given by taking the square of a moving
MAD estimate with a telescoping window size:

σ̂2
i (n) = 1.4826 MAD

{
x(n− 2i−1K), x(n− 2i−1K + 1), . . . , x(n+ 2i−1K)

}
(9.5)

where each component xi(n) is periodically extended in the usual fashion and 2K + 1 is the
length of the variance estimation window for the shortest time scale. In TPS, K is a parameter
typically set to 7 times the trial transit duration. The factor of 1.4826 accounts for the bias
between the MAD and the standard deviation of a Gaussian random variable.

To compute the detection statistic, Z(n), for a given transit pulse centered at all possible time
steps, we simply “doubly whiten” W{x(n)} (i. e., divide xi(n) point-wise by σ̂2

i (n), for i =
1, . . . ,M ), correlate the results with W{s(n)}, and apply the dot product relation, performing
the analogous operations for the denominator, noting that σ̂−2

i (n) is itself a time series:

Z(n) =
N(n)√
D(n)

=

∑M
i=1 2−min(i,M−1) [xi(n)/σ̂2

i (n)] ∗ si(−n)√∑M
i=1 2−min(i,M−1) σ̂−2

i (n) ∗ s2
i (−n)

. (9.6)

Note that the “−” in si(−n) indicates time reversal. The numerator term, N(n), is essentially
the correlation of the reference transit pulse with the data. If the data were WGN then the
result could be obtained by simply convolving the transit pulse with the flux time series. The
expected value of Equation 9.6 under that alternative hypothesis for which xi(n) = si(n) is√∑M

i=1 2−min(i,M−1) σ̂−2
i (n) ∗ s2

i (−n). Thus,
√

D(n) is the expected SNR of the reference
transit in the data as a function of time. The CDPP estimate is obtained as

CDPP (n) = 1× 106/
√
D(n), (9.7)

in units of parts per million.
Figure 9.6 shows the result of whitening a light curve for a star that exhibits obvious stellar

variability and likely star spot modulation. Two impulses have been added to the light curve to
illustrate the adaptive nature of the whitening filter.
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Figure 9.6 Whitening the flux time series of a variable star. a: Normalized target flux in parts per million
(ppm). b: Impulses. c: Whitened flux time series. d: Whitened impulses. Note that the waveforms are
different, illustrating that the whitening filter is adaptive.

For stars with identified giant planet transits or eclipses, an alternate route is taken to estimate
the correlation and expected SNR. The “in transit” cadences are removed and filled by a simple
linear interpolation. The resulting time series is high-pass filtered to remove trends on timescales
>3 days and then a simple matched filter is convolved with the resulting time series. A moving
variance (MAD) estimate supplies the information necessary to inform the expected SNR. Fig-
ure 9.7 illustrates the process of estimating CDPP for a star exhibiting strong transit-like features.
Figure 9.8 shows a scatter plot of the 6-hour rms CDPP for ∼200,000 stars searched by TPS for
DR25 (Twicken et al., 2016).

9.3.2 Removal of Positive Flux Outliers

As described in Section 2.4 of Tenenbaum et al. (2013), removal of negative flux outliers is
a hazardous action, since it relies upon an algorithmic capability to distinguish between a true
outlier and a transit, and for obvious reasons removing the latter is frowned upon. For this reason,
strict limitations are placed upon the algorithm’s capabilities for removing suspected negative
outliers.

Positive outliers are much less risky to remove, since by definition a positive outlier looks like
the opposite of a transit. At first glance, one might therefore assume that positive flux outliers are
irrelevant as a source of false alarms or other difficulties, since the difference between a short-
duration positive flux excursion and a short-duration negative flux excursion is intuitively obvious
to the most casual observer. In actuality, however, positive flux excursions can result in false
alarm detections via the following mechanism: when a positive flux excursion is subjected to the
whitening filter, the whitened result includes ”ringing” that precedes and follows the excursion,
as shown in Figure 9.9. The strongest components of the ring-down have the opposite sign to the
original excursion, thus a positive excursion in the flux results in two negative excursions in the
whitened flux, which are often misconstrued as transits by the subsequent search.
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Figure 9.7 Time series outputs of TPS for one target star. a: Normalized target flux in parts per million
(ppm). b: Correlation time series N(n) from numerator term of Equation 9.6. c: Normalization time series
D(n) from denominator term of Equation 9.6. d: 3-hr CDPP time series. e: Single-event statistic time
series, Z(n). In all cases, the trial transit pulse, s(n), is a square pulse of unit depth and 3-hour duration (for
this demonstration). From Figure 6 of Jenkins et al. (2010b).

Figure 9.8 Six-hour CDPP as a function of Kepler magnitude for 197,434 stars with 6≤ Kp ≤ 18 and
rms CDPP between 10 and 2000 ppm. Note that the changes in density at Kp = 14 and Kp = 16 reflect
the methodology by which the Kepler planetary target stars were selected. For stars withKp < 14 there are
two main populations evident: the branch at ∼100 ppm are giant stars while the stars in the lower branch
are dwarf stars. There is considerable scatter in the rms CDPP between and above these main branches due
to variable stars.

The removal of positive outliers is accomplished by marking their locations in the quarter-
stitched flux time series as gaps and applying the standard TPS gap-filling algorithm. The iden-
tification of positive outliers, by contrast, makes use of the whitened flux. The advantage to
this is that by design the whitened flux contains approximately Gaussian-distributed, zero mean,
unit variance white noise, plus quasi-impulsive outliers; consequently, the positive outliers are
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Figure 9.9 Effect of a positive flux outlier. Top: Original flux. Bottom: Whitened flux. Note that
whitening introduces a negative outlier to the whitened flux, which can be misconstrued as a transit. While
the resulting negative outlier is much smaller than the original positive outlier, in this case the negative
outlier still has a single event significance of over 27 σ.

extremely easy to identify in the whitened flux. The disadvantage is that a positive outlier in the
whitened flux can either indicate a positive outlier in the original flux, or it can be part of the
ring-down of a negative outlier such as a transit; this can be visualized by inverting the lower
plot in Figure 9.9. Thus the algorithm for positive outlier removal is as follows:

Whiten the quarter-stitched flux;

Identify clusters of whitened flux values which exceed a threshold: in this case a threshold
of 12.3 σ is used, as explained in Appendix B;

determine whether each cluster is due to positive outliers in the original flux or due to the
ring-down of negative outliers in the original flux, which is accomplished by examining the
local minima adjacent to each cluster, since for positive outliers the local minima will be
weaker than the positive outliers, whereas for the ring-down of a transit one of the local
minima will be much stronger than the positive outliers;

For each positive outlier value thus identified, mark the cadences in the quarter-stitched flux
as gapped and apply gap-filling;

Produce a new whitened flux from the outlier-removed quarter-stitched flux and iterate the
process until no further positive outliers are identified, which takes into account that re-
moval of outliers can change the local noise characteristics slightly, causing values that had
previously been below threshold to exceed the threshold.
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9.3.3 Quarter-by-Quarter Whitening

Perhaps the most important change to TPS in SOC 9.3 is the introduction of quarter-by-quarter
whitening. The previous codebases stitched all quarters of data together for each target star, then
whitened the quarter-stitched flux time series and searched for transit-like features. The current
version of TPS separately whitens the flux time series for each quarter prior to concatenating
the quarterly segments together in preparation for the transit search. This change was motivated
by the fact that a significant population of false alarms were generated near boundaries of the
quarterly data segments. Inspection revealed that this was due to step changes that occurred in
noise statistics and power from quarter to quarter as stars rotated onto new CCDs as a result
of roll maneuvers. The adaptive wavelet-based matched filter algorithm in TPS was designed
to track gradual changes in the statistics of observation noise, not abrupt changes such as those
engendered by roll maneuvers. Quarter-by-quarter whitening significantly reduces the incidence
of false alarms near quarterly boundaries.

9.3.4 Setting De-emphasis Weights

De-emphasis weights are applied to the correlation component, N(n), of the SES time series in
order to allow the transit detector to selectively ignore data inside of gaps and in the neighborhood
of long gaps, as residual transients near data gaps tend to generate spurious false alarms. In SOC
9.3 the de-emphasis window length was set to begin one cadence after safe modes (as well as for
gaps longer than 1.5 days) and last 2 days. The window length after attitude tweaks was set to
begin one cadence after the tweak and last for 12 cadences (∼6 hours). First, the de-emphasis
parameter, p, was set for each cadence so that it ramped linearly from 0 at the edge of the gap
to 1 at the boundary of the window size. Then the de-emphasis weights, wdeemphasis, were set
according to

wdeemphasis = p+
(
1− p)(1− e−2p

)
. (9.8)

This produces a de-emphasis weighting profile that is 1 at the outer edge of the de-emphasis
window farthest from the gap with a slope of approximately 1 at that edge and that then drops
exponentially by two e-foldings to 0 at the edge of the de-emphasis window adjacent to the
gapped region.

Once the de-emphasis weights are set, the actual transit search can commence.

9.4 Folding the Detection Statistics and Applying Vetoes

The third and final stage of TPS is to fold the single-event detection statistics developed in Sub-
section 9.3.1 over the range of potential orbital periods and to apply the vetoes to those signatures
that cross the 7.1 σ MES threshold. Due to the large number of false alarms from residual instru-
mental effects, this has become an iterative process, as the strongest MES may not pass one or
more of the additional vetoes. In these cases, the period and epochs that contributed to the failed
TCE are notched out of the MES parameter space and the other phases of the trial orbital period
yielding the original potential TCE are examined for MES values above the 7.1 σ threshold. If
none are found, the redacted single event time series are refolded over all trial orbital periods to
allow TPS to identify and inspect MES values at other orbital periods for potential TCEs. In ad-
dition, TPS has the opportunity to remove up to two strong individual features in the light curve
that produce high MES values without folding onto comparably strong features to generate the
high MES value.

These processing steps are descibed in the following subsections: folding the single event
statistics is discussed in Subsection 9.4.1. The waveforms chosen for the transit pulse templates
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and their spacing are discussed in Subsection 9.4.2. Subsection 9.4.3 describes the limits imposed
on the transit duty cycles to reduce the size of the parameter space to be searched. The χ2 vetoes
are introduced and developed in Subsection 9.4.4. Finally, removal of non-periodic transit-like
features is described in Subsection 9.4.5.

9.4.1 Folding the Single Event Statistics

Applying a matched filter for a deterministic signal with unknown parameters is equivalent to
performing a linear least-squares fit at each trial point in parameter space, which for transit
sequences is the triple composed of the epoch (or time to first transit), orbital period, and transit
duration, {t0, Tp, D}. Clearly, we cannot test for all possible points so we must lay down a grid
in parameter space that balances the need to preserve sensitivity with the need for speed.

As given in Jenkins et al. (1996), one measure of sensitivity is the correlation coefficient
between the model planetary signatures of neighboring points in parameter space. The minimum
correlation coefficient, ρ, required between neighboring models, determines the step sizes in
period, epoch, and duration. For the case of simple rectangular pulse trains, a real transit will
have a correlation coefficient with the best-matched model of no worse than ρ + (1 − ρ)/2.
The correlation coefficient as a function of the change in epoch, ∆t0, is given by c(∆t0) =
(D − ∆t0)/D = 1 − ∆t0/D, where D is the trial transit duration. Similarly, for a change in
transit duration we have c(∆D) = (D−∆D)/D = 1−∆D/D, so that ∆D = (1−ρ)D. So for
a given minimum correlation coefficient, ρ, we have ∆t0 = (1 − ρ)D. The step size in orbital
period, ∆Tp, is strongly influenced by the number of transits expected in the dataset at the trial
period itself. In this case, c ≈ 1 −N ∆Tp/4D, where N is the number of expected transits, or
the ratio of the length of the dataset to the trial period, so that:

∆Tp = 4 (1− ρ)D/N = 4 ∆t0/N. (9.9)

The value used in SOC 9.3 was ρ = 0.95 for orbital period and epoch. The minimum and
maximum periods searched by TPS are additionally limited by astrophysical considerations, as
discussed in Subsection 9.4.3.

Trial transit duration uses a SOC 9.3 value of ρ = 0.8 for the transit duration minimum
correlation coefficient. The trial transit durations explicitly searched by TPS are approximately
1.5, 2, 2.5, 3, 3.5, 4.5, 5, 6, 7.5, 9, 10, 12, 12.5, and 15 hours.6 The spacings are not regular, as
TPS is required to furnish CDPP metrics for all stars at 3, 6, and 12 hours.

Starting with the minimum trial orbital period (nominally 0.5 days), TPS applies Equation 9.9
to determine the next trial orbital period, continuing until the maximum trial orbital period, half
the length of the time series, is reached. To form a multiple-event statistic for a given point
{t0, Tp, D}, TPS computes the correlation and SNR time series, N(n) and D(n), and then loops
over the trial orbital periods, folding these time series at each orbital period (rounded to the
nearest number of samples) and summing the numerator and denominator terms falling into each
epoch bin. TPS identifies the maximum multiple-event statistic and its corresponding epoch.
TPS also identifies and returns the maximum single-event statistic for each trial transit duration
McCauliff et al. (2010). Figure 9.10 illustrates this process for the flux time series appearing in
Figure 9.7.

To preserve sensitivity to short duration transits and small orbital periods, TPS supports a
super-resolution search with respect to epoch and orbital period. This is accomplished by shift-
ing the trial transit pulse by a fraction of a long cadence duration, generating the single-event
statistic time series components for this shifted transit, then interleaving the results with the orig-
inal transit pulse’s single-event statistics. For example, a three-hour square transit pulse lasts

6These durations are approximate because they are set in cadences, which are 29.4 minutes long, so the shorted duration
searched is three LC, or 1.47 hours.
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six long cadence samples: [0,−1,−1,−1,−1,−1,−1, 0]. Shifting this transit by 9.8 minutes
(1/3 LC) earlier we obtain the sequence

[
− 1

3 ,−1,−1,−1,−1,−1,− 2
3 , 0
]

with corresponding
single-event detection statistics N+1/3(n) and D+1/3(n). Shifting the original transit pulse by
9.8 minutes later, we obtain the sequence

[
0,− 2

3 ,−1,−1,−1,−1,−1,− 1
3

]
with corresponding

single-event detection statistics N−1/3(n) and D−1/3(n). The results are combined from all three
analyses schematically as

N(n) = {. . . ,N+1/3(k),N0(k),N−1/3(k),N+1/3(k + 1),N0(k + 1),N−1/3(k + 1), . . .},
(9.10)

where the original time series is denoted by N0(n). A similar expression applies for the super-
resolution denominator term, D(n). The folding proceeds exactly as before, except that now a
sample is 9.8 minutes rather than 29.4 minutes.

To improve the sensitivity of the search, astrophysics-motivated transit waveform templates
were adopted, as described in the next section.
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Figure 9.10 Multiple-event statistics (MES) determined by folding the single-event statistics distribution.
Top: Maximum multiple-event statistic as a function of fold interval (orbital period), showing a peak at
15.97 days, corresponding to the orbital period of the transiting object in the data of Figure 9.7. Bottom:
MES as a function of lag time for a 15.97-day period, showing a peak at 12.74 days, corresponding to the
mid-time of the first transit shown in Figure 9.7. From Figure 8 of Jenkins et al. (2010b)
.

9.4.2 Search Templates and Template Spacing

Mismatch between any true signal and the template used to filter the data degrades the SNR.
This degradation due to signal-template mismatch can be decomposed into two separate types:
shape mismatch and timing mismatch. The transit duration and assumed transit model affect the
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shape mismatch, while the template search grid spacing in the orbital period and epoch affect the
timing mismatch.

Prior to the first transit search of all 17 quarters of Kepler data (Seader et al., 2015), TPS had
simply used a square-wave transit model. In Seader et al. (2013), it was shown through a Monte
Carlo study, that with perfect duration and timing match, the square wave, on average, mis-
matches a true signal by 3.91%. This translates directly into SNR loss. This same Monte Carlo
study was used to compute the integral average of all astrophysical models based on the Mandel
and Agol geometric transit model (Mandel & Agol, 2002) with limb darkening of Claret (Claret
& Bloemen, 2011), over the parameter space of interest (Seader et al., 2013). TPS now uses
this averaged model to construct templates, which lowers the shape mismatch to only 1.49%.
Lowering this shape mismatch also improves the sensitivity of the χ2 vetoes (discussed in the
next section) which previously assumed a perfect match between the signal and template. In
SOC 9.3 the calculation of the χ2 vetoes now takes into account the signal-template mismatch
as described first in Allen (2005) and later in Seader et al. (2013).

9.4.3 Limitation on Allowable Transit Duty Cycles

An additional means of separating likely transiting planet signatures from false alarms is to apply
bounds to the ratio of the transit duration, τ , to the orbital period, T . The relationship between
these parameters of the transit can be derived from Kepler’s laws of motion as:

τ = k T 1/3. (9.11)

Equation 9.11 can be rewritten in terms of the transit duty cycle φdut ≡ τ/T :

φdut = k T−2/3. (9.12)

The value of k for a specific system is a function of the star’s properties, and also the eccen-
tricity of the orbit under consideration. For circular orbits about the Sun, k is approximately
0.058 days2/3 (Gilliland et al., 2000); for a circular orbit about a late-type M dwarf star, k is
approximately 0.026 days2/3.

The shortest orbital period included in TPS searches is set to 0.5 days. At this limit, Equa-
tion 9.12 shows that φdut for a Sun-like star and a circular orbit is approximately 0.092. To allow
a margin for elliptical orbits or stars far from Solar in their parameters, we limit the maximum
allowed value of φdut to 0.16. This restriction is implemented by adjusting the minimum search
period for each trial transit duration used in the search: for 1.5-hour transits, the search is allowed
to operate down to periods of 0.5 days, while for 15-hour transits the minimum search period is
limited to 3.9 days.

An additional restriction is also placed on the lower bound of allowed φdut values, specifically

φdut ≥ 0.017T−2/3, (9.13)

where T is the orbital period in days. This limit is 3.4 times smaller than that expected for
Solar stars and 1.5 times smaller than expected for late M dwarf stars, which allows margin for
elliptical orbits, large impact parameter values, and non-Solar parameters. Equation 9.13 sets a
maximum search period which is a function of transit duration: for example, 1.5-hour transits are
limited to search periods of 50 days or less, while 3.0-hour transits are limited to search periods
of 300 days or less.

Note that the use of the duty cycle cuts creates an implicit trade-off between the purity of
the search (i.e., rejection of false positives) and its efficiency (i.e., acceptance of true positives).
Specifically, the cuts will reject false positive detections around Sun-like stars on the basis of
unphysicality. At the same time, the upper limit on permitted duty cycle will reject some true
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positive detections on stars significantly larger than the Sun; the lower limit on permitted duty
cycle will reject some true positive detections on stars significantly smaller than the Sun. Both
cuts can potentially reject true positive detections on Sun-like stars from planets with highly
eccentric orbits. It is our judgement that the regions of parameter space excluded by these cuts
are acceptably small when both sides of the trade-off are considered.

9.4.4 False Alarm Vetoes

During the transiting planet search, TPS steps through potential candidates across period-epoch
space with MES values exceeding the search threshold of 7.1σ in order of decreasing MES for
each pulse duration and then subjects each potential TCE to a suite of three statistical vetoes. The
search continues until either TPS runs out of time on that pulse duration, it hits the maximum
allowable number of candidates to loop over (set to 1000), it exhausts the list without finding
anything that passes all the vetoes, or it settles on something that passes all the vetoes. During
the course of performing the search, TPS has the ability to remove up to two features in the
data that contribute to detections that do not pass all the vetoes (Tenenbaum et al., 2013, see
Subsection 9.4.5). After removing features, the period-epoch folding is re-done to generate a
new list of candidates.

Once a potential TCE with MES > 7.1 σ is found, TPS uses the candidate signature’s
ephemeris to de-trend and re-whiten the light curve to avoid any loss in SNR that would otherwise
occur because of the effect of the signal on the estimated trend and the whitening coefficient
estimates. This improves the discriminating power of these three statistical tests, or vetoes to
which TPS subjects each candidate transit sequence. The ephemeris of the candidate is used
to identify in-transit cadences (with some small amount of padding). These in-transit cadences
are then filled using an adaptive auto-regressive gap prediction algorithm. A trend line is then
estimated and removed from the data using a piecewise polynomial fitting algorithm that employs
AIC to prevent over-fitting. The whitening coefficients are then re-computed. After removing
the trend from the in-transit cadences, they are restored to the trend-removed data, which are
then whitened using the new whitening coefficients. The re-whitened data are now subjected to
the robust statistic and the two χ2 statistics, χ2

(2) and χ2
(GOF ).

The threshold for the robust statistic test was set to 6.8 σ in the DR25 run and rejected 43,313
signatures with MES > 7.1 σ. That is, these signals failed the robust statistic test and a lower
MES signal was not subsequently identified that both met the detection threshold and passed all
vetoes, and so no TCE was generated. The surviving 24,691 signatures were subjected to two
different χ2 tests (Seader et al., 2013). Thresholds for the robust statistic and χ2 tests were tuned
by analysis of TPS performance for target stars with injected transit signatures and a subset
of known KOIs. The thresholds were set as high as possible to facilitate false alarm rejection
without significantly impacting the recovery of true transit signals.

These statistical vetoes are described in more detail below.

9.4.4.1 The Robust Statistic The robust statistic (RS) performs a kernel-based robust fit of
the in-transit data to the putative transit signature and normalizes the fitted transit depth by the fit
uncertainty (Tenenbaum et al., 2014). This test penalizes outliers that erroneously contribute to
a high detection statistic (MES). There is an additional criterion applied during the RS test that
affects only candidates with the minimum allowed number of transits (three transits). We require
that each transit has no more than 50% of its cadences with data quality weights less than unity
(Tenenbaum et al., 2014).

The first step in constructing the RS is to generate the transit model pulse train. This consists
of a train of transit pulses that are positioned at the locations of the transits as determined by the
period and epoch associated with the MES. Let s be this model pulse train vector. The pulse train
s and the data, or flux time series, x are each whitened to eliminate the effect of stellar variations.
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The whitened model and data vectors, s̃ and x̃ (where ‘∼’ denotes a whitened vector), are then
windowed to remove out-of-transit samples. The resulting whitened and windowed transit model
s̃ is then robustly fit to the whitened and windowed data x̃ to generate a diagonal matrix of fit
weights W. The RS, ZRS, is then calculated as:

ZRS =
s̃TWx̃√
s̃TWs̃

, (9.14)

where T denotes the transpose of a vector, and where Equation 9.14 is applied only to data
samples within the transit windows described above.

In the limit in which the data vector x and the model vector s are well-matched in shape and
duration, the matrix W will approach the identity matrix and ZRS, as defined in Equation 9.14,
will be approximately equal to the MES. In reality, the match between data and model is imper-
fect: the transits in the model vector are represented as approximate transit pulses rather than true
transit shapes, and in general the duration of the trial transit pulse and the true transits will not be
identically matched to one another. In studies of known transiting planet systems, this mismatch
can lower ZRS by about 10% compared to the MES (Z).

Now consider a situation in which the MES is constructed from folding a single, extremely
strong transit-like signature over two or more events consistent with statistical fluctuations, which
is a typical case of non-uniform-depth events being combined into a MES which lies above
threshold. Because the fit is performed robustly, the weak transit-like signatures will “out-vote”
the strong one, leading to near-unity weights for the weak events and near-zero weights for the
strong event. When the weights in this instance are combined with the data and model vectors
as shown in Equation 9.14, the result will be a low value for ZRS. It is in this way that the RS
permits events with significant transit depth mismatches to be vetoed while preserving events
with relatively uniform transit depths.

9.4.4.2 Theχ2
(2) Statistic The χ2

(2) test breaks up the MES into different components, one for
each transit event, and compares what is expected from each transit to what is actually obtained
in the data, assuming that there is indeed a transiting planet (Seader et al., 2013, 2015). We begin
by examining the sum of the contributions of each transit to the detection statistic, Z, defined in
Equation 9.6 for a specific orbital period, epoch, and transit duration in terms of the whitened
data, x̃, and whitened signal template, s̃:

Z =

P∑

j=1

zj , (9.15)

where P is the number of transits and

zj =
x̃ · s̃j√
s̃j · s̃j

, for j = 1, . . . , P, (9.16)

where x̃ is the whitened data vector and s̃j is the jth whitened transit pulse vector. Define the
quantity, qj , representing the fractional expected contribution of each transit pulse to Z, as

qj =
s̃j · s̃j∑
i s̃i · s̃i

, for j = 1, . . . , P. (9.17)

The sum of the qj terms over all transits in Equation 9.17 is identically 1:

N∑

j=1

qj = 1. (9.18)
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The difference,∆zj , between the observed contribution to the MES and the expected contribution
for each transit pulse is

∆zj = zj − qj Z, (9.19)

for j = 1, . . . , P , and it can be shown that

P∑

j=1

∆zj = 0. (9.20)

The χ2
(2) statistic is defined as

χ2
(2) =

P∑

j=1

(∆zj)
2

qj
, (9.21)

and has 〈χ2
(2)〉 = P − 1 degrees of freedom.

In SOC 9.3, the calculation of the number of degrees of freedom for the χ2
(2) veto was up-

dated to account for the mismatch between the non-rectangular, astrophysics motivated transit
pulse templates and actual limb-darkened transit pulses. Monte Carlo experiments using artifi-
cial transit injection were conducted to determine an empirical correction factor ε to the number
of degrees of freedom for this veto as

〈χ2
(2)〉 = nTransits − 1 +

ε (2− ε)
(1− ε)2 Z

2, (9.22)

where ε ≈ 0.04. This value was also supported by analysis of the set of “golden KOIs” against
which the performance of TPS and DV are routinely measured (see, e.g., Seader et al., 2015;
Twicken et al., 2016, Subsection 9.5.4). The empirical correction factor was initially formulated
by Allen (2005).

The reduced χ-square, the ratio of the value of χ2
(2)to its expected value, 〈χ2

(2)〉, provides a
measure of the degree to which the contributions of the individual transit pulses to the total detec-
tion statistic are comparable, and can thus be used to obtain a modified MES that is thresholded
(against 7 σ for DR25):

Z(2) = Z

(
χ2

(2)

〈χ2
(2)〉

)−1/2

. (9.23)

9.4.4.3 The χ2
(GOF ) “Goodness of Fit” Veto This veto measures the strength of the resid-

ual errors of the transit signature fit to the data. This can also be interpreted as the difference
between the squared amplitude of the detector output and the squared SNR (Baggio et al., 2000;
Allen, 2005). There are several subtleties, described in Seader et al. (2013), associated with
the construction of χ2

(2). These subtleties must also be taken care of in the construction of this
χ2

(GOF ) statistic, and in what follows it is assumed that they are. The mathematical development
of χ2

(GOF ) and χ2
(2) are similar but they partition the information at different levels: χ2

(2) con-
cerns itself with the strength of the contributions of the individual transit pulses to the total SNR,
while χ2

(GOF ) measures the contributions of the individual cadences.
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As developed in Appendix B of Seader et al. (2015), χ2
(GOF ) can be expressed in terms of the

whitened data vector, x̃, and the whitened transit signature, s̃:

χ2
(GOF ) =

N∑

n=1

x̃(n)x̃(n)−

[∑N
n=1 x̃(n)s̃(n)

]2

∑N
n=1 s̃

2(n)
(9.24)

= x̃ · x̃− (x̃ · s̃)2

|s̃|2
(9.25)

which has 〈χ2
(GOF )〉 = Nt degrees of freedom, where Nt is the number of in-transit cadences in

the time series. Note that xj(n) is zero outside of transit j as discussed in Seader et al. (2013).
As with the χ2

(2)veto, TPS thresholds the result of normalizing the MES by the reduced χ(GOF )

statistic:

Z(GOF ) = Z

(
χ2

(GOF )

〈χ2
(GOF )〉

)−1/2

. (9.26)

The threshold for Z(GOF ) was set to 6.8 σ for DR25 (decreased from 7.0 σ in the DR24 run).
The two chi-square vetoes complement the MES and the RS, which measure the correlation

between the data and the fitted waveform. In contrast, χ2
(2) and χ2

(GOF ) measure the degree to
which the fit residuals meet expectations, or the degree to which the scatter of the differences
between the data and the fitted model is consistent with a zero-mean, unit variance noise process
as expected in the whitened domain. A total of 7461 of the potential DR25 TCEs that survived
the RS test failed at least one of the χ2 tests and 5147 failed both tests; these represent the χ2 test
failures after which a lower MES TCE was not subsequently identified. The number of potential
TCEs rejected only by the χ2

(2) test was 1,990 while the number rejected only by the χ2
(GOF )

test was 324. A total of 17,230 signatures with MES > 7.1σ survived all statistical checks and
were processed through Data Validation; this includes 1779 TCEs identified after stronger MES
signals were vetoed.

9.4.5 Removal of Non-Periodic Transit-Like Features

The benefits of the multiple iterations of search, described above, can only be fully exploited in
the absence of relatively strong non-astrophysical single events. Such strong events will cause
the MES to exceed the 7.1 σ threshold for large numbers of possible periods: folding a single
strong event with a small number of weak events will produce a large MES, and there are an
extremely large number of period-epoch combinations that will result in such a folding. If this
happens, the 1000 iterations of searching can easily be exhausted in the process of eliminating a
fraction of the spurious MES caused by a single strong event. Such an outcome can be avoided if
these strong events are identified and removed prior to folding, but such removals are obviously
dangerous: without prior knowledge, a feature in the data that is identified as a non-astrophysical
event and removed could actually be a strong transit. For this reason, any event removal must
be used sparingly. TPS addresses this issue in two ways. First, a minimum number of transits is
required for an event to be accepted, since the probability of such chance combinations yielding a
MES over the threshold decreases as the number of events folded together increases. At present,
the threshold number of transits is three. Second, the current version of TPS is permitted to
remove one, and only one, single event, and only in the case in which the first iteration of planet
searching produces a strongest MES that exceeds the MES threshold of 7.1 σ but that is then
vetoed by RS, χ2

(2), or χ2
(GOF ). In such a case, the strongest single event in the time series is

removed, if and only if the strongest single event has an amplitude that is greater than the MES
threshold multiplied by the square root of the minimum number of transits (7.1 σ ×

√
3, or 12.3

σ for the current parameter choices).
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9.5 Performance of TPS in the DR25 Search

The SOC 9.3 transiting planet search of all 17 quarters of Kepler data included a total of 198,709
stellar targets of which 112,046 were observed in all 17 quarters and 86,663 in fewer than
17 quarters. There were 17,230 targets for which at least one transit signature was identified
that met the specified detection criteria: periodicity, minimum of three observed transit events,
detection statistic in excess of the search threshold, and passing grade on three statistical transit
consistency tests. Light curves for which a transit signal was identified were iteratively searched
for additional signatures after a limb-darkened transiting planet model was fitted to the data and
in-transit data were removed. The search for additional planets added 16,802 transit signals for
a total of 34,032; this far exceeds the number of transit signatures identified in prior pipeline
runs. There was a strategic emphasis on completeness over reliability for the final Kepler transit
search. The recovery rate against a set of 3,402 well established, high quality Kepler Objects
of Interest (KOI) yielded a recovery rate of 99.8%. These results are more fully documented by
Twicken et al. (2016).

9.5.1 Incomplete Searches

Kepler Pipeline modules are subject to total processing time, or “wall time,” limits when run on
the NAS Pleiades supercomputer. Computational tasks that are still running on Pleiades when the
wall time limit is reached are killed; it is imperative that pipeline tasks not suffer this fate because
results are not produced in such eventualities as the processes are simply “killed”. To prevent
the wall time being exceeded, time limits are allocated to subcomponents of TPS with margins
against the total time limit that are monitored during the processing. The time limits for TPS and
DV must accommodate transit searches and transit consistency checks, transiting planet model
fitting, computation of diagnostic metrics, and generation of reports. The time limits are managed
per target by enforcing limits on the number of TCEs, transiting planet search and consistency
check iterations, and model fit and diagnostic test iterations. Furthermore, self-timeouts are
enforced on a number of TPS and DV processing steps. It should be noted that whereas all TCEs
produced in the pipeline are guaranteed to meet the pipeline detection threshold, there is no
guarantee that a TCE represents the “best” detection (i.e., highest possible MES with a passing
grade on all consistency tests) for the given light curve in the gridded search space. A TCE may
represent the best result that could be achieved in the time available.

In the DR25 run, 35 hours were allocated for each TPS work unit compared to 50 hours for
the DR24 run. The decision to do so was based on non-technical considerations. Decreasing
the time limit resulted in a small population of targets (1.3% of the total) for which not all trial
transit pulse durations were searched for transits7.

Of 2497 targets that timed out before visiting all pulse durations, 1952 generated TCEs
nonetheless. Indeed, only 545 of the targets that timed out failed to generate a TCE. We can
determine whether significant sensitivity was lost due to the change in TPS time limit by inves-
tigating the fates of the 587 known KOIs for which not all pulse durations were searched in the
DR25 run. Of these KOIs, 12 are confirmed or validated planets, 137 are dispositioned as planet
candidates (PC), and 438 are false positives (FP). TCEs were generated for 562 of these KOIs,
most at the expected ephemeris. All 12 confirmed or validated that planet light curves generated
TCEs at the correct period and epoch. Only 25 of the 587 known KOIs failed to produce TCEs:
4 of these were PCs, and 21 were FPs.

7TPS searches each light curve for transits over 14 distinct pulse durations from 1.5 hours to 15 hours, starting from the
longest pulse duration and working toward the shortest (as longer period planets are of greater interest than shorter period
planets). If TPS reaches an internal timeout before the shortest pulse durations are searched, it will abort the search to
preserve the results from the other pulse durations.
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We conclude the following for the PCs that failed to produce TCEs based on DR24 tran-
sit search results: 1) KOI 6262.01 is consistent with a transiting planet with orbital period (0.34
days) below the minimum searched in the pipeline (0.5 days); 2) KOI 7572.01 features purported
transits with a period of 91.1 days that were largely gapped8 by two short-period TCEs on the
same target and does not appear to be a credible planet candidate; 3) KOI 6918.01 appears likely
to be an eclipsing binary and has been classified as such by Kirk et al. (2016); 4) KOI 6598.01
features purported transits with a period of 11.0 days that were largely gapped by three short-
period TCEs triggered by strong stellar variability and also does not appear to be a credible planet
candidate. Thus, the self-timeouts affected none of the confirmed or validated planets, few cred-
ible planet candidates, and a small number of astrophysical false positives. While unfortunate,
the incomplete transit searches in TPS are unlikely to significantly impact catalog completeness.

The search for additional planets in light curves with TCEs is conducted in DV (through
internal calls to the main TPS function); the time allocated to these searches is also subject to
run time constraints. Sufficient processing time must be held in reserve so that the DV diagnostic
tests may be performed and reports generated for all TCEs identified on a given target. The time
limit on transit searches for additional planets in light curves with TCEs depends upon the total
DV time allocation for each work unit (which did not change from DR24 to DR25) rather than the
TPS allocation per work unit (which was reduced from DR24 to DR25). In the limit, the multiple
planet search is halted before any of the 14 trial pulse durations are searched if insufficient time
would then be available to complete Data Validation.

9.5.2 Detection of Multiple-Planet Systems

For the 17,230 target stars found to contain a TCE, additional transit searches were employed to
identify potential multiple-planet systems. The process is described in Wu et al. (2010); Tenen-
baum et al. (2013), and in Chapter 11. The multiple-planet search incorporates a configurable
upper limit on the number of TCEs per target, which is currently set to 10. This limit was
established for two reasons. First, the limit on TCEs for a given target was instituted to man-
age pipeline task processing time as described earlier. Second, applying a limit to the number of
TCEs per target prevents a failure mode in which a target flux time series is sufficiently patholog-
ical that the search process becomes “stuck,” returning one detection after another. The selected
limit of 10 TCEs is based on experience: the maximum number of KOIs to date on a single
target star is seven, which indicates that limiting the process to ten TCEs per target is unlikely to
sacrifice potential KOIs.

The transit searches performed for multiple planet systems yielded 16,802 additional TCEs
across 7120 unique target stars, for a total of 34,032 TCEs. The number of TCEs identified on
each target in the DR25 transit search is listed in Table 1 of Twicken et al. (2016) and is available
online in machine readable format. The average number of TCEs per target with at least one
potential transit signal is 2.0. Figure 9.11 shows the distribution of the number of targets with
each of the allowed numbers of TCEs; the number of targets is displayed on a logarithmic scale.
The DR25 results represent the largest number of TCEs that have ever been produced in a pipeline
run for generation of a catalog of planetary candidates. The Kepler Pipeline development team
was encouraged by the scientific community to increase sensitivity to small planets in long-
period orbits and to emphasize completeness over reliability. Accordingly, a large number of the

8Flux data on cadences in and near transit for a given TCE are removed (“gapped”) from the flux time series in DV before
the search is invoked for additional transit signatures. The transits of subsequent, generally lower MES signatures that
overlap the events associated with prior TCEs on the same target are therefore unavailable for the transit search algorithm
and do not contribute to the detection MES. Short-period TCEs leave a periodic train of short data gaps in the residual
flux time series searched for subsequent transit signals; these time series have been referred to as “Swiss cheese.” TCEs
identified subsequent to short-period TCEs on a given target should be closely examined for validity.
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34,032 TCEs are false alarm detections. A variety of approaches may be undertaken to identify
the subset of legitimate planet candidates from the large population of TCEs.
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Figure 9.11 Distribution of transit search targets by
number of associated TCEs. The number of targets
is displayed on a logarithmic scale. The maximum
number of TCEs per target was configured to be 10.
In total, 34,032 DR25 TCEs were identified on 17,230
unique targets for an average of 2.0 TCEs per target
(for targets with TCEs). From Figure 3 of Twicken
et al. (2016).

For the record, there were 7492 total TCEs
in 1,006 systems with six or more TCEs. The
limit of 10 TCEs was reached for 139 targets.
A small number of the TCEs in systems with
six or more TCEs represent bona fide planet
candidates and in some cases confirmed plan-
ets (e.g., KOI 157/Kepler-11 system, KOI
435/Kepler-154 system, KOI 351/Kepler-90
system). The vast majority of these TCEs
are false alarms, however. There are not
nearly this many detectable transiting plan-
ets in large multiple-planet systems in the Ke-
pler dataset. The bulk of these TCEs are trig-
gered by artifacts and other features in indi-
vidual light curves that produce multiple false
alarms.

All TCEs included in this analysis have
been delivered to the NASA Exoplanet
Archive9 along with comprehensive DV Re-
ports for each target with at least one TCE
and one-page DV Report Summaries for each
TCE. The Reports and Summaries are avail-
able to Exoplanet Archive visitors in PDF for-
mat. Tabulated DV model fit and diagnostic test results are also available at the Exoplanet
Archive, as are newly redesigned data products in Flexible Image Transport System (FITS) for-
mat that include TPS and DV time series data relevant to the TCEs identified in the pipeline
(Thompson et al., 2016).

9.5.3 TCE Population

We now summarize the population of TCEs produced in the Kepler Data Processing Pipeline in
the Q1–Q17 DR25 run and draw comparisons with the DR24 results reported by Seader et al.
(2015).

The final search (DR25) for transiting planets in the full primary Kepler Mission dataset pro-
duced 34,032 TCEs on 17,230 unique stellar targets. This compares with 16,285 TCEs on 9743
unique targets in the Q1–Q16 search reported by Tenenbaum et al. (2014), and 20,367 TCEs on
12,669 unique targets in the Q1–Q17 DR24 search reported by Seader et al. (2015). The increase
in the number of potential transit signatures is due largely to: 1) improvements in pipeline pixel
calibration, photometry, and transiting planet search algorithms, 2) modifications to transit sig-
nature consistency tests and test criteria, and 3) software bug fixes. The fundamental detection
threshold for the transiting planet search has not changed, however.

Figure 9.12 (top panel) shows the period and epoch of first transit for each of the 34,032
DR25 TCEs, with period in units of days and epoch in Keplermodified Julian Date (KJD), which
is Julian Date - 2454833.0 (1 January 2009). As discussed earlier in Chapter 8, structure in
the ensemble of TCEs displayed in the period versus epoch “wedge” is undesirable (although
white strips without TCEs are unavoidable due to gaps in the Kepler dataset). Figure 9.12 (lower

9http://exoplanetarchive.ipac.caltech.edu.
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panel) shows the same plot for the 20,367 TCEs detected in the earlier DR24 pipeline run. The
axis scaling is identical for the two subplots, as is the marker size. Several features are apparent in
this comparison. First, the number of TCEs is considerably larger in the Q1–Q17 DR25 analysis.
Second, the number of TCEs with long periods is considerably greater in the DR25 analysis.
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Figure 9.12 Orbital period versus epoch “wedge” plots for the 34,032 DR25 TCEs detected in Q1–Q17
of Kepler data (top); and for the 20,367 DR24 TCEs detected in Q1–Q17 of Kepler data (bottom) as reported
in Seader et al. (2015). Periods are in days, epochs are in Kepler-modified Julian Date (KJD); see text for
definition. From figure 4 of Twicken et al. (2016).

The paucity of long-period TCEs in the prior analysis reported by Seader et al. (2015) may be
traced largely to the TPS transit signal consistency tests that were employed in the DR24 run. In
an effort to mitigate the large number of long-period false alarms due to image artifacts and the
quarterly photometer roll, the TPS vetoes eliminated many long-period TCEs. Preventing false
alarms while at the same time maintaining sensitivity to transit signals has always been a difficult
balancing act. As discussed earlier, we have 1) improved the algorithm for computing the degrees
of freedom associated with the χ2

(2) transit signal consistency test, 2) lowered the threshold on
the χ2

(GOF ) test, and 3) disabled the consistency test based on a statistical bootstrap. Together
with improvements to the quality of the light curves and the transiting planet search algorithm,
we are hopeful that a number of the long-period TCEs in this Q1–Q17 analysis represent small
planets orbiting in the habitable zone of Sun-like stars even if the vast majority of the long period
TCEs represent false alarms.

The drastic change in the distribution of TCE periods may be seen more clearly in Figure 9.13,
which shows the distribution of TCE periods in units of days on a logarithmic scale. The Q1–
Q17 DR25 results are shown in the upper panel of the figure and the Q1–Q17 DR24 results
are shown in the lower panel. The distributions of TCEs by orbital period are displayed with
the same axis scaling in both cases. TPS has been configured to search for transiting planet
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signatures with orbital periods above 0.5 days. The minimum orbital period for the multiple
planet search was reduced from 1.0 to 0.5 days approximately 1.5 years after the Kepler launch to
address the growing population of transiting planets with periods less than 1.0 day. The minimum
orbital period was never reduced further in the Pipeline TPS. There is a high computational cost
involved in searching for short-period transit signatures. Short-period transiting planet signals do
not necessarily go undetected. Transit signals with periods below 0.5 days often produce one or
more detections at integer-multiples of the true orbital period. In cases such as these, the transit
ephemerides are typically corrected by TCERT in the process of catalog generation. Failure to
detect certain short period transiting planets in the pipeline is likely to be attributable to removal
of harmonic content (as discussed in Subsection 9.2.2) or transit consistency vetoes (as discussed
in Subsection 9.4.4) rather than a lower limit on the transit search period.

Figure 9.13 Distribution of TCE periods plotted logarithmically. Top: 34,032 DR25 TCEs detected in
Q1–Q17 of Kepler data. Bottom: 20,367 DR24 TCEs detected in Q1–Q17 of Kepler data as reported in
Seader et al. (2015). The peak near 372 days (log10 = 2.57) in the DR25 results is coincident with the orbital
period (and hence thermal cycle) of the Kepler spacecraft. The peak near 460 days (log10 = 2.66) in DR24
analysis has been eliminated by improvements to data gap filling code in the DR25 codebase. The common
peaks near 0.57 days (log10 = -0.24) and 12.45 days (log10 = 1.10) are due to contamination by RR Lyrae
and V380 Cyg respectively (Coughlin et al., 2014). From Figure 5 of Twicken et al. (2016).

The distribution of the latest Q1–Q17 TCEs is roughly uniform with log period up to periods
on the order of 200 days. Beyond that point there is a large excess of TCEs with a distinct
peak near the Kepler orbital period of 372 days. This excess of long-period TCEs is clearly
non-astrophysical. Transit signatures at long periods are comprised of relatively few transits.
Gaussian detection statistics do not necessarily apply when small numbers of transit events are
folded; the false alarm rate therefore depends not only on the pipeline detection threshold but also
on the number of observed transits. Furthermore, the discriminating power of the χ2 consistency
tests is diminished at long periods due to the low number of transit events and hence degrees
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of freedom. The false alarm probability for each TCE is determined with a statistical bootstrap
calculation in DV (see Chapter 10 and Chapter 11).

In the Q1–Q17 DR24 analysis reported by Seader et al. (2015), a bootstrap-based veto was
employed in the suite of TPS transit signal consistency tests. This veto essentially enforced a
detection threshold that varied by TCE to yield a uniform false alarm probability. As seen in
Figure 9.13, the distribution of TCEs generally decreased with (log) period although there was
also an excess at long periods. The increase in detection threshold with period reflected the non-
Gaussian nature of the noise and was effective at eliminating long-period false alarms. In order
to quantify the sensitivity and detection efficiency of the DR24 pipeline, transit signatures were
injected at the pixel level into flight data associated with most LC targets and the Kepler Pipeline
was subsequently run through PA, PDC, TPS and DV. In the analysis of this run by Christiansen
et al. (2015), some loss in sensitivity of the DR24 pipeline to long-period transiting planets was
noted. A similar transit injection activity is underway to characterize the DR25 Kepler Pipeline
codebase (Christiansen 2017, in prep).

A close examination of Figure 9.13 reveals that there are several peaks in the TCE period
histograms for the DR24/DR25 results that are highly localized. There was a long-period peak
near 460 days (log10 = 2.66) in the DR24 analysis that has been eliminated by improvements to
data gap filling code in SOC 9.3. There is a peak in the DR25 results near 372 days (log10 =
2.57) due largely to image artifacts that repeat on the annual Kepler thermal cycle; this was also
present in the Q1-Q16 results (Tenenbaum et al., 2014). In both Q1–Q17 runs there are peaks
attributable to bright, short period sources in the Kepler field of view. The peaks near 0.57 days
(log10 = -0.24) and 12.45 days (log10 = 1.10) are due to contamination by RR Lyrae and V380
Cyg respectively (Coughlin et al., 2014).

Figure 9.14 shows the TPS MES versus orbital period in days for the DR25 TCEs. The axes
are displayed on logarithmic scales. All 34,032 TCEs are shown in the top panel. The bottom
panel displays the density of the distribution. There is a dense band of TCEs associated with
relatively low detection statistics across the full range of periods. There is an excess of long-
period, low MES TCEs dominated by false alarms. As discussed earlier, the vetoes are not
as effective at long orbital periods with relatively few transit events. Furthermore, false alarm
probability increases for long orbital periods because noise statistics based on relatively few
transit events are not approximated well by a Gaussian distribution and we did not increase the
transit detection threshold to maintain a uniform false alarm rate (as was effectively enforced
with the bootstrap veto in DR24).

Figure 9.15 shows the distribution of DR25 MES displayed on a linear scale. The high end
of the MES distribution is clipped. In the left panel we see 31,064 TCEs with MES below 100
σ; in the right panel we see 27,251 TCEs with MES below 20 σ. The mode of the distribution
is at 8 σ whereas Seader et al. (2015) reported a mode near 9 σ in the Q1–Q17 DR24 results.
Modifications to the TPS search algorithm and consistency tests have produced a population of
TCEs for which the mode is 1 σ closer to the transit detection threshold.

Figure 9.16 shows a histogram of transit duty cycles for the DR25 TCEs. The transit duty
cycle is defined to be the ratio of the trial transit pulse duration to the detected period of the
TCE (effectively the fraction of time during which the TCE is in transit). The TPS employs a
configurable upper limit on the duty cycles searched. The limit for this search was 0.16. This
implies that the search for short-period transit signals does not include all of the trial pulse du-
rations discussed earlier. The large number of short-period TCEs produces a ramp in duty cycle
from 0.05 to 0.16 as described by Seader et al. (2015). The large number of long-period TCEs in
the DR25 results, however, corresponds to many more TCEs at the lowest duty cycles than were
generated in the DR24 run.
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Figure 9.14 Multiple Event Statistic (MES) versus orbital period in days on logarithmic scales. Top: All
DR25 TCEs. Bottom: Density for all TCEs on logarithmic scale. From Figure 6 of Twicken et al. (2016).

9.5.4 Comparison with Known Kepler Objects of Interest (KOIs)

The performance of the latest Q1–Q17 pipeline run may be evaluated based on the rate of recov-
ery of a set of well established, high quality KOIs. As in the past, we refer to these as “golden
KOIs.” The ephemerides and dispositions for the golden KOIs were obtained from the cumu-
lative KOI table at the NASA Exoplanet Archive on 2015 September 25, after the DR24 KOI
table was finalized. The cumulative KOI table has been aggregated from past transit searches
and Kepler planet catalogs published by Borucki et al. (2011a,b), Batalha et al. (2013), Burke
et al. (2014), Rowe et al. (2015), Mullally et al. (2015), and Coughlin et al. (2016). Selection
criteria for the golden KOIs were:

1. MES above 9.0 σ in the most recent Kepler pipeline transit search in which the KOI was
recovered, and

2. Disposition as Planet Candidate (PC) following two or more prior transit searches including
at least one of Q1–Q16 and Q1–Q17 DR24 . The DR25 golden KOI set includes 3402 KOIs
on 2,621 unique target stars. The size of this set far exceeds the number of golden KOIs
employed in the past for evaluating pipeline TPS performance. There were 1752 golden
KOIs on 1483 target stars in the Q1–Q17 DR24 analysis, so the number of test cases for
evaluating transit search performance nearly doubled for the final Q1–Q17 run.

TPS does not receive prior knowledge regarding KOIs or detections on specific targets. Re-
covery of objects of interest that were previously detected is a valuable test to guard against
inadvertent introduction of significant flaws into the detection algorithm. The DR25 golden KOI
set was selected for evaluation of the SOC 9.3 codebase and associated pipeline runs approxi-
mately six months prior to the TPS and DV runs that produced the TCE population discussed
here. Of the 3402 golden KOIs, 3,385 (99.5%) were dispositioned in the cumulative KOI table
as PC at the time of the DR25 transit search. These include a number of PCs in systems featuring
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Figure 9.15 Distribution of MES for all DR25 TCEs. Left: TCEs with MES below 100 σ. Right: TCEs
with MES below 20 σ. From Figure 7 of Twicken et al. (2016).

Transit Timing Variations (TTV). The pipeline was not designed to detect transit signatures with
TTVs and has never been upgraded specifically for that purpose. Detection of transiting planets
with TTVs represents a test of the robustness of the search algorithm, which assumes strictly
periodic transit signals.

Although TPS does not receive prior knowledge regarding KOIs, DV is provided with the
ephemerides (period, epoch, and transit duration) of the individual KOIs associated with each of
the targets that produce TCEs in the transiting planet search. KOI ephemerides are only employed
by DV to match pipeline results for individual TCEs to known KOIs as an aid to Kepler project
personnel and the greater science community. Matches to known KOIs (at the time that DV is
run) are displayed in DV Reports by target and DV Report Summaries by TCE; these pipeline
products are delivered to the NASA Exoplanet Archive. KOI ephemerides are not employed by
DV for any purpose other than matching TCEs produced in the current pipeline run to previously
known KOIs. An alternative matching algorithm is utilized outside of the pipeline to federate
new TCEs with known KOIs when creating KOI tables at the Exoplanet Archive. It is possible,
and even likely, that there will be discrepancies between KOI matching results displayed in DR25
DV Reports and DV Report Summaries and the DR25 KOI table at the Archive. The matching
of TCEs to KOIs is discussed further in Subsection 9.5.5.

It should be noted that PDC does employ ephemerides of known KOIs and eclipsing binaries
in conditioning data for the TPS. The ephemerides are used to identify in-transit (or in-eclipse)
cadences for given targets; data samples for those targets and cadences are subsequently pro-
tected from misidentification as outliers or Sudden Pixel Sensitivity Dropouts (SPSD) (Jenkins
et al., 2010a; Stumpe et al., 2012).

Figure 9.17 shows the distribution of transit depth, SNR, period and planet radius for the
DR25 golden KOIs. Parameters are displayed on logarithmic scales. As discussed earlier, the
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Figure 9.16 Distribution of transit duty cycles on logarithmic scale for the 34,032 DR25 TCEs. Duty
cycle is defined as the ratio of the trial transit pulse duration to the detected period of the TCE. From Figure
8 of Twicken et al. (2016).

parameter values were obtained from the cumulative KOI table at the NASA Exoplanet Archive
on 2015 September 25. The golden KOIs span a large region of transiting planet parameter space.
In the final pipeline run, TPS produced TCEs on targets hosting 3397 of the 3402 golden KOIs.
TCEs were not produced on targets hosting the following golden KOI:

4253.01 (period 173.3d, SNR 13.5)

4670.01 (period 6.81d, SNR 11.5)

4886.01 (period 18.0d, SNR 12.1)

5727.01 (period 65.4d, SNR 9.6)

5850.01 (period 303.2d, SNR 12.7).

The TPS search latched onto the correct period for all five of these KOIs. The reasons for
failure to produce TCEs on these targets include:

Maximum MES detection statistic (7.04 σ) was below the 7.1 σ threshold (KOI 5727.01).

Veto by χ2
(GOF ) consistency test (4670.01, 4886.01, and 5850.01).

Veto by both χ2
(2) and χ2

(GOF ) consistency tests (4253.01).

The χ2 vetoes were discussed earlier and described in detail by Seader et al. (2013). We
will now discuss matching of KOI and TCE ephemerides for the targets hosting golden KOIs on
which TCEs were generated in the DR25 run.
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Figure 9.17 Parameter distributions of “golden KOIs” employed to assess performance of DR25 transit
search. Parameters are displayed on logarithmic horizontal axes. Parameter values were obtained from the
cumulative KOI table at the NASA Exoplanet Archive on 2015 September 25. From Figure 9 of Twicken
et al. (2016).

9.5.5 Matching of Golden KOI and TCE Ephemerides

Generation of a TCE on a target hosting a golden KOI is not sufficient to determine that the KOI
has been recovered. It is necessary that the transit ephemeris produced in the pipeline match that
of the KOI, such that the transit events producing the pipeline detection are consistent with the
KOI ephemeris. As stated earlier, DV is provided with the ephemerides (period, epoch, transit du-
ration) of each of the previously known KOIs associated with the targets that produce TCEs in the
TPS. Once the limb-darkened model fitting and search for additional planets have concluded, DV
matches each of the pipeline results against the ephemerides of the known KOIs. The matching
is performed by correlating high-temporal resolution, rectangular KOI transit waveforms against
rectangular transit waveforms based on pipeline ephemerides. Pearson correlation coefficients
are compared against an ephemeris matching threshold (0.75 for 0matching in DV) to establish
whether or not a match has been produced. The transit waveforms are normalized such that cor-
relation coefficients equal to 1.0 indicate perfect matches and correlation coefficients equal to 0.0
indicate that KOI and pipeline transit events are non-overlapping. The matching threshold was
specified at a level that is likely to be reached only if a KOI is accurately recovered. A match
is not declared in DV if the correlations exceed the matching threshold between a single TCE
and multiple KOIs on a given target (which does happen in the case of duplicate KOIs) or if the
correlations exceed the matching threshold between multiple TCEs on a given target and a single
KOI.

In the DR25 run, DV reported an ephemeris match at the specified threshold or better for
3354 of 3402 golden KOIs. These golden KOIs may be assumed to have been recovered without
further investigation. Of the 48 golden KOIs that did not trigger an ephemeris match, we have
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seen that in 5 cases there were no TCEs on the host target. We investigated the remaining 43
golden KOIs for which a TCE was produced on the host target but a match was not reported by
DV in order to ascertain whether the KOI in question had, in fact, been recovered. We found
that 40 of the 43 golden KOIs in this category were indeed recovered in the DR25 run; details
are provided below. In total, 3394 of 3402 DR25 golden KOIs (99.8%) were recovered in the
pipeline with the SOC 9.3 codebase.

Figure 9.18 shows the distribution of ephemeris match correlation coefficients for the 3394
golden KOIs that were recovered in the DR25 pipeline run. The full range of correlation coef-
ficients is displayed in the left panel and the range of correlation coefficients above the pipeline
ephemeris matching threshold (0.75) is displayed in the right hand panel. Most of the ephemerides
were matched at a high level. In fact, 92.0% of the golden KOIs that were recovered in the run
produced correlation coefficients > 0.9.

Figure 9.18 Distribution of ephemeris match correlation coefficients for “golden KOIs” recovered in
DR25 run. Left: All recovered KOIs. Right: Recovered KOIs at ephemeris matching threshold (0.75) and
above. From Figure 10 of Twicken et al. (2016).

Table 9.1 lists the complete golden KOI set, KOI and TCE ephemerides, and corresponding
ephemeris match correlation coefficients; the table is sorted by KOI number. The time stan-
dard for epoch of first transit is Barycentric Kepler-modified Julian Date (BKJD). It should be
noted that DV employs a standard convention for reporting epochs (first transit after start of Q1)
whereas the cumulative KOI table at the Exoplanet Archive does not; hence, there are often an
integer number of orbital periods between the KOI and TCE epochs. TCE ephemerides and
correlation coefficients are listed as -1 for the eight golden KOIs that were not recovered in the
DR25 run.

The five golden KOIs for which no TCE was produced on the host target were discussed
earlier. The three unrecovered golden KOIs for which at least one TCE was produced on the host
target are:
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Table 9.1 Golden KOI and TCE Ephemeris Matching Results

KOI KOI TCE KOI TCE KOI TCE Correlation
Number Period Period Epoch Epoch Duration Duration Coefficient

(days) (days) (BKJD) (BKJD) (hours) (hours)
1.01 2.4706 2.4706 122.7633 132.6457 1.7426 1.7968 0.985
2.01 2.2047 2.2047 121.3586 132.3833 3.8822 4.0438 0.980
3.01 4.8878 4.8878 124.8131 134.5888 2.3639 2.4059 0.991
4.01 3.8494 3.8494 157.5267 134.4299 2.6605 2.7133 0.990
5.01 4.7803 4.7803 132.9741 132.9740 2.0349 2.0611 0.994
7.01 3.2137 3.2137 123.6119 133.2543 3.9935 4.1268 0.984
10.01 3.5225 3.5225 121.1194 131.6870 3.1906 3.2711 0.988
12.01 17.8552 17.8552 146.5964 146.5961 7.4294 7.4400 0.999
13.01 1.7636 1.7636 120.5659 132.9115 3.1814 3.1796 0.998
17.01 3.2347 3.2347 121.4866 134.4253 3.6011 3.5910 0.999
18.01 3.5485 3.5485 122.9015 133.5470 4.5770 4.5615 0.998
20.01 4.4380 4.4380 171.0091 135.5055 4.7010 4.6918 0.999
22.01 7.8914 7.8914 177.2500 137.7928 4.3040 4.3537 0.994
41.01 12.8159 12.8159 122.9482 135.7632 6.3728 6.5001 0.990
41.02 6.8871 6.8871 133.1779 133.1786 4.4276 4.5472 0.987
41.03 35.3331 35.3331 153.9833 153.9855 5.9040 6.0418 0.982
42.01 17.8337 17.8338 181.2337 145.5634 4.5403 4.8219 0.970
46.01 3.4877 3.4877 170.9320 132.5683 3.8427 3.9487 0.987
46.02 6.0298 6.0297 132.4818 132.4809 3.9100 4.0465 0.952
49.01 8.3138 8.3138 175.9916 134.4234 2.9927 3.1174 0.980

Table 9.1 is published in its entirety in a machine readable format in Twicken et al. (2016). A
portion is shown here for guidance regarding its form and content.

989.03 (period 16.2d, SNR 52.8),

2048.02 (period 99.7, SNR 12.6), and

3051.01 (period 11.7d, SNR 11.2).

The reasons for failure to produce TCEs for these KOIs include:

Self-timeout in DV model fitting process on earlier TCEs associated with false positive
KOIs on target (KOI 989.03).

Veto by both χ2
(2) and χ2

(GOF ) consistency tests after latching onto correct period (2048.02
and 3051.01).

We explain below why a match was not reported at the specified threshold in DV for many
of the 40 golden KOIs that were recovered to provide a sense of the difficulties involved in
benchmarking pipeline completeness by matching TCEs to KOI ephemerides:

KOI and DV periods differ by integer factor and KOI period appears to be incorrect (2174.03,
4829.01, 4893.01).

KOI and DV periods differ by integer factor and DV period appears to be incorrect (2306.01,
2732.04).
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KOI and DV periods differ by integer factor but true period is ambiguous because target
was observed only in every other quarter (5568.01).

KOI period is less than 0.5 days and DV produces two TCEs at twice the true period because
the minimum search period is 0.5 days (2916.01).

KOI transit duration is less than one cadence; minimum TPS trial transit duration is 1.5
hours (three cadences) and DV fitter declares error if duration derived from fit parameters
is less than one cadence (4546.01).

KOI is in a TTV system (Ford et al., 2012; Mazeh et al., 2013) where linear KOIs and
pipeline ephemerides only approximate observed transit signal (KOI 277.02, 456.02, 884.02,
984.01, 1831.03).

KOI was observed late in mission only; discrepancy exists between KOI and DV epochs
when projected back to start of science operations (5403.01, 5605.01, 5672.01, 6145.02,
6166.02).

Duplicate KOIs exist; DV does not report match because pipeline result actually matches
two different KOIs on same target (1101.01, 2768.01).

KOI is binary (Kirk et al., 2016) featuring deep eclipses (>25%) that DV does not fit
by design; TPS ephemeris does not match KOI at specified threshold (3545.01, 3554.01,
5797.01).

KOI appears to be heartbeat star (Kirk et al., 2016) that does not feature conventional transits
or eclipses but rather rings due to tidal pulsations (2215.01).

In summary, 3394 of 3402 golden KOIs (99.8%) selected in advance for assessment of the
performance of the DR25 run with the SOC 9.3 codebase were recovered in the pipeline. Of the
eight golden KOIs that were not recovered, in one case the correct period was latched but there
was a failure to produce a detection statistic at the required threshold (7.04 versus 7.1σ), in six
cases the correct period was latched and a sufficient detection statistic was produced but a TCE
was vetoed by one or two of the χ2 transit consistency tests, and in one case a timeout limit was
reached while processing prior false positive TCEs in a multiple-KOI system.

The vetoes are a necessary evil for the TPS. They impact completeness to some degree. With-
out the vetoes, however, the sheer number of TCEs would overwhelm the ability to process them
in the pipeline and to produce a reliable catalog of planetary candidates. As stated earlier, the
DR25 run would have produced TCEs on 68,004 unique targets at the 7.1 σ level or greater in
the absence of the vetoes. This would have approximately doubled to 136,000 total TCEs after
the search for additional planets. A larger number of TCEs does not necessarily imply better
completeness, however; the vetoes allow continued search of light curves without passage to DV
and removal of flux data in the pipeline search for multiple planets on individual targets. It is
interesting to note that there were 126,153 unique targets with MES above 7.1 σ prior to appli-
cation of the vetoes in the DR24 run (Seader et al., 2015); this is significantly larger than the
68,004 targets with MES above 7.1 σ in the DR25 run. We believe that the reduction in DR25 is
likely attributable to implementation of quarter-by-quarter whitening in TPS discussed earlier.

The 99.8% recovery rate with the SOC 9.3 codebase represents exceptional performance for
a large set of KOIs. Seader et al. (2015) reported that 1,664 of 1,752 golden KOIs (95.0%)
were recovered in the Q1–Q17 DR24 run with the SOC 9.2 codebase. Tenenbaum et al. (2014)
reported that 1,597 of 1,646 golden KOIs (97.0%) were recovered in the Q1-Q16 run with the
SOC 9.1 codebase.

Although recovery of a large set of established KOIs is a solid test of the performance of the
Pipeline TPS, it should be noted that KOIs do not reflect ground truth as the true nature of these
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objects of interest is not actually known. A better measure of the detection efficiency of the
pipeline is the recovery of transiting planet signatures injected into Kepler flight data for a large
number of targets over a range of orbital periods and planet radii (and hence SNR). Such studies
have been performed for 4 quarters (Q9–Q12) with the SOC 9.1 codebase (Christiansen et al.,
2015) and 17 quarters with the SOC 9.2 codebase (Christiansen et al., 2016). These studies in-
volve injection of transit signatures into calibrated pixel data and subsequently running the Kepler
Pipeline through the PA, PDC, TPS, and DV components. Pixel-level injections also offer the
opportunity to characterize the performance of the Data Validation diagnostics employed to help
differentiate between true transiting planet signatures and false positive detections attributable to
eclipsing binaries and background sources (Bryson et al., 2013; Mullally et al., 2015; Coughlin
et al., 2016). A pixel-level transit injection run is currently underway to assess the detection
efficiency of the DR25 pipeline (Christiansen 2016, in Prep.).

Parallel studies are also underway involving the injection of transit signals into the systematic
error-corrected light curves of a representative sample of LC targets. The flux-level injections
are repeated many times (typically > 600, 000) for each target in order to deeply probe TPS de-
tection efficiency over a range of orbital periods and planet radii. Both pixel-level and flux-level
injections represent a superior gauge of pipeline completeness compared to recovery of existing
KOIs because these are controlled experiments where a very large number of transit signatures
may be injected and ground truth is available. Nevertheless, transit injections require consid-
erable time and computational resources; assessing pipeline performance based on recovery of
established KOIs remains a valuable exercise and is an efficient way to compare and contrast
performance from one transit search to the next.

9.6 Conclusions

The Transiting Planet Search pipeline module has seen significant development and improve-
ments over the six years it has been in operation since Kepler’s launch in March 2009. Non-ideal
behavior of the instrument and complex stellar photometric variability motivated these changes.
SOC 9.3 is the most sensitive version of TPS to date and has delivered over 34,000 transit-like
features to the NExScI archive.

Appendix A: Generation of the Non-Decimated Octave-Band Filters

This appendix defines how the bandpass filters used by TPS are generated. In the more typical
case for wavelet analysis, the implemented wavelet transform is critically sampled, meaning that
if the input time series has N points, then the output wavelet transform vector is N points as
well. In this case, the high-pass filter, h1(n), and the low-pass filter, h0(n), retain the same form
throughout the transformation process and the low pass-filtered signal, xj(n), is decimated at
each stage prior to separating the resulting time series into a “high-pass” and a “low-pass” time
series.

Figure 9-A.1 shows the first two stages of a classical, critically sampled wavelet expansion of a
time series, x(n). The original time series, x(n), is fed through a high-pass filter with frequency
response, H1(ω), called the mother wavelet, then down sampled by a factor of 2 to yield the
highest bandpass-filtered output time series, x1(n). The original time series is also subjected to
a low-pass filter with a frequency response, H0(ω), called the father wavelet, then down sampled
by a factor 2 before entering the second stage of the transform. The process continues until the
output time series is no longer than the bandpass filters. In this classical wavelet transform, each
output time series, xj(n), is half the length of the previous one, and the total number of points
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in the set of output time series is the same as the number of points in the input time series. The
filters in the filter bank representation in Figure 9.4 can be read off from Figure 9-A.1 by scanning
the sequence of filters and down-sample operations from x(n) to each output time series. For
example, H1 of Figure 9.4 corresponds to the mother wavelet H1 followed by the down-sample
by 2 operation. Likewise, H2 corresponds to the sequence H0, followed by down-sampling by
2, followed by H1, followed by down-sampling by 2.
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 2

x  (n)1

x  (n)2

...
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0 H 

H

 2

 2

1

0

Figure 9-A.1 Data flow diagram for a critically
sampled wavelet expansion of a signal. The first two
stages of the transform are shown here.

For the TPS application, however, preserv-
ing the property of shift invariance is much
more important than avoiding the increase in
memory required to hold the results of a non-
decimated wavelet transform. Deriving the
filters for the over-complete wavelet trans-
form requires that we “pull” the filters in
Figure 9-A.1 through the preceding “down-
sample by 2” operations so that the result of
each stage is non-decimated and therefore the
same length as the input time series.

The mother wavelet, h1, can be derived
from h0 by time reversal and alternating the
sign of each tap:

h1 (n) = (−1)
n
h0 (−n) . (A.1)

It is convenient to represent the resulting filters in the frequency domain. Let Hj
0 and Hj

1 be
the N -point Discrete Fourier Transforms of hj0(n) and hj1(n), respectively for stage j. It can be
shown that the band pass filters at the next stage are related to the current stage by decimating
the frequency response of each filter and concatenating it with itself to keep the same number of
points in the vector:

Hj+1
0 (n) =

{
Hj

0(2n), n = {0, . . . , (N − 1)/2}
Hj

0(2n−N + 1), n = {N/2, . . . , N}, (A.2)

and

Hj+1
1 (n) =

{
Hj

1(2n), n = {0, . . . , (N − 1)/2}
Hj

1(2n−N + 1), n = {N/2, . . . , N}. (A.3)

In MATLAB pseudocode, this would be

H ′0 = [H0(1 : 2 : end);H0(1 : 2 : end)];

H ′1 = [H1(1 : 2 : end);H1(1 : 2 : end)];
(A.4)

The first four filters in Figure 9.4 are then given by:

H1(ω) = H1
1 (ω)

H2(ω) = H1
0 (ω)H2

1 (ω)

H3(ω) = H1
0 (ω)H2

0 (ω)H3
1 (ω)

H4(ω) = H1
0 (ω)H2

0 (ω)H4
0 (ω)H3

1 (ω).

(A.5)

TPS constructs the bandpass filters “in place”, however, which is computationally convenient.
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Appendix B: Determining the Threshold for Positive Outlier Removal

In Subsection 9.3.2, an algorithm is described that removes positive outliers from each flux time
series prior to searching same for transits. The algorithm requires a threshold for removal of the
outliers, set at 12.3σ. The rationale behind this value is explained below.

The most obvious requirement for the positive outlier threshold is that it should, indeed, ad-
dress only outliers and not flux values that are merely above the mean value due to statistical
fluctuations. For a whitened flux time series with 69,810 samples, in the limit of Gaussian statis-
tics, we expect that, on average, 1 sample will lie 4.2 σ above the mean. Therefore, any threshold
significantly higher than 4.2 σ can be expected to be harmless in terms of its effect on sample
values, which are driven by statistical fluctuations alone.

Another consideration is that the purpose of removing positive outliers is actually to suppress
the formation of transit-like features in the ring-down of the outliers, since the latter can lead
to false-alarm detections. Given a detection threshold of 7.1 σ and a requirement of at least 3
transits for detection, a negative feature with a significance of 7.1σ ×

√
3 = 12.3σ can exceed

the detection threshold when paired with two “transits” that each have a significance of zero.
This implies that a transit-like feature with a significance of 12.3 σ has a strong probability of
triggering a false alarm, and thus our threshold for removing positive outliers should be set such
that any outlier likely to have a 12.3 σ transit-like feature in its ring-down is removed.

Since the ring-down of a positive outlier will always be smaller than the outlier itself, it
follows that removing positive outliers with 12.3 σ significance is more than sufficient to prevent
formation of negative ring-down features with 12.3 σ significance. Since 12.3 σ is much larger
than 4.2 σ, it also follows that this threshold will be benign from the point of view of ignoring
statistical fluctuations. Thus a threshold of 12.3 σ was adopted for positive outlier removal.
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CHAPTER 10

A COMPUTATIONALLY EFFICIENT
STATISTICAL BOOTSTRAP TEST FOR
TRANSITING PLANETS

Jon M. Jenkins1, Shawn Seader2, and Christopher J. Burke2

1NASA Ames Research Center, Moffett Field, CA 94035, 2The SETI Institute/NASA Ames Research
Center, Moffett Field, CA 94035

Abstract. During its primary mission, the Kepler spacecraft nearly continuously observed a
host of∼165,000 target stars over a four-year period to detect transiting planets. Applying a 7.1
σ detection yields over 100, 000 detections in each search, the vast majority of which are false
alarms. Applying a set of false alarm vetoes described in Seader et al. (2015) eliminates a vast
majority of the false alarms. For the remaining detections, a bootstrap procedure described in
Jenkins (2002) was proposed to estimate the distribution of the null statistics and thereby esti-
mate the false alarm probability to both further discriminate against false alarms as well as boost
confidence in true detections. This bootstrap procedure becomes computationally intractable,
however, when the size of the dataset is large or the orbital period of the detected event is suffi-
ciently small. This paper describes a new bootstrap procedure that permits efficient construction
of the distribution of null statistics for the full range of detection scenarios. While this test was
not applied as a veto in Transiting Planet Search (TPS), it is furnished as a diagnostic for all
Threshold Crossing Events (TCEs) and was computed for the SOC 9.1 Q1–Q16, the Q1–Q17
DR24, and the SOC 9.3 Q1–Q17 DR25 transit searches. The bootstrap results are archived at
NASA’s Exoplanet Science Institute’s (NExScI) exoplanet archive.

10.1 Introduction

The Kepler spacecraft continuously observed more than ∼165,000 target stars in a 116 square-
degree field of view to discover Earth-like planets transiting Sun-like stars via analysis of photo-
metric data (Borucki et al., 2010; Koch et al., 2010). The spacecraft collected photometric data
for each target star, which was compressed and stored onboard to be downlinked at monthly in-
tervals. The Kepler Science Operations Center (SOC) at NASA Ames Research Center processes
the data with the Science Processing Pipeline, which is composed of several modules, including
the Transiting Planet Search (TPS) (Jenkins et al., 2010), as illustrated in Section 10.1. To search
for transit signatures, TPS employs a bank of wavelet-based matched filters that form a grid
on a three-dimensional parameter space of transit duration, period, and epoch (Jenkins, 2002;
Jenkins et al., 2010). A detection statistic, referred to as the Multiple Event Statistic (MES),
is calculated for each template and compared to a threshold value η = 7.1 σ. Owing to non-
stationary and non-Gaussian noise, uncorrected systematics, and poorly mitigated noise events
of either astrophysical or non-astrophysical nature, spurious Threshold Crossing Events (TCEs)
can be produced by the matched filtering performed in TPS. The vetoes described in Seader
et al. (2013) efficiently remove a majority of the false alarms associated with noise glitches. This
leaves a different class of false alarms that come about more generally by a failure of the noise
process to meet the underlying assumptions made in the detection theory.
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Figure 10.1 The bootstrap algorithm is called as a diagnostic test in the Data Validation (DV) component
of the Kepler Science Processing Pipeline. It provides a statistical model of Transiting Planet Search (TPS)
for the purpose of estimating the statistical confidence in each Threshold Crossing Event (TCE) detected by
TPS in both the original run and in the multiple planet search iterations within DV. The bootstrap analysis
is conducted on the residual light curve obtained at the end of the DV process by masking out the transits
of each TCE.

Detections in TPS are made under the assumption that the pre-whitening filter applied to the
light curve yields a time series whose underlying noise process is stationary, white, Gaussian,
and uncorrelated. When the noise deviates from these assumptions, the detection thresholds
are invalid and the false alarm probability associated with such a detection may be significantly
higher than that for a signal embedded in white Gaussian noise. So, not only is it important to
understand the false alarm probability for a given detection but it is important to also understand
whether the distribution of null statistics deviates from its assumed form. The Statistical Boot-
strap Test, or the Bootstrap, is a way of building the distribution of the null statistics from the
data so that the false alarm probability can be calculated for each TCE based on the distribution
of the out-of-transit statistics. Then, given the probability distribution, one can also calculate the
threshold needed to achieve a false alarm probability equivalent to that corresponding to using the
search threshold on the assumed standard normal distribution (i.e. ∼6.24×10−13 for a threshold
of 7.1 σ for a standard normal distribution). Comparing the detection statistic to this Gaussian
noise threshold is an empirical way to relax some of the assumptions on the effectiveness of the
whitener and assess the reliability of the detection.

Jenkins et al. (2002) formulated a bootstrap test for establishing the confidence level in plane-
tary transit signatures identified in transit photometry in white, but possibly non-Gaussian, noise.
Jenkins (2002) extended this approach to the case of non-white noise. In both cases, the bootstrap
false alarm rate (FAR) as a function of the MES of the detected transit signature was estimated
by explicitly generating individual bootstrap statistics directly from the set of out-of-transit data.
This direct bootstrap sampling approach can become extremely computationally intensive as the
number of transits for a given TCE grows beyond ∼15. The number of individual bootstrap
statistics that can be formed from the m out-of-transit cadences of a light curve and the p transits
is mp, which is ∼2.9×1048 statistics for 10 transits and 4 years of Kepler data. An alternative,
more computationally efficient method can be implemented by formulating the bootstrap distri-
bution in terms of the probability density function (PDF) of the single event detection statistics.
The distribution for the MES as a function of threshold and number of transits can then be ob-
tained from the distribution of single event statistics treated as a bivariate random process.

This paper is organized as follows. Section 10.2 provides an overview of the detection the-
ory employed by TPS. Section 10.3 describes in detail a new bootstrap algorithm for estimating
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the distribution of the null statistics. Section 10.4 lists and describes the bootstrap algorithm
products on the NExScI archive. Section 10.5 discusses and compares the results of the boot-
strap algorithm as applied to three datasets: the SOC 9.1 (Q1–Q16) transit search (Tenenbaum
et al., 2014, Subsection 10.5.1),1 the SOC 9.2 (Q1–Q17) transit search (Seader et al., 2015,
Subsection 10.5.2),2 and the SOC 9.3 (Q1-Q17 DR25) transit search (Twicken et al., 2016, Sub-
section 10.5.3).3 Section 10.6 describes a set of Monte Carlo experiments whose purpose is to
examine the statistical precision of the bootstrap algorithm by analysis of white Gaussian noise
(WGN) light curves that have been processed through TPS. Section 10.7 provides a graphical ex-
ample of the bootstrap algorithm applied to a single light curve. Finally, Section 10.8 summarizes
the main results.

10.2 Detection Algorithm

The data input into the search in TPS are discrete, contiguous, flux fraction time series that have
been corrected for systematics, have had some level of harmonics removed, and have had some
other more localized noise artifacts removed, such as sudden pixel sensitivity dropouts (SPSD),
cosmic rays, or thermal transients. For a discussion of how the data are prepared for the search
in TPS (see e.g., Chapter 9; Tenenbaum et al. (2012); Twicken et al. (2016)). Since we are ob-
serving the light from many target stars with highly varied properties, the noise w(n) is typically
not white, but colored. To whiten the data, a joint time-frequency wavelet decomposition is per-
formed on the data so that the noise can be estimated for each of several time-frequency bands
using a moving circular median absolute deviation. For efficiency, the actual detection algorithm
employed by TPS is a wavelet-based matched filter that is calculated in this wavelet domain,
employing the noise estimates to whiten both the data and the templates. In the subsequent for-
mulation of our detection algorithm, however, it is assumed that the noise is uncorrelated WGN
with zero mean and unit variance:

〈w̃(n)〉 = 0 and (10.1)

〈w̃(n) w̃(m)〉 = δ(n−m), (10.2)

where δ(n) is the Dirac delta function. So we assume that the data and templates have been
whitened already and work in the more convenient time domain. The two formulations are
equivalent. In reality, however, the whitening process is not perfect so the noise never strictly
conforms to our assumptions (which is why the bootstrap is useful). Note that although individual
transits are localized prior to the whitening, after doing the wavelet decomposition, whitening,
and inverse wavelet decomposition to get back to the time domain, the transits have a larger
extent. The contribution from out-of-transit data points to the MES for any given transit can
be significant, so the full dot products in what follows must be carried out. For details of the
whitening process and the construction of the wavelet-based matched filter output, see Chapter 9;
Seader et al. (2015); Jenkins (2002).

Let x(n) be this discrete, contiguous, whitened, flux fraction time series, where n ∈ [1, ..., N ].
Under the null hypothesis, H0, there is no transit signal present and we have only noise w(n).

1http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=
ExoTbls&config=q1_q16_tce
2http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=
ExoTbls&config=q1_q17_dr24_tce
3http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=
ExoTbls&config=q1_q17_dr25_tce

http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=q1_q16_tce
http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=q1_q16_tce
http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=q1_q17_dr24_tce
http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=q1_q17_dr24_tce
http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=q1_q17_dr25_tce
http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=q1_q17_dr25_tce
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Under the alternative hypothesis, H1, there is a transit pulse signal s(n) present in the data (for
simplicity, assume for now a single pulse is present rather than a pulse train). We then have:

H0 : x = w
H1 : x = w + s,

(10.3)

where bold face indicates a vector quantitiy, a = 〈a(1), a(2), ..., a(N)〉. Given the assumed
properties of the noise, the PDF of the noise under the two hypotheses are:

p0(w) =
1√
2π

exp

(
−1

2
x · x

)
and (10.4)

p1(w) =
1√
2π

exp

(
−1

2
(x− s) · (x− s)

)
, (10.5)

where the dot product of two time series vectors is given by:

a · b =

N∑

i=1

a(i)b(i). (10.6)

In this detection scenario, there is no knowledge of prior probabilities nor any costs associated
with false alarms or false dismissals, so the strategy we adopt is to use the Neyman-Pearson
criteria. Using this criteria, the likelihood ratio Λ is calculated and compared with some threshold
Λ0. The value of Λ0 is chosen such that a maximum allowable false alarm rate (FAR) is achieved
(Van Trees, 1968). The likelihood ratio is calculated by:

Λ(w) =
p1(w)

p0(w)
. (10.7)

To simplify the calculation, we can establish a threshold on the logarithm of the likelihood ratio:

ln Λ(w) = ln

[
p1(w)

p0(w)

]
= x · s− 1

2
s · s. (10.8)

A true signal, s, has a transit shape that is a function of its host star’s effective temperature,
mass, radius, and metallicity, as well as the planet’s orbital parameters, such as duration and
impact parameter. The strength, or depth, of a transit is given by the ratio of the planet area to
that of its host star. The orbital parameters of the planet then determine its period, T , epoch,
t0, and transit duration, d. To test for the presence of a transit pulse train, a grid of templates
is computed that cover the three-dimensional parameter space of period, epoch, and duration.
The transit shape used in TPS is the integral average over the space of all astrophysical transit
shapes across all the targets that we observe. All the targets use the same bank of templates
for computational efficiency in this first stage of detecting signals. The shape models are built
using the Mandel-Agol geometric transit model (Mandel & Agol, 2002) and the limb darkening
of Claret & Bloemen (2011). A more complete description of the Monte Carlo used to estimate
the integral average is given in Seader et al. (2015). On average, we have the best possible
shape match without any a priori knowledge of either the target star or any potential planet that
may be transiting across it. Choosing a particular point in the {T, t0} space selects out a set,
S, of P samples, marking the center of each transit, starting with the sample corresponding to
the epoch t0 and being spaced T samples apart. These samples form a subset of {n}, S =
{t0, t0 + T, ..., t0 + (P − 1)T}.

The full transit pulse train signal in a template can be written as the sum over pulses (in
practice, however, it would be difficult to separate out the inter-pulse correlations that arise from
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the whitening process discussed above):

s =

P∑

j=1

sj , (10.9)

where sj is a time series vector containing a single transit centered at the j’th time in set S. The
log likelihood ratio can now be rewritten as:

ln Λ =

P∑

j=1

[
x · sj −

1

2
sj · sj

]
. (10.10)

This can be represented in terms of normalized signal components by letting D2 represent the
total energy in the signal:

D2 =

p∑

j=1

sj · sj , (10.11)

where the normalized signal components are given by:

ŝj =
sj
D =

sj√∑P
i=1 si · si

. (10.12)

The log likelihood ratio can then be expressed as:

ln Λ = D
P∑

j=1

x · ŝj −
1

2
D2. (10.13)

To arrive at the final detection statistic, we apply the Maximum Likelihood Method (MLM) and
maximize the log likelihood ratio over D:

ln Λ|D̂ =
1

2




P∑

j=1

x · ŝj




2

, (10.14)

where

D̂ =

P∑

j=1

x · ŝj . (10.15)

Here, D̂ is the value of D that maximizes the log likelihood ratio. Rather than thresholding on
this, we can equivalently drop the prefactor and the square to arrive at the MES, Z:

Z =

P∑

j=1

ŝj · x =

∑P
j=1 sj · x√∑P
j=1 sj · sj

.

Note that further analytic maximization of this detection statistic over any of the physical param-
eters of the true planetary transit signal appears to be intractable due to the functional form of the
signal. Therefore, the MES is the Maximum Likelihood detection statistic. If we consider only
a single transit at some time n = j, the MES reduces to a Single Event Statistic (SES), zj given
by:

zj =
x · sj√sj · sj

. (10.16)
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To make explicit the decomposition of the signal into an amplitude, or depth term, A and a
shape term, we can write (under H1):

x = w +A s. (10.17)

Under the assumed noise properties (and further assuming no mismatch between the template
and the real signal), the relevant statistical properties of the MES are given by:

〈Z〉 = AD and

〈Z2〉 = 1 +A2D2,
(10.18)

where again,

D =

√√√√
P∑

j=1

N∑

n=1

s̃2
j (n), (10.19)

and the statistical properties underH0 can be obtained by lettingA → 0. Note that the statistical
properties of the MES are unchanged under H0 if we allow for mismatch between the signal
and template. As we are interested in the distribution of the null statistics, we do not need a
requirement that the signal and templates match. The SES and MES are weighted sums of unit-
variance Gaussian random variables. Since the sum of squares of the weights add to unity, both
the SES and MES are also unit-variance Gaussian random variables. The means of the SES
and MES distributions are zero when there is no signal present but are shifted away from zero
when a signal is present as can be seen from the above equations. The PDFs of Z under the two
hypotheses are:

p0(Z) =
1√
2π

exp

(
−1

2
Z2

)
and (10.20)

p1(Z) =
1√
2π

exp

(
−1

2
(Z −AD)

2

)
. (10.21)

Under the Neyman-Pearson criteria, the search threshold, η, is set so that a maximum allow-
able false alarm rate is achieved. For Kepler, the threshold is set to 7.1 σ to achieve a false alarm
rate of 10−12 (Jenkins, 2002). This is based on an estimate of the effective number of indepen-
dent statistical tests in searching the full parameter space for every target that, when multiplied
by the maximum allowable false alarm rate, will yield ∼1 false alarm for the mission (Jenkins,
2002). The false alarm and detection probabilities, Q0 and Qd respectively, are given by:

Q0 =

∫ ∞

η

p0(Z) dZ and (10.22)

Qd =

∫ ∞

η

p1(Z) dZ. (10.23)

The bootstrap test described in this paper provides a way of estimating the distribution of the null
MES, thereby enabling the computation of the false alarm probability for a detection having a
given MES and a given number of transits. This is the probability that the underlying noise alone
could produce an equivalent detection statistic in the absence of any true signal.

10.3 Bootstrap Test

Consider a TCE exhibiting p transits of a given duration within its light curve. In this analysis,
the light curve is viewed as one realization of a stochastic process. Further, consider the collec-
tion of all such p-transit detection statistics that could be generated if we had access to an infinite
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number of such realizations. To approximate this distribution we formulate the SES time series
for the light curve and exclude points that are in-transit (plus some padding) for the given TCE.
Bootstrap statistics are then generated by drawing at random from the SES p times, with replace-
ment, to formulate the p-transit statistic (i.e., the MES). Since the SES encapsulate the effects of
local correlations in the background noise process on the detectability of transits, so does each
individual bootstrap statistic. So long as the orbital period is sufficiently long (generally longer
than several hours), the SES are uncorrelated and the MES can be considered to be formed by p
independent random deviates from the distribution of null SES.

The MES distribution is a complicated function of the noise as well as the epoch, period,
and transit duration. Due to deviations from the assumed noise behavior, the MES distribution
can be significantly different across epochs, periods, or even transit durations, so it is generally
not appropriate to simply sample over the full parameter space to estimate the MES distribution.
The bootstrap method presented in Jenkins (2002) sorts the data in such a way as to minimize
the computation time in estimating the tail end of the distribution needed for computing the
false alarm rate. This method proved intractable from a computational standpoint when p ≥ 15.
The method presented here attempts to estimate the distribution for a given period and transit
duration. In this way any noise behavior that deviates from expectation on the same time scale
of the detection will be encoded in the distribution to give a more reliable estimate of the false
alarm probability localized in parameter space.

The MES, Z, can be rewritten as:

Z =

∑P
j=1 sj · x√∑P
j=1 sj · sj

=
∑

i∈S
C(i)

/√∑

i∈S
N(i) , (10.24)

where S is the set of transit times that a single period and epoch pair select out, C(i) is the cor-
relation time series formed by correlating the whitened data to a whitened transit signal template
with a transit centered at the ith timestep in the set S , and N(i) is the template normalization
time series. The square root of the normalization time series,

√
N(i), is the expected value of the

MES or SNR for the reference transit pulse.4

If the observation noise process underlying the light curve is well modeled as a possibly non-
white, possibly non-stationary Gaussian noise process, then the SES will be zero-mean, unit-
variance (ZMUV) Gaussian random deviates. The false alarm rate of the transit detector would
then be described by the complementary distribution for a zero-mean, unit-variance (ZMUV)
Gaussian distribution:

F̄Z (Z) =
1

2
erfc

(
Z
/√

2
)
, (10.25)

where erfc (·) is the standard complementary error function. If the power spectral density of
the noise process is not perfectly captured by the whitener in TPS, then the null statistics will
not be zero-mean, unit-variance Gaussian deviates. A bootstrap analysis allows us to obtain a
data-driven approximation of the actual distribution of the null statistics, rather than relying on
the assumption that the pre-whitener is perfect.

The random variable Z is a function of the random variables corresponding to the correlation
and normalization terms in the SES time series Cp =

∑
i∈S C(i) and Np =

∑
i∈S N(i). The

joint density of Cp and Np can be determined from the joint density of the SES components C
and N as:

fCp,Np (Cp,Np) = fC,N (C,N) ∗ fC,N (C,N) ∗ . . . ∗ fC,N (C,N) , (10.26)

4The inverse of
√

N(i) can be interpreted as the effective white Gaussian noise “seen” by the reference transit and is the
definition for the combined differential photometric precision (CDPP) reported for the Kepler light curves at 3, 6, and 12
hours’ duration.
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where ‘∗’ is the convolution operator and the convolution is performed p times. This follows
from the fact that the bootstrap samples are constructed from independent draws from the set of
null SES with replacement.5 Given that convolution in the time/spatial domain corresponds to
multiplication in the Fourier domain, Equation 10.26 can be represented in the Fourier domain
as:

ΦCp,Np
= ΦC,N · ΦC,N · . . . · ΦC,N = ΦpC,N, (10.27)

where ΦC,N = F {fC,N} is the Fourier transform of the joint density function fC,N. Here, the ar-
guments of the Fourier transforms of the density functions have been suppressed for clarity. The
use of 2-D fast Fourier transforms results in a highly tractable algorithm from a computational
point of view. Figure 10.2 illustrates the construction of the MES distribution for the case of a
4-transit TCE.

Figure 10.2 Illustration of the bootstrap algorithm and Equation 10.27. False color image of the correlation
component C versus the normalization component N for the bivariate distributions for the single event null
statistics and for the 4-transit multiple event statistic distribution for one TCE. Although the 1-transit
distribution is highly irregular, that of the 4-transit distribution is much more symmetric and Gaussian, as
follows from the central limit theorem.

The implementation of Equation 10.27 requires that a 2-D histogram be constructed for the
{C,N} pairs over the set of null statistics. Care must be taken to manage the size of the histogram
to avoid spatial aliasing as the use of the FFT corresponds to circular convolution. We chose to
formulate the 2-D grid to allow for as high as p = 8 transits. The intervals covered by the

5In this implementation, we choose to assume that the null statistics are governed by a single distribution. If this is not
the case (for example, if the null statistic densities vary from quarter to quarter) then Equation 10.26 could be modified
to account for the disparity in the relevant SES in a straightforward manner.
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realizations (i.e., the support) for each of C and N were sampled with 256 bins and centered in
a 4096 by 4096 array. When p > 8, it is necessary to implement Equation 10.27 iteratively in
stages; after each stage the characteristic function is transformed back into the spatial domain,
bin-averaged by a factor of 2, and then padded back out to the original array size. Care must
also be taken to manage knowledge of the zero-point of the histogram in light of the circular
convolution, as it shifts by a 1/2 sample with each convolution operation in each dimension.

Once the p-transit 2-D density function fCp,Np
(Cp,Np) is obtained, it can be “collapsed” into

the sought-after 1-D density fZ (Z) by mapping the sample density for each cell with center
coordinates {Ci,Nj} to the corresponding coordinate Zi,j = Ci/

√
Nj and formulating a his-

togram with a resolution of, say, 0.1 σ in Z by summing the resulting densities that map into
the same bins in Z. Due to the use of the FFT, the precision of the resulting density function is
limited to the floating point precision of the variables and computations, which is∼ 2.2×10−16.
For small p, the density may not reach to the limiting numerical precision because of small num-
ber statistics, and for large p, round-off errors can accumulate below about 10−14. The results
can be extrapolated to high MES values by fitting the mean, µ, and standard deviation, σ, of
a Gaussian distribution to the empirical distribution in the region 10−4 ≤ F̄Z ≤ 10−13 using
the standard complementary error function: F̄Z (Z) = 0.5 erfc

(
(Z − µ) /

√
2σ
)
. Note that the

fitted distribution can only be used to extrapolate the upper tail of the bootstrap distribution and
is not valid for describing the core of the empirical distribution, as it is not constrained to fit the
latter below 10−4.

In order to simulate the use of χ-square vetoes (Seader et al., 2013) that effectively remove
strong transient and impulsive features that trigger TPS but that are inconsistent with physical
transit signatures, we pre-filtered the SES time series to remove the three most positive peaks
and their “shoulders” down to 2 σ. The three most negative peaks were also handled in a similar
fashion to avoid biasing the mean of the null statistics in a negative direction. We also identified
and removed points with a density of zero-crossings that fell below 1/4 that of the median zero-
crossing density. This step removed SES in regions where the correlation term experienced
strong excursions from zero due to unmitigated SPSDs and thermal transients near monthly and
quarterly boundaries. Typically, more than 99% of the original out-of-transit SES were retained
by these pre-filters.

10.4 Archive Column Definitions

There are four quantities derived from the bootstrap test that are present in the TCE table. These
four quantities are defined as follows:

boot fap: The false alarm probability (FAP), which is the integral of the distribution of the
null MES above the MES of the detection. The distribution of the null MES is constructed by the
bootstrap test. Nominally, the null MES is Gaussian distributed with zero mean and unit variance.
In reality however, due to imperfections in the whitening process, uncorrected systematics, etc.,
the distribution of the null MES deviates from this nominal distribution form.
boot mesthresh: The search threshold required, given the distribution of the null MES

estimated from the bootstrap algorithm, to achieve the same false alarm probability as that of a
7.1 σ threshold on a Gaussian distribution with zero mean and unit variance (F̄Z ∼ 6.24×10−13).

boot mesmean: The mean of the best-fit Gaussian distribution to the upper tail (10−13 ≤
F̄Z ≤ 10−4) of the null MES distribution estimated by the bootstrap. This quantity, together
with the quantity boot messtd, is useful for extrapolating the false alarm probability to values
less than 10−13 and for high MES values.

boot messtd: The standard deviation of the best-fit Gaussian distribution to the upper tail
(10−13 ≤ F̄Z ≤ 10−4) of the null MES distribution estimated by the bootstrap.
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In cases where there is not enough data to run the bootstrap, the false alarm probability is set to
-1. In some cases, the bootstrap test cannot use the data from the distribution it has constructed
to interpolate for the false alarm probability; rather, it must extrapolate because the MES is
outside the regime that the distribution covers. To do the extrapolation, a robust fit of an error
function is done in log space to the Cumulative Distribution Function (CDF) of the MES with
10−13 ≤ F̄Z ≤ 10−4. The parameters of the fit are used to calculate the false alarm probability
for the MES of the detection. Features in the CDF can sometimes cause the fit to be poor, which
in turn causes the fit parameters and resulting false alarm probabilities to also be poor.

10.5 Results

The last few years have seen significant improvements in the SOC science data processing
pipeline, leading to higher quality light curves and more sensitive transit searches. The sta-
tistical bootstrap analysis results presented here and the numerical results archived at NASA’s
Exoplanet Science Institute (NExScI) bear witness to these software improvements. This section
attempts to introduce and describe the main features and differences between these three datasets
as a consequence of the software changes.

10.5.1 Q1–Q16

Figure 10.3 and Figure 10.4 show the false alarm probability for 16,014 TCEs as a function of the
MES value of each TCE. A small fraction of the TCEs’ light curves had too few points remaining
after removing in-transit and neighboring points to conduct a bootstrap analysis. We matched
the Q1–Q16 TCEs against the cumulative KOI table through Data Release 24 (Coughlin et al.,
2016) on NExScI’s exoplanet archive. The KOIs (consisting of a mixture of planet candidates,
confirmed/validated planets and astrophysical false positives) tend to lie in a band whose left
edge is approximately enveloped by the curve expected for ZMUV Gaussian noise. At low SNR,
there is a small population of planet candidates and astrophysical false positives with false alarm
rates above 10−10 that are embedded in a much larger population of TCEs that form a horizontal
“cloud” where the false alarm rate is nearly independent of the MES. Visual inspection of the
light curves underlying points in this “cloud” indicate that most of these light curves are polluted
with residual stellar variability and flares. Many appear consistent with being red giants with
power spectral densities richly populated by pressure mode oscillations. The whitener in TPS is
not designed to handle such noise, resulting in spurious detections.

Most of the points falling below the ZMUV curve are very short-period TCEs with 500 or
more transits. These targets have little data left after the removal of in-transit samples, and the
remaining single event null statistics are slightly biased with a mean below zero. For periods
sufficiently short such that there are ∼500 or more transits, computing the bootstrap distribution
for the MES involves raising the 2-D characteristic function for the single event null statistics to
the number of observed transits (see Equation 10.27). This process yields a distribution with a
mean that is significantly negative. This results in false alarm rates well below those expected
for ZMUV noise for such cases.

Figure 10.5 shows a plot of the false alarm rate as a function of the bootstrap threshold
(boot mesthresh) for the SOC 9.1 Q1–Q16 TCEs, colored by disposition for the KOIs
matched against the TCE ephemerides.6 Note that some confirmed/validated planets and planet
candidates have thresholds above ∼10 σ. The confirmed planets include Kepler-90d and h,
Kepler-30c and d, and Kepler-444e and f. All of these are systems exhibit strong transit timing

6For this document, a match was considered valid if both the epoch and the period of the TCE were within 0.1 days of
the given KOI.
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Figure 10.3 False alarm rate as a function of the multiple event statistic (MES) for each of the 16,014
TCEs returning bootstrap results in the Q1–Q16 transiting planet search. The points are colored by the
dispositions of the TCEs in NExScI Exoplanet Archive’s cumulative KOI table through DR24. The magenta
line indicates the expected value for a zero-mean, unit-variance (ZMUV) Gaussian process.

variations and therefore the use of a linear ephemeris to mask out transits leaves residual transits
in the null statistic time series, inflating the bootstrap thresholds and false alarm rate estimates
for these cases.

We note that the bootstrap threshold (boot mesthresh) is negative for a few stars. This is
most often the case for very short orbital periods (≤ 5 days) where the residual SES are so cut
up by the removal of transit signatures that they are biased negative relative to the true mean and
the resulting N-transit statistics are significantly skewed. This is a limitation of the methodology,
but is expected behavior. The boot mesmean can be negative as well because the upper tail
of the empirical bootstrap distribution is being modeled and the fit is unconstrained. The model
is only useful for extrapolating to MES values above that observed in the empirical distribution
where the false alarm rate is� 10−4. If a valid fit cannot be obtained for some reason, then the
Gaussian fit parameters are gapped (i.e., marked as unpopulated).

While the bootstrap results for the well-behaved transit signatures and the spurious detections
in the horizontal cloud are not well separated at low SNR (<9σ), the bootstrap false alarm proba-
bilities are strong indicators for high SNR TCEs. Improvements in the quality of the light curves
and the TPS codebase dramatically improve the situation, as will be seen in Subsection 10.5.3.

10.5.2 SOC 9.2 Q1–Q17 DR24

The SOC 9.3 bootstrap algorithm was run on the SOC 9.2 Q1–Q17 DR24 TCEs previously and
archived at NExScI (see KSCI-19086-003). That set of bootstrap results only included quarters
with transits in the calculation. This note documents redelivery of the bootstrap results for this
dataset using all available data from Q1–Q17 in the bootstrap analysis, for consistency with the
other two datasets delivered at this time.

The results are similar to those for the Q1–Q16 dataset, although since the SOC 9.2 bootstrap
was used as a veto in TPS for this run, the horizontal “cloud” of high MES/high false alarm rate
objects is missing, as almost all of these objects were rejected in TPS and not presented to DV
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Figure 10.4 Zoomed view of Figure 10.3. Top panel: False alarm rate as a function of the MES for each
of the Q1–Q16 TCEs. Bottom panel: Density plot of the false alarm rate as a function of the MES. Note
that the two principal populations, the horizontal branch with little dependency on MES and the one that is
approximately enveloped by the expected curve for ZMUV Gaussian noise, both merge at low SNR (<9σ)
near log(FAR) = 10−10.

for further analysis and characterization (see Christiansen et al. (2016) for a detailed discussion
of the impact of the bootstrap veto on completeness of the transit search). Figure 10.6 and
Figure 10.7 present the bootstrap false alarm rate as a function of the MES, while Figure 10.8
presents the bootstrap false alarm rate as a function of the bootstrap threshold.

Because the horizontal “cloud” feature is completely absent from Figure 10.6, we can con-
clude that the bootstrap is quite effective at filtering non-transit-like features associated with this
population from the TPS results. The KOIs identified in the SOC 9.2 DR24 TCEs fall along a
band that is enveloped on the left by that expected for ZMUV Gaussian noise. As with the SOC
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Figure 10.5 False alarm rate as a function of the bootstrap threshold for the Q1–Q16 TCEs. For the KOIs
recovered in this dataset, the points are colored by the disposition in the cumulative DR24 KOI table. The
vertical line at 7.1 σ represents the threshold expected for ZMUV Gaussian noise.

Figure 10.6 False alarm rate as a function of the MES for each of the 19,856 TCEs returning bootstrap
results in the Q1–Q17 DR24 transiting planet search. The points are colored by KOI disposition. The
magenta line indicates the expected value for a ZMUV Gaussian process.

9.1 results, none of the confirmed or validated planets have bootstrap false alarm rates above
10−12, suggesting that the bootstrap can be used to screen against spurious TCEs, although it
is unclear whether this can be done without rejecting true transiting planets at low SNR (<9 σ)
given that the large population of spurious TCEs evident for SOC 9.1 are not present in this SOC
9.2 dataset.
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Figure 10.7 Zoom of Figure 10.6. Top panel: False alarm rate vs. MES for the 19,856 SOC 9.2 Q1–Q17
DR24 TCEs. Bottom panel: Density plot of the false alarm rate as a function of the multiple event statistic.
Note that the horizontal branch with little dependency on MES is missing for SOC 9.2 as the bootstrap was
used as a veto in TPS.

10.5.3 SOC 9.3 Q1–Q17 DR25

Figure 10.9 and Figure 10.10 present the false alarm rate as a function of MES for the 24,179
TCEs returning bootstrap results in the SOC 9.3 Q1–Q17 DR25 search. It is interesting to note
that the ZMUV curve is a much better envelope for the band of TCEs that are also KOIs. Note
also that this band of KOIs is tighter than those for either of the two previous datasets. This is
largely due to changes made in the SOC 9.3 TPS codebase to improve the performance of the
whitening filter as well as changes in the assignment of photometric apertures (Smith et al., 2016)
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Figure 10.8 False alarm rate as a function of the bootstrap threshold for the 19,856 Q1–Q17 DR24 TCEs,
colored by KOI disposition. The vertical line at 7.1 σ represents the threshold expected for ZMUV Gaussian
noise.

and improvements in systematic error correction. These changes and their effect on the DR25
TCEs are documented in Twicken et al. (2016).

One change in the SOC 9.3 TPS codebase was to incorporate a non-decimated moving median
absolute deviation (MAD) filter for estimating the RMS noise power as a function of time in each
of the wavelet filter bank’s bandpasses. (These noise power estimates are used to implement the
adaptive whitener in the matched filter search for transiting planets.)

This change was motivated by the observation that there was a measurable and significant
duration-dependent bias in the noise power estimates. The noise power for short-duration tran-
sits was underestimated relative to that for long-duration transits. Prior to SOC 9.3, TPS made
use of a decimated moving MAD filter due to computational throughput constraints. We were
able to recode the moving MAD filter algorithm in C++ and eliminate the bias in the noise power
estimates while maintaining adequate computational throughput. This specific change signifi-
cantly reduced the vertical spread in the bootstrap false alarm rates for the KOIs.

Another change was to use a sigmoid taper for filling long gaps in the flux time series, which
decreased edge effects in the SES and greatly reduced the “droop” in the noise power estimates
in the neighborhood of these long gaps (see Chapter 9 for more information).

For the SOC 9.3 DR25 results, there is much better separation of the low-reliability TCEs in
the horizontal “cloud” population from those in the band following the ZMUV curve compared
to the SOC 9.1 TCEs. The unreliable TCEs have false alarm probabilities greater than approx-
imately 10−11 while all confirmed and/or validated planets, almost all planet candidates, and
most astrophysical false positives have log10(FAR) < 10−11.

Figure 10.11 shows the bootstrap false alarm rate as function of bootstrap threshold. The SOC
9.3 changes also reduced the number of planet candidates with bootstrap thresholds >10 σ from
46 in SOC 9.1 (see Figure 10.5) and 56 in SOC 9.2 (see Figure 10.8) to only 13 in SOC 9.3.



256 A STATISTICAL BOOTSTRAP TEST

Figure 10.9 False alarm rate as a function of the multiple event statistic for each of the 24,179 TCEs
returning bootstrap results in the SOC 9.3 Q1–Q17 DR25 transiting planet search. The points are colored
by the dispositions of the TCEs in NExScI Exoplanet Archive’s cumulative DR24 KOI table. The magenta
line indicates the expected value for a ZMUV Gaussian process.

10.5.4 Comparison Across Datasets

While the results of the bootstrap analysis are similar across the three datasets, there are differ-
ences due in small part to the amount of data considered in each one (16 quarters of data vs. 17
quarters of data), and in large part to code base changes for the production of the light curves. In
this section we discuss some of the differences between the datasets.

Figure 10.12 shows the difference in the log of the bootstrap false alarm rates between SOC
9.2 and SOC 9.1, colored by KOI disposition, where the 9.2 false alarm rates are calculated using
the SOC 9.1 MES values to ensure that the comparisons are valid. For false alarm rates exceeding
∼10−40 there is a relatively tight core of points between ∼101.6 and ∼10−0.6 for the KOIs. The
points are well correlated between the two datasets considering the differences in the codebases
and the fact that results smaller than ∼10−16 are all extrapolations from fits to the upper tails of
the empirical bootstrap distributions.

Figure 10.13 shows the difference in the log of the bootstrap false alarm rates between SOC
9.3 and SOC 9.1, colored by KOI disposition, where the 9.3 false alarm rates are calculated
using the SOC 9.1 MES values to ensure that the comparisons are valid. For false alarm rates
greater than ∼10−40 there is a relatively tight core of points between ∼100.5 and ∼10−2 for
the confirmed/validated planets, planetary candidates, and astrophysical false positives. The
SOC 9.3 results are somewhat lower than those for the same objects for SOC 9.1, reflecting the
improvements in the flux time series and in the TPS algorithm due to the SOC 9.3 codebase
changes.

The codebase changes from SOC 9.1 to SOC 9.3 also tightened the distribution of boot-
strap thresholds produced by the statistical bootstrap analysis. In addition, the median threshold
dropped from 7.44 σ in SOC 9.1 to 7.24 σ in SOC 9.3, demonstrating the increase in sensitivity
as the SOC codebase evolved. The 10th, 50th, and 90th percentiles for the bootstrap thresholds
for TCEs that were matched against confirmed/validated planets and astrophysical false positives
are given in Table I.
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Figure 10.10 Zoom of Figure 10.9. Top panel: False alarm rate as a function of the MES for each of the
SOC 9.3 Q1–Q17 DR25 TCEs, colored by KOI disposition. Note that the “cloud” of high MES/high FAR
reappears here as the bootstrap was not used as a veto in TPS for this run. Bottom panel: Density plot of the
false alarm rate as a function of the MES. Note that the two principal populations, the horizontal branch with
little dependency on MES and the one that is approximately enveloped by the expected curve for ZMUV
Gaussian noise are well separated in the SOC 9.3 results with a valley between them at log(FAR)≈ 10−11.

Figure 10.14 shows histograms of the bootstrap thresholds for KOIs for each of the datasets.
The SOC 9.3 results show a broad upper tail, thanks to improved sensitivity in the search and
relaxation of the vetoes in TPS for the final run, which doubled the number of TCEs from 16,285
in SOC 9.1 to 34,032 in SOC 9.3.
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Figure 10.11 False alarm rate as a function of the multiple event statistic for each of the 24,179 TCEs
returning bootstrap results in the SOC 9.3 Q1–Q17 DR25 transiting planet search, colored by the KOI
disposition. The magenta line indicates the expected value for a ZMUV Gaussian process.

Figure 10.12 Difference in false alarm rate for the SOC 9.2 Q1–Q17 TCEs vs. that for the SOC 9.1 Q1–
Q16 TCEs as a function of the SOC 9.1 false alarm rates for those objects that have matching ephemerides
in the two datasets. The SOC 9.2 false alarm rates are calculated for the SOC 9.1 MES values to ensure a
valid comparison. The SOC 9.2 false alarm rates are slightly higher than those for SOC 9.1, perhaps due to
differences in the codebases.

10.6 Precision of the Statistical Bootstrap Results

In this section we investigate the precision of the statistical bootstrap test by reviewing the results
of a Monte Carlo experiment. The light curve for a typical Kepler target observed for all 17
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Figure 10.13 Difference in false alarm rate for the SOC 9.3 Q1–Q17 TCEs vs. that for the SOC 9.1 Q1–
Q16 TCEs as a function of the SOC 9.1 false alarm rates for those objects that have matching ephemerides
in the two datasets. The SOC 9.3 false alarm rates are calculated for the SOC 9.1 MES values to ensure a
valid comparison. The SOC 9.3 false alarm rates are somewhat lower than those for SOC 9.1 due to the
improvements in the photometric pipeline as well as in TPS.

Table 10.1 Summary Statistics of the Bootstrap Thresholds for KOIs.

Release 10th Percentile 50th Percentile 90th Percentile

SOC 9.1 6.84 σ 7.44 σ 8.36 σ
SOC 9.2 7.17 σ 7.51 σ 8.36 σ
SOC 9.3 7.02 σ 7.24 σ 7.75 σ

quarters was replaced with a ZMUV WGN process and run through TPS to generate the SES time
series. This process incorporated all gaps in the original time series in order to present as realistic
a result as possible. The SES time series for each of the 14 different pulse durations searched
in TPS (between 1.5 and 15 hours) were then subjected to the SOC 9.3 bootstrap analysis. The
number of transits, ntransits, for each pulse duration was varied between 3 and 2048. A total
of 100 random flux time series were generated and subjected to the bootstrap analysis in this
manner.

Figure 10.15 shows the bootstrap false alarm rate at 8 σ as a function of the transit duration
and the number of transits. For transit pulse durations less than ∼3 hours, the false alarm rate
is slightly higher than that expected for a fully sampled ZMUV Gaussian process, which would
provide a log10(FAR) of -15.2. The FAR then drops gradually to the longest duration, perhaps
reflecting the fact that there are more independent statistical tests conducted for shorter transits
than for longer-duration transits (at a given trial orbital period). The two smallest number of
transit cases also exhibit depressed false alarm rates as a function of duration. For eight or more
transits, the FAR at 8 σ converges to a rather narrow curve with a width of ∼0.25 in log space.
For transit durations exceeding 3 hours the dispersion is 2 dex.

Figure 10.16 shows the standard deviation in the log10(FAR) at 8 σ across all 100 Monte
Carlo runs as a function of transit duration and number of transits. The curve for ntransits=3 is
between 1.5 and 2.6 over the full range of durations. The curves drop rapidly as a function of
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Figure 10.14 Bootstrap thresholds for KOIs for SOC 9.1 (blue curve), SOC 9.2 (green curve) and SOC
9.3 (red curve).

Figure 10.15 Mean of the log of the false alarm rate at 8 σ of 100 different Monte Carlo tests as a function
of transit duration and number of transits. The solid black line indicates the idealized false alarm rate at 8
σ, namely log10(6.2×10−16) = -15.206.

ntransits. For ntransits ≥ 8 the standard deviation of the bootstrap FAR at 8 σ is less than 1 dex.
For ntransits ≥ 512, the scatter in the results begins increasing, reflecting accumulation of round
off errors due to the spatial resampling that must be used in the bootstrap analysis to prevent
spatial aliasing (see Section 10.3).

Note that the dispersion in the mean bootstrap FAR is comparable to the scatter in Monte Carlo
results, indicating that while the mean bootstrap FAR does indeed vary significantly with respect
to transit duration and orbital period (number of transits), the bias in an individual bootstrap FAR
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Figure 10.16 Standard deviation of the log of the false alarm rate at 8 σ of 100 different Monte Carlo
tests as a function of transit duration and number of transits. The solid line indicates the ideal threshold at
7.1 σ.

estimate is approximately the same as the uncertainty for long orbital periods (ntransits < 8) and
long durations (> 6 hr). For these cases, the bootstrap FAR is likely to be biased by 1–2 dex
towards smaller false alarm rates.

Figure 10.17 shows the mean of the bootstrap threshold as a function of transit duration and
ntransits. The shape of the curves are rather similar to those for the mean log10(FAR) in Fig-
ure 10.15. For durations longer than 3 hours and ntransits ≥ 8 the bootstrap threshold drops
linearly from 7.1 σ to 6.6 σ. The curves for ntransits ≥ 8 are relatively tightly confined to within
a range of ±0.03 σ. The variation across the curves is ∼0.4 σ at any given transit pulse duration,
comparable to the scatter of the results across the Monte Carlo trials.

Figure 10.18 shows the standard deviation of the bootstrap threshold as a function of the
transit duration and ntransits. The shape of the curves is reminiscent of those for the standard
deviation of the log10(FAR) in Figure 10.15. The standard deviation of the threshold is below
0.5 σ for all cases, dropping rapidly from ∼0.5 σ for ntransits= 3 to ∼0.2 σ for ntransits = 8.

The results are well behaved for transit pulse durations ≥ 3 hours, and for ≥ 8 transits. How-
ever, the enhanced scatter in the results for small numbers of transits should be kept in mind
when interpreting the bootstrap results for TCEs with ntransits< 8.

How much of the bias structure evident in Figure 10.15 and Figure 10.17 are due to the
bootstrap, and how much is due to the conditioning, filtering, and processing within TPS? We
conducted a separate Monte Carlo experiment by running bivariate Gaussian MES through the
bootstrap algorithm directly, thereby bypassing TPS. Figure 10.19 shows the behavior of the
mean bootstrap FAR and threshold at 8 σ as a function of the number of transits for this experi-
ment along with those for the original Monte Carlo experiments. The log10(FAR) of the bivariate
WGN process varies between -14.5 and -15.4, or ±1 dex, indicating that the majority of the bias
structure dependent on transit duration is due to the filtering and conditioning occurring inside
of TPS. We interpret this as being due to the fact that the shorter-duration transits have less data
“averaged” into each SES, and hence, are noisier than those for longer duration transits, and to
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Figure 10.17 Mean of the bootstrap threshold of 100 different Monte Carlo tests as a function of transit
duration and number of transits.

Figure 10.18 Standard deviation of the bootstrap threshold of 100 different Monte Carlo tests as a function
of transit duration and number of transits.

the fact that for a finite flux time series, there are more effective independent statistics for shorter
duration transits relative to longer duration transits.

Note that while these Monte Carlo experiments give some idea of the native scatter in the
bootstrap analysis results, they do not include all the known instrumental artifacts (e.g. sudden
pixel dropouts or rolling band image artifacts) and/or astrophysical red noise.
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Figure 10.19 Mean of the bootstrap FAR of 100 different Monte Carlo tests as a function of transit
duration and number of transits, along with that for a bivariate WGN process passed directly to the bootstrap
algorithm (black curve with stars).

10.7 Bootstrap Analysis of a Single TCE

As an illustration of how the statistical bootstrap analysis operates, Figure 10.20 shows a typical
bootstrap result. The TCE used for this plot is on KIC 12158032, which has a transit duration of
2 hours, an orbital period of 0.578 days, and a MES of 8.48 σ. If the MES of the detection falls
above the MES corresponding to a log10(FAP) of -13.5, where FAP is the false alarm probability,
then the boot fap is interpolated from the CDF of the null MES constructed by the bootstrap,
otherwise the best-fit Gaussian is used to calculate the boot fap. In Figure 10.20 it is marked
by the black star and was calculated to be 4.7×10−16. This is the FAP on the solid green curve
corresponding to the MES of the TCE. The boot mesthresh for this TCE is ∼7.35 σ as can
be seen by finding the MES corresponding to a FAP of ∼6.24×10−13 on the best-fit Gaussian
(indicated by the magenta diamond). The boot mesmean is the mean of the best-fit Gaussian
and is -0.64 for this TCE. The boot messtd is the standard deviation of the best-fit Gaussian
and is 1.13 for this TCE. Note that the solid red curve shows the CDF for a ZMUV Gaussian.
The Gaussian is fitted robustly in log space using the data from 1×10−4 to 1×10−13 to avoid the
roll-off toward MES > 8 σ due to round-off errors.

10.8 Conclusions

This chapter provided the motivation and mathematical development for the statistical bootstrap
analysis conducted in DV for each TCE identified by TPS. We introduced a new algorithm that
is computationally efficient and able to provide bootstrap results for all TCEs regardless of how
many transits participate in the transit signature. The bootstrap results for each of the past three
transit searches, including the final one over all 17 quarters of data with the final codebase,
SOC 9.3, known as Data Release 25, were described and compared. A set of Monte Carlo
experiments were performed to assess the statistical precision of the bootstrap products available
to the scientific community on the NExScI exoplanet archive. Finally, a numerical example was
provided for a single TCE.
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Figure 10.20 The CDF of the null MES constructed by the bootstrap. This TCE is on KIC 12158032
and has a MES of 8.48 σ, a duration of 2 hours, and a period of 0.578 days and yielded 2,278 transits in
4 years of data. The false alarm probability for this TCE is ∼4.7×10−16, marked by the black star. The
best-fit Gaussian has a mean of -0.64 and a standard deviation of 1.13. The magenta diamond marks the
threshold needed to achieve the same false alarm rate of a ZMUV Gaussian with a 7.1 σ threshold given the
distribution of null MES constructed by the bootstrap.
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Abstract. A Threshold Crossing Event (TCE) is generated in the transit search for targets where
the transit detection threshold is exceeded and transit consistency checks are satisfied. These
targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline.
Potential transiting planet candidates are characterized in DV, and light curves are searched
for additional planets after transit signatures are modeled and removed. A suite of diagnostic
tests is performed on all TCEs to aid in discrimination between genuine transiting planets and
instrumental or astrophysical false positives. Data products are generated per target and TCE to
document and display transiting planet model fit and diagnostic test results. These products are
exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available
to the community. We describe the DV architecture and diagnostic tests, and provide a brief
overview of the data products. Transiting planet modeling and the search for multiple planets
on individual targets are described in Chapter 12. This chapter is based on the exposition of
Twicken et al. (2018).

Keywords: Stars; Extrasolar Planets; Characterization; Validation; Data Analysis and Tech-
niques

11.1 Introduction

This chapter discusses the architecture of the Data Validation (DV) module of the Kepler Science
Data Processing Pipeline and details the diagnostic tests applied to each transit-like feature, or
threshold crossing event (TCE), identified by the Transiting Planet Search (TPS) module. Chap-
ter 12 documents the fitting of a limb-darkened transit model to each TCE before constructing
the diagnostic tests documented in this chapter. Figure 11.1 shows the DV module in the context
of the Kepler Science Data Processing Pipeline.

267
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Figure 11.1 Data Validation (DV) in the context of the architecture of the Kepler Data Processing Pipeline.
As a part of the DV module, the transit model fitting fits TCEs generated by TPS to derive parameters that
are used in various diagnostic tests of DV.

The transit model fitting is designed for the following two main tasks: 1) The fitted parameters
of the transit model and the corresponding light curve generated from the model are used in the
diagnostic tests in DV to disposition TCEs; 2) When the TPS module is called, only one TCE
with the maximum event detection statistic is generated. To search for multiple transiting planet
signatures, an iterative process of transit model fitting and multiple-planet search is implemented
in DV. For each target star, the transit model parameters are fitted to each TCE generated by TPS,
the signature of known TCEs is removed from the light curve, the flux time series, and then the
residual goes through TPS again to search for additional TCEs. This iteration will only terminate
once no TCEs are identified or a preset upper limit is reached.

The results of the transit model fitting of the TCEs generated by the Kepler Data Processing
Pipeline, such as the fitted parameters and uncertainties, derived parameters and uncertainties, fit
goodness metrics and the diagnostic plots, are included in the DV report or DV one-page sum-
mary report, which are both accessible by the science community at NASA Exoplanet Archive
Akeson et al. (2013).1

This chapter is organized as follows. Subsection 11.1.1 describes the TCE vetting process and
how DV products contribute to that process. Section 11.2 presents a high level view of the DV
pipeline module. Section 11.3 introduces and describes the principal diagnostic tests conducted
on each TCE, including the weak secondary test (Subsection 11.3.1), the rolling band contam-
ination flags (Subsection 11.3.2), the eclipsing binary discrimination tests (Subsection 11.3.3),
difference imaging and centroid offset analysis (Subsection 11.3.4), the statistical bootstrap test
(Subsection 11.3.5, the centroid motion test (Subsection 11.3.6), and the ghost diagnostic test
(Subsection 11.3.7). Section 11.4 discusses the algorithm used to match TCEs against existing
KOIs. Section 11.5 describes the archive products, including the DV Report (Subsection 11.5.1)
and the DV Summary Report (Subsection 11.5.2). A summary and conclusions are presented in
Section 11.6.

11.1.1 Vetting Threshold Crossing Events

Threshold Crossing Events are characterized in DV by transiting planet model fitting. Light
curves are searched for additional transiting planets after transit signatures are modeled and re-

1(http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/ nph-tblView?app=ExoTbls&config=tce)

http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=tce
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moved until further transit signatures can no longer be identified (or an iteration limit is reached).
A suite of diagnostic tests is performed on each TCE to aid in discrimination between genuine
transiting planets and instrumental or astrophysical false positives. Data products are generated
per target and TCE to document and display the transit model fit and diagnostic test results. These
products are exported to the NASA Exoplanet Archive (Akeson et al., 2013) and are available to
the community at large for vetting potential transiting planet candidates identified in the Kepler
Pipeline. The initial revision of DV was documented by Wu et al. (2010), but the DV component
evolved significantly since the time of that publication. The state of the Kepler Pipeline Data
Validation art is described both in this chapter and its companion, Chapter 12.

The design goals of DV were to (1) characterize potential transiting planet signatures iden-
tified in the Pipeline, and (2) perform powerful diagnostic tests uniformly on all TCEs to aid
in assessment of the planet candidates. DV was specifically not tasked with rating, ranking or
otherwise classifying Pipeline TCEs as to the likelihood that they represent bona fide transiting
planets. Nor was DV tasked with assessing the value of TCEs under the assumption that they
represent real planet detections, e.g., an Earth-size planet in the HZ of a Sun-like star is worth far
more than a hot Jupiter detectable from the ground from the standpoint of the Kepler Mission.
Decisions concerning the veracity of the Pipeline TCEs and their relative priority were to be left
to human experts.

The data products generated by DV are employed by the Threshold Crossing Event Review
Team (TCERT), which dispositions TCEs as either Planet Candidates (PCs) or False Positivies
(FPs). There are two main types of FPs; non-transiting/eclipsing signatures (e.g., instrumental
noise or stellar variability) and transiting/eclipsing signatures (e.g., transiting planet signals from
other targets, and eclipsing binaries, either on- or off-target) . All PCs and eclipsing FPs are
given a Kepler Object of Interest (KOI) number to track them across multiple TCE catalogs.

The TCERT vetting process was largely manual well into the primary Kepler Mission. For
the first five catalogs (Borucki et al., 2011a,b; Batalha et al., 2013; Burke et al., 2014; Rowe
et al., 2015), humans examined diagnostic plots and metrics for each TCE. The high cost of
the vetting process (in both time and resources), and the reliance on human decision makers
(subject to individual bias and inconsistency, thus hampering the accuracy of resulting occurrence
rates), led to the development of a rules-based system (robovetter) for dispositioning TCEs. This
automated process was partially implemented in the sixth catalog (Mullally et al., 2015) and fully
implemented for the seventh and eighth (final) catalogs (Coughlin et al., 2016; Thompson et al.,
2018).

At the same time, a machine learning system (“autovetter”) was developed (McCauliff et al.,
2015; Jenkins et al., 2014; Catanzarite, 2015) to employ attributes generated in TPS/DV to clas-
sify TCEs generated in the Pipeline as Planet Candidate, Astrophysical False Positive, or Junk.
Classifications are determined by a random forest of decision trees (Breiman, 2001). Decision
trees are trained with labeled TCEs and then applied to classify unknown (i.e., unlabeled) TCEs
based on their respective attributes. Training labels for the autovetter are determined in part from
prior TCERT vetting activities. The random forest methodology is robust against errors in la-
beling training data and as a byproduct permits the computation of a posteriori probabilities for
TCE classifications.

11.2 Pipeline Data Validation

All targets for which a TCE is generated in TPS are processed independently in DV. The archi-
tecture of the DV Pipeline software component is shown in Fig. 11.2. The first step in DV is to
characterize transiting planets identified in the Pipeline. Transiting planet modeling is described
in detail in Chapter 12 and will only be summarized here. Following preliminary preprocessing
steps, a transiting planet model is robustly fitted to the systematic error corrected light curve of
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Figure 11.2 Block diagram of the Data Validation (DV) component of the Kepler Science Data Processing
Pipeline. Targets that produce TCEs in the pipeline transit search are processed independently in DV,
typically on separate cores of the NASA Advanced Supercomputing (NAS) Pleiades cluster. Front-end
processing involves fitting a transiting planet model to the systematic error corrected light curve for each
given target star and searching the light curve for additional transit signatures after the transit signature
has been removed. Ephemerides for TCEs identified in TPS/DV are then matched against ephemerides of
known KOIs. Back-end processing includes a suite of diagnostic tests that aid in discriminating between
genuine planets and false positive detections. Model fit and diagnostic test results are included in a DV
Report generated in PDF format for each target. A one-page Report Summary PDF is also produced for
each TCE.

the given target. The fitting is performed in a whitened domain where transformed data samples
are temporally uncorrelated after removal of the transit signature. The whitening is implemented
in an adaptive time varying fashion with wavelet-based machinery (Jenkins, 2002). Stitching of
the quarterly data into a single contiguous time series and filling of gaps in the available data has
been documented with regard to the transiting planet search in Chapter 9; the code for quarter
stitching and gap filling is shared between TPS and DV.

The parameter seeds for the transiting planet model fit are based on the TCE orbital period,
epoch, trial transit pulse duration, and detection statistic. Five parameters are fitted in the model:
period, epoch, impact parameter, reduced planet radius (Rp/R∗), and reduced semimajor axis
(a/R∗). After the fit has converged, the fitted transits are excised and the residual light curve
is searched for the presence of another transiting planet signature. The search is performed by
calling TPS directly from DV. The transiting planet model is fitted for each of the signatures
identified in the so-called “multiple planet search.” The process is terminated when an additional
TCE is not produced in the multiple planet search or a configurable iteration limit is reached.
Historically, the iteration limit for the multiple planet search has been set to ten TCEs for any
given target. Some targets have produced ten TCEs, but no target has yielded ten credible transit
signatures. It is therefore unlikely that the iteration limit has led to the loss of genuine planets.

The transiting planet model is also fitted separately to the sequences of odd and even transits
for each transit-like signature identified in the Pipeline in support of DV diagnostic tests that will
be discussed in Subsection 11.3.3. DV may also be configured to optionally perform a series
of “reduced-parameter” fits in which the impact parameter is fixed at specified values while the
remaining four model parameters are fitted.

The Mandel-Agol (Mandel & Agol, 2002) transiting planet model is employed to render light
curves at the barycentric corrected cadence timestamps (Thompson et al., 2016) in and near
transit. This model involves numerically integrating the brightness of the stellar surface that is
eclipsed by the disk of the transiting planet in each long cadence (LC) interval. A small body
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approximation is employed to reduce the model run-time when the reduced planet radius is less a
specified threshold (typically 0.01). Nonlinear limb darkening coefficients are interpolated from
tables produced by Claret & Bloemen (2011) based on stellar parameters for each given target.
Stellar parameters provided to DV may be obtained from the Kepler Input Catalog (KIC) (Brown
et al., 2011) or they may represent overrides to KIC parameters. The KIC overrides for the Q1–
Q17 DR25 run were produced by the Kepler Stellar Properties Working Group (Mathur et al.,
2017). Stellar parameters employed in DV are stellar radius, effective temperature, surface grav-
ity (log g) and metallicity (Fe/H). DV assumes Solar values for stellar parameters in cases where
LC targets are unclassified in the KIC (i.e., stellar parameters are unspecified) and target-specific
overrides are not provided to DV. Provenance is tracked so that the source of stellar parameter
values may be documented in the DV archive data products on a parameter by parameter basis.

The following orbital and planet characteristics are derived from the fit parameters after the
transiting planet model fits converge: orbital semi-major axis, planet radius, equilibrium temper-
ature, effective stellar flux (i.e., insolation with respect to the flux received from the Sun at the
top of Earth’s atmosphere), transit depth, transit duration, and transit ingress/egress duration.

Transit signatures are also fitted in DV with a non-physical trapezoidal model (as of SOC 9.3).
The trapezoidal model fit parameters are epoch, transit depth, transit duration, and ratio of ingress
duration to transit duration. The orbital period is not fitted; the trapezoidal model fit employs the
TCE period produced in TPS. The trapezoidal model fit is fast, and the model is utilized later in
DV as a fallback for the diagnostic tests that require a transit model in the event that the standard
transiting planet model fit result is unavailable for a given TCE. The trapezoidal model result was
employed as a fallback for 2203 of 34,032 TCEs (6.5%) in the DR25 transit search. Transiting
planet and trapezoidal models were both unavailable to support the DV diagnostic tests for only
98 DR25 TCEs (0.3%).

Following model fitting and the multiple planet search, the next step in DV is to perform
diagnostic tests on all TCEs to aid in discrimination between genuine transiting planets and
false positive detections. The diagnostic tests are performed sequentially and may be enabled
or disabled on a test by test basis. Some of the diagnostic tests run very quickly and provide a
large return on run-time investment. Other tests are time consuming and provide lower return on
investment for the preponderance of TCEs. All diagnostic tests may be independently enabled
or disabled when DV is run. The sequence in which the tests are (now) performed in DV is as
follows: weak secondary test, rolling band diagnostic test, eclipsing binary discrimination tests,
difference imaging and centroid offset analysis, statistical bootstrap test, centroid motion test,
and optical ghost diagnostic test. All of these tests were enabled for the final Q1–Q17 transit
search (DR25).

DV data products are generated after the diagnostic tests have completed. The four types of
DV products are as follows: (1) a comprehensive DV Report in PDF format for each LC target
with at least one TCE, (2) a one-page DV Report Summary in PDF format for each TCE, (3) a DV
Time Series (Thompson, 2016) file in FITS format for each DV target that includes time series
data relevant to the transit search for the given target and validation of the associated TCEs, and
(4) a single DV XML file that includes tabulated DV results for all targets with TCEs in a given
Pipeline run. The Time Series and XML files are not produced within DV proper, but by the
Archive (AR) component of the Kepler Pipeline which is executed later. The DV data products
are exported to the Exoplanet Archive2 at NExScI for access by the science community.

DV data products are distinct from the Pipeline data products delivered to the Mikulski
Archive for Space Telescopes3 (MAST) for access by the community. The MAST products
include Target Pixel Files containing calibrated pixels and per pixel background estimates by ca-
dence, and Light Curve Files containing flux and centroid time series data. The products archived

2http://exoplanetarchive.ipac.caltech.edu
3http://archive.stsci.edu
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at MAST are available for all Kepler targets by observing quarter (for LC targets) or observing
month (for SC targets), and include results from the Pipeline front end (CAL/PA/PDC). The DV
products, on the other hand, are exported to the Exoplanet Archive only for LC targets for which
at least one TCE is generated in the Pipeline. These typically describe the results of multi-quarter
(e.g., Q1–Q17 in DR25) runs of TPS and DV.

DV is executed on the NASA Advanced Supercomputing (NAS) Division Pleiades4 computer
cluster in a separate sub-task5 for each LC target for which a TCE is generated in TPS. Pleiades
is comprised of thousands of computing nodes in which multiple processing cores share common
memory. Although there was a significant effort to reduce the DV memory footprint, this compo-
nent is memory limited and does not utilize all available cores on each allocated processing node.
For the Q1–Q17 DR25 processing, DV was run on Pleiades Ivy Bridge nodes with 20 processing
cores and 64 GB of random access memory per node. DV was configured to allocate 6 GB per
target and therefore utilized 10 of the 20 available cores on each processing node. In principle,
all DV sub-tasks may be run in parallel; in practice, sub-tasks are queued and then processed as
cluster resources become available.

All DV sub-tasks (one per target) running on Pleiades are subject to a maximum run-time limit
(i.e., timeout). The planet search and model fitting process is allocated a configurable fraction of
the specified DV time limit (typically 0.8). The fitter and multiple planet search functions check
periodically to determine whether or not their time allocation has been reached. If so, planet
search and model fitting are halted to allow the remainder of DV to complete before the run-
time limit is reached. Furthermore, the time-consuming centroid motion (see Subsection 11.3.6)
and optical ghost (see Subsection 11.3.7) diagnostic tests are subject to self-timeout in that they
are not run if insufficient remaining time would be available for generation of DV Reports and
Summaries.

The light curves of 198,707 targets were searched for transiting planet signatures in the Q1–
Q17 TPS run for DR25; TCEs were generated for 17,230 of these targets (Twicken et al., 2016).
The DV sub-task timeout was set to 45 hr, of which 36 hr were allocated to the fitter and multiple
planet search. The median run time for all targets was 9.47 hr. The maximum run time was
44.8 hr, just below the 45 hr time limit at which point the long running sub-task would have been
killed and archive products for the target in question would not have been forthcoming.

11.3 Diagnostic Tests

A suite of DV diagnostic tests is performed for each potential transit signature identified in the
Pipeline. These include TCEs identified in the initial TPS run for all LC targets and those subse-
quently identified in the multiple planet search with calls to TPS from DV. The diagnostic tests
are described in this section. The purpose of the tests is to produce metrics to aid in the discrim-
ination between bona fide transiting planets and false positive detections. Vetting of Pipeline
TCEs includes classification as Planet Candidate (PC) or False Positive (FP), and assignment of
KOI numbers to transiting/eclipsing TCEs, as described earlier in Subsection 11.1.1.

11.3.1 Weak Secondary Test

The purpose of the Pipeline transiting planet search is to identify signatures in Kepler target light
curves that are representative of two-body Keplerian clocks. The TPS module was not designed

4http://www.nas.nasa.gov/hecc/resources/pleiades.html
5Target stars in the Kepler FOV are assigned to “skygroups” representing the celestial regions which map to the respective
CCD readout channels. The computational unit of work in DV includes targets in a given skygroup, so there is nominally
one Pipeline task for each of the 84 skygroups. Tasks are then subdivided into individual sub-tasks for each target.
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to detect aperiodic signatures such as those associated with circumbinary transiting planets and
planets with significant transit timing variations (TTVs). Nevertheless, the Pipeline has shown
some sensitivity to TTV planets and detected many of them.

The most common false positive transiting planet detections are non-Keplerian in nature. The
search for transiting planets by its nature must be extremely sensitive to small changes in stellar
brightness to permit detection of Earth-size (and smaller) planets orbiting in the HZ of Solar-type
stars. Non-Keplerian false positive detections are driven by a variety of sources including, but
not limited to, electronic image artifacts (Caldwell et al., 2010a), thermal variations and cycling
(Jenkins et al., 2010a), photometer pointing excursions (Jenkins et al., 2010a), uncorrected or
incompletely corrected Sudden Pixel Sensitivity Dropouts (SPSDs) (Kolodziejczak & Morris,
2012; Stumpe et al., 2012), native stellar variability on transit time scales, and data gap edge
effects.

False positive Keplerian detections may be ascribed to sources such as eclipsing binaries,
background eclipsing binaries, planets transiting background stars, and contamination (e.g., sat-
uration bleed, electronic crosstalk with neighboring readout channels, CCD column anomalies,
or optical reflections) by bright Keplerian sources. The contamination issue was investigated in
depth by Coughlin et al. (2014). Common false positive scenarios for Pipeline TCEs that have
been assigned a KOI number involve eclipsing binaries. Foreground or background eclipsing bi-
naries may produce one or two TCEs depending upon eccentricity and the relative depths of the
primary and secondary eclipses. The binary nature of a source is often betrayed by a statistically
significant match of the periods of the respective TCEs if two TCEs are generated.6 The weak
secondary test assesses the significance of the strongest secondary event at the same period and
trial transit pulse duration if only one TCE is generated at a given period. The diagnostic places
a statistical constraint on the presence of secondary eclipses for each potential planet signature
identified in the Pipeline. The diagnostic also addresses the uniqueness, and hence the reliability,
of the TCE itself.

The weak secondary algorithm is implemented in the TPS module where the transiting planet
search is performed although the diagnostic test results are reported in DV and displayed in the
data products. The various aspects of the transiting planet search have been documented by
Jenkins (2002), Jenkins et al. (2010b) and in Chapter 9. The weak secondary diagnostic test
produces multiple event detection statistics as a function of phase for the period and trial transit
pulse duration that produced the given TCE. For each phase value, the secondary Multiple Event
Statistic (MES) represents a point estimate of the S/N of a sequence of secondary eclipses with
the given period and trial transit pulse duration. The detection statistics are computed in the
absence of the transits (or eclipses) that produced the TCE.

Orbital period, epoch of first transit, and trial transit pulse duration are determined when a
TCE is generated in TPS. The transit signature that produced the TCE is removed by setting
data gap indicators for the cadences associated with it; gap indicators for additional cadences
preceding and following each of the transits are also set to provide a buffer against a trial transit
pulse mismatch or relatively small TTVs. The light curve data gaps are then filled with the
standard TPS gap filling algorithm. A time-varying whitening filter is applied to the gap filled
light curve to remove the statistical correlations in the time series, and the whitening filter is
applied to the trial transit pulse for which the TCE was generated. Single Event Statistic (SES)
time series are computed by correlating the whitened light curve with the whitened trial transit
pulse in the same fashion that the transiting planet search is conducted. The SES represent per
cadence estimates of the single transit S/N for the given trial transit pulse duration.

6The existence of two TCEs with matching periods on a given target does not imply that the source is necessarily an
eclipsing binary; thermal and/or reflected light occultations of short period transiting planets may also produce transiting
planet detections. Secondary events are modeled in DV to help ascertain whether or not they may be due to thermal or
reflected light occultations of transiting planets.
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The SES time series is folded at the period associated with the TCE and the detection statistics
are combined to form a secondary MES versus phase vector. The zero-point in phase corresponds
to the epoch of the TCE. The maximum secondary MES is determined by the maximum value
(over phase) of the secondary MES vector, and the minimum MES is determined by the minimum
value of the secondary MES vector. In the absence of secondary eclipses, the multiple event
detection statistics would be expected to be zero mean and unit variance for a Gaussian noise
process. The maximum secondary MES indicates the strength of the most significant secondary
eclipse at the the period and trial transit pulse duration defined by the TCE. The minimum MES
indicates the strength of the most significant positive-going signal at the period and trial transit
pulse duration of the TCE.

The secondary MES values are displayed versus phase (in units of days) in the DV Report
with markers indicating the maximum and minimum secondary MES events. The maximum
secondary MES and associated phase are also indicated on the one-page DV Report Summary,
which in addition displays the phase folded light curve associated with the given TCE with
emphasis on the phase associated with the maximum secondary MES.

The weak secondary MES values for KOI 140 based on Q1–Q17 DR25 data are shown versus
orbital phase in Figure 11.3. The source of this false positive transiting planet detection is a
background eclipsing binary that is offset by ∼6 arcsec from the target. The orbital period for
the eclipsing binary is 19.978 days. For the TCE associated with the primary eclipses, the MES
reported by TPS was 128.6σ for trial transit pulse duration = 9.0 hr. There is a significant
secondary peak present with phase = 9.222 days and MES = 11.4σ. The minimum secondary
MES for this TCE was determined to be –3.6σ.
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Figure 11.3 Multiple Event Statistics (MES) in units of noise level σ versus orbital phase in days for
KOI 140.01. The Multiple Event Statistics are computed at the orbital period (19.978 days) and pulse
duration (9.0 hr) associated with the TCE after the primary eclipse events are removed from the flux time
series. A significant secondary peak is present (11.4σ).

Given the large secondary MES and the 7.1σ transit search detection threshold, a second TCE
would be expected for the secondary eclipses in the multiple planet search. Indeed, a second



DIAGNOSTIC TESTS 275

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Phase [Days]

-4

-3

-2

-1

0

1

2

3

4

5

6

M
E

S
 [

]

Figure 11.4 Multiple Event Statistics (MES) in units of noise level σ versus orbital phase in days for
KOI 2887.01. The Multiple Event Statistics are computed at the orbital period (1.569 days) and pulse
duration (2.5 hr) associated with the TCE after the primary eclipse events are removed from the flux time
series. A secondary peak is present with strength (5.1σ) below the transit search detection threshold (7.1σ).

TCE was generated with MES = 11.9σ for orbital period = 19.978 days and trial transit pulse
duration = 10.5 hr. For this TCE, the maximum and minimum secondary MES were determined
to be 2.4σ and –3.0σ respectively.

The weak secondary MES values for KOI 2887.01 based on Q1–Q17 DR25 data are displayed
versus phase in Figure 11.4. The source of this false positive transiting planet detection is offset
by ∼10 arcsec from the target. The orbital period associated with the TCE was 1.569 days.
For the TCE associated with the primary eclipses, the MES reported by TPS was 17.0σ for trial
transit pulse duration = 2.5 hr. A secondary peak is visible for phase = 0.781 days with MES =
5.1σ. The Pipeline would not be expected to generate a TCE for the secondary eclipses because
the maximum secondary MES is below the transit search detection threshold; indeed, a second
TCE was not produced in this case. Nevertheless, the normalized phase (0.781/1.569 = 0.50)
associated with the maximum secondary event is highly indicative of a circular (i.e., eccentricity
= 0) eclipsing binary. Inspection of the calibrated pixel time series data for this target leads to the
same conclusion; the signature of an eclipsing binary is clearly visible in the pixels associated
with the background source.

As discussed earlier, the presence of secondary eclipses does not imply that the source of a
given TCE is an eclipsing binary. It is possible that secondary eclipses are due to reflected light
or thermal occultations of a (giant) transiting planet for TCEs with short orbital periods. The
depth and associated uncertainty of the transit signal with the maximum secondary MES are
estimated in TPS to support the weak secondary test. The geometric albedo and planet effective
temperature are computed in DV that would produce the observed secondary transit depth during
reflected light or thermal occultations respectively. Uncertainties in geometric albedo and planet
effective temperature are propagated by standard methods. Geometric albedo and planet effective
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temperature are useful for assessing the nature of TCEs when the target star is the source of the
transit/eclipse signature, and the maximum secondary MES exceeds the (7.1σ) transiting planet
detection threshold in the Pipeline. In such cases, the TCE is consistent with an eclipsing binary if
the geometric albedo is statistically large in comparison to one or the planet effective temperature
is statistically large in comparison to the equilibrium temperature derived in the DV model fitting
process. Otherwise, the TCE should be investigated carefully to determine if the source of the
secondary event signature may indeed be the occultation of a transiting planet.

Within the context of DV, geometric albedo represents the brightness of a reflecting body
relative to an ideal, Lambertian disk that would produce a given transit depth during a reflected
light occultation. The geometric albedo Ag is computed for each TCE by

Ag = D

(
ap
Rp

)2

, (11.1)

where D is the fractional depth of the strongest secondary event at the period and pulse duration
associated with the TCE, ap is the semimajor axis of the orbit, and Rp is the planet radius. The
uncertainty σAg

in geometric albedo is computed through standard propagation of uncertainties
by

σAg
= Ag

[(
σD
D

)2

+

(
2σap
ap

)2

+

(
2σRp

Rp

)2 ]1/2

, (11.2)

where σD is the uncertainty in fractional depth, σap is the uncertainty in semimajor axis, and σRp

is the uncertainty in planet radius. A secondary event with MES > 7.1σ is not attributable to the
reflected light occultation of a transiting planet if the geometric albedo is large in comparison
with one. This statistical comparison is performed in DV and reported in the archive products.

Planet effective temperature represents the blackbody temperature of an object orbiting a host
star that would produce a given transit depth during a thermal radiation occultation. The planet
effective temperature Tp is computed for each TCE by

Tp = T∗ D
1/4 µ−1/2, (11.3)

where T∗ is the effective temperature of the host star, D is the fractional depth of the strongest
secondary event at the period and pulse duration associated with the TCE, and µ is the fitted
reduced-radius parameter (Rp/R∗). The uncertainty σTp in planet effective temperature is com-
puted through standard propagation of uncertainties by

σTp
= Tp

[(
σT∗
T∗

)2

+

(
σD
4D

)2

+

(
σµ
2µ

)2 ]1/2

, (11.4)

where σT∗ is the uncertainty in stellar effective temperature, σD is the uncertainty in fractional
depth, and σµ is the uncertainty in reduced radius. A secondary event with MES > 7.1σ is not
attributable to the thermal occultation of a transiting planet if the planet effective temperature is
large in comparison with the equilibrium temperature of the planet. This statistical comparison
is also performed in DV and reported in the archive products.

Two examples in the Q1–Q17 DR25 data set are illuminating. HAT-P-7b (Pál et al., 2008),
also known as Kepler-2b, was one of three confirmed transiting planets in the Kepler FOV at
the time that the spacecraft was launched. It is a Hot Jupiter with a 2.2-day orbital period.
The secondary occultation is shown in Figure 11.5; the depth was reported in DV to be 60.8 ±
1.65 ppm. The geometric albedo for the TCE associated with HAT-P-7b was computed to be
0.167 ± 0.012 in the Q1–Q17 DR25 data set; this is clearly less than one. The planet effective
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Figure 11.5 Relative flux versus orbital phase in hours for the secondary occultation of HAT-P-7b (Kepler-
2b). Detrended flux values are plotted in black. Binned and averaged flux values are displayed in cyan.
HAT-P-7b is a Hot Jupiter with 2.2-day orbital period. Modeling in DV indicates that the secondary event
is consistent with the reflected light or thermal occultation of a giant planet.

temperature was computed to be 2026±31 K; this is below the equilibrium temperature (2048±
43 K) derived for this TCE. Geometric albedo and planet effective temperature are consistent
with reflected light and thermal occultations of a giant planet respectively.

KOI 6167.01, on the other hand, is a short-period (3.9-day) eclipsing binary (Kirk et al.,
2016). The secondary eclipse is shown in Figure 11.6; the depth was reported to be 3143 ±
61 ppm. The geometric albedo for the TCE associated with KOI 6167.01 was determined to be
7.82± 1.73 in the Q1–Q17 DR25 data set; this is significantly larger than one at the 3.95σ level.
Furthermore, the planet effective temperature was computed to be 2632 ± 72 K; this is 16.9σ
above the equilibrium temperature (1018±62 K) derived for this TCE. Neither geometric albedo
nor planet effective temperature are consistent with the occultation of a giant planet.

11.3.2 Rolling Band Diagnostic

A new diagnostic was introduced in the final revision of DV (SOC 9.3) to identify coincidences
between transits and rolling band image artifacts (Caldwell et al., 2010a). These temperature-
dependent artifacts originate in focal plane electronics; the artifacts are particularly severe on a
relatively small number of readout channels. The artifacts are problematic for the Kepler Mission
because target stars rotate through the noisy channels for one observing quarter each year; this
leads to many false positive TCEs which appear to be transiting planets in long-period (∼1 yr)
orbits that lie in the HZ of Sun-like stars. The rolling band contamination diagnostic is described
in this section.

Rolling Band Artifact (RBA) metrics are produced in the Dynablack (Kolodziejczak et al.,
2010, and see Chapter 4) module of CAL by readout channel, CCD row, and cadence. The met-
rics are generated for a configurable set of pulse durations. A RBA metric time series represents
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Figure 11.6 Relative flux versus orbital phase in hours for the secondary eclipse of KOI 6167.01.
Detrended flux values are plotted in black. Binned and averaged flux values are displayed in cyan.
KOI 6167.01 is an eclipsing binary with 3.9-day orbital period. Modeling in DV indicates that the secondary
event is not consistent with the reflected light or thermal occultation of a giant planet.

the output of a filter matched to a rectangular transit pulse with a specified duration when applied
to the residual black time series for the given readout channel and CCD row. The RBA metric
value on each cadence is a point estimate of the strength of a transit pulse (centered on the given
cadence) in the residual black time series with respect to the RBA detection threshold. Ostensi-
bly, such transit signatures remain in pixels in the given CCD row after the bias level calibrations
are performed in CAL. The pulse durations for which the rolling band metrics were computed in
the Q1–Q17 DR25 data processing are 1.5, 3.0, 6.0, 12.0, and 15.5 hr; the RBA threshold was
set to 0.016 Analog-Digital Units (ADU) per read.

Floating-point RBA metrics are exported to MAST for access by the science community.
To facilitate downstream Pipeline processing, the floating-point rolling band artifact metrics are
discretized into a small set of severity levels as shown in Table 11.1. The discrete rolling band
severity level time series are presented by CCD row as input to the PA component of the pipeline
where they are employed to produce a rolling band severity level time series for each target and
RBA pulse duration. The target-specific severity level time series is generated in PA for each
pulse duration by selecting the maximum discretized rolling band severity level on each cadence
over all CCD rows that intersect the optimal photometric aperture for the given target.

The target-specific discretized rolling band severity level time series for all available RBA
pulse durations are provided as input to DV where they are utilized to compute the rolling band
contamination diagnostic for each TCE identified in the transit search. The contamination diag-
nostic for each TCE is essentially a count of the number of observed transits that are coincident
with rolling band image artifacts at each RBA severity level. The severity level time series em-
ployed to compute the diagnostic is the one associated with the RBA pulse duration that is closest
to the transit duration for the given TCE. The TCE transit duration is obtained from the transiting
planet model fit if available; otherwise, the TCE transit duration is obtained from the trapezoidal
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Table 11.1 Rolling Band Artifact Severity Levels

Severity Level RBA Metric
0 No RBA
1 1-2x RBA threshold
2 2-3x RBA threshold
3 3-4x RBA threshold
4 >4x RBA threshold

model fit. Likewise, the in-transit cadences for a given TCE are determined from the light curve
associated with the transiting planet model fit if available; otherwise, the in-transit cadences are
determined from the trapezoidal model light curve.

HAT-P-7b (Kepler-2b) rotated through each of the two most severe image artifact channels
(module outputs 9.2 and 17.2) on an annual basis over the primary Kepler Mission. Correspond-
ing segments of the DR25 3.0 hr severity level time series and transiting planet model light curve
for HAT-P-7b are shown in Figure 11.7. The 3.0 hr RBA pulse duration is the closest available
to the 4.04 hr transit duration derived from the DV transit model fit. For each observed transit,
the in-transit cadences are identified as those for which the model light curve value is less than
zero. A RBA severity level is assigned to each observed transit by selecting the maximum sever-
ity level over all of the associated in-transit cadences. Cadences for which the severity level is
undefined are ignored. The severity levels assigned to the transits are also displayed in the figure.
The DV rolling band contamination diagnostic is determined by simply counting the number of
observed transits at each of the five discrete RBA severity levels; a transit is not counted if the
RBA levels are undefined for all associated cadences.7

For HAT-P-7b in the Q1–Q17 DR25 data set, it was found that 529 (of 584) transits did not
overlap rolling band image artifacts (i.e., were assigned severity level 0), 46 transits were coin-
cident with rolling band image artifacts at level 1, five transits were coincident with rolling band
image artifacts at level 2, one transit was coincident with rolling band image artifacts at level 3,
and three transits were coincident with rolling band image artifacts at level 4. Coincidence of
some of the observed HAT-P-7b transits with rolling band artifacts does not disqualify this TCE
as a legitimate transiting planet; there were many hundreds of observed transits of this confirmed
giant planet. For planets in long-period (∼1 yr) orbits, however, careful attention is prudent if
one or more of the observed transits are coincident with rolling bands.

The detrended light curves of three Q1–Q17 DR25 TCEs associated with KIC 8373837 are
shown in Figure 11.8. The orbital periods associated with these TCEs range from 353.0 to
368.7 days. The three TCEs would represent planets orbiting in or near the HZ of their host star.
The “transit” events for all TCEs occurred in the same quarters (Q2/Q6/Q10/Q14) that the target
star was observed on a known image artifact channel (module output 9.2). Transit events that
were coincident with rolling band image artifacts at non-zero RBA severity levels are identified.
The fractions of observed transits that were coincident with rolling band image artifacts for these
TCEs are 3/4, 2/4, and 4/4 respectively. These TCEs do not represent credible transiting planets.

11.3.3 Eclipsing Binary Discrimination Tests

We have shown that the weak secondary diagnostic test is capable of detecting the presence
or constraining the significance of secondary eclipses associated with a given TCE. A set of

7Target-specific RBA severity levels are undefined on cadences for which no data were acquired or a data anomaly was
flagged. They are also undefined on all cadences in observing quarters for which Dynablack was not run (i.e., Q1 and
Q17).
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Figure 11.7 Rolling band contamination diagnostic for three transits of HAT-P-7b. A representation of
the transit model light curve for HAT-P-7b is plotted versus cadence number in red to identify the transit
cadences. The target-specific rolling band severity levels at the pulse duration (3.0 hr) closest to the duration
of the HAT-P-7b transit (4.04 hr) are displayed versus cadence number in blue. Each transit is assigned
a severity level (shown in green) that is equal to the maximum severity level over all in-transit cadences
associated with the given transit. The three HAT-P-7b transits shown in this figure are assigned rolling band
severity levels 4, 3, and 0 respectively.

statistical hypothesis tests are performed in DV to further aid in discriminating between transiting
planets and eclipsing binaries. The binaries may be LC targets or background objects. The
eclipsing binary discrimination tests are designed to flag the presence of an eclipsing binary if
the system is circular and there is a single TCE, or regardless of eccentricity if there are separate
TCEs for the primary and secondary eclipses.

After the transiting planet model has been fitted to all transits in the light curve associated with
a given TCE, the model is fitted separately to the sequences of odd and even transits associated
with the TCE. A hypothesis test is performed to assess the equality of the depth of the odd transits
and the depth of the even transits in a statistical sense. The odd and even transit depths for a
genuine planet would be expected to be consistent (subject to quarterly spacecraft rolls, imperfect
geometric placement of the CCDs, variations in detector performance across the focal plane, long
time-scale focus variations, finite photometric apertures, and dynamic aperture crowding). The
odd and even transit depths for a circular binary, however, would be expected to be inconsistent
at some level due to differences in the characteristics of the stellar companions.

The difference in the epochs determined in the transit model fits to the sequences of odd and
even transits is also compared statistically to one-half of the period associated with the fit to all
transit events. An inconsistency in the timing of the sequences of odd and even transits would
flag a slightly eccentric binary for which the transiting planet search has produced a single TCE.
In reality, this eventuality almost never occurs. The odd/even epoch comparison diagnostic is
still computed in DV, however.
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Figure 11.8 Detrended light curves for three TCEs associated with KIC 8373837. Relative flux is
displayed versus time in BKJD (Thompson et al., 2016). The “transit” events for all TCEs occur in the same
quarters that the target star is observed on a known image artifact channel (module output 9.2). Transit
events that are coincident with rolling band image artifacts at non-zero RBA severity levels are identified by
red triangular markers; those that are not coincident with rolling band image artifacts at non-zero severity
levels are identified by blue markers. Although the three TCEs would represent planets orbiting in or near
the HZ, they are not credible. Top: TCE 1, orbital period = 365.6 days. Middle: TCE 2, orbital period =
368.7 days. Bottom: TCE 3, orbital period = 353.0 days.

The final eclipsing binary discrimination metric computed in DV is a powerful one for flag-
ging the presence of an eclipsing binary (foreground or background) when two or more TCEs are
generated for a given LC target. In this case, the orbital period determined in the transit model
fit to all transits for a given TCE is compared statistically to (1) the period determined in the
model fit for the TCE with the next shorter period (if one exists), and (2) the period determined
in the model fit for the TCE with the next longer period (if one exists). Uncertainties in the
orbital periods are taken to be the respective transit durations for the purpose of the statistical
comparison.

A transiting planet detection is very likely to be a false positive if its period is statistically
equivalent to that of another TCE associated with the same target. This would most commonly
result from the generation of separate TCEs for the primary and secondary eclipses of a binary
system. Multiple false positive TCEs may also result from significant stellar variability on the
time scale of transits. Statistical equality of the periods of two transit signatures on a given target
does not ensure that the transit-like signatures are not planetary, however. As discussed in Sub-
section 11.3.1, thermal and/or reflected light occultations for a short period planet may produce a
second TCE with a period comparable to the main transit signature. Hence, the physical charac-
teristics of short period systems must be examined closely in the cases where the shorter/longer
period comparison diagnostics are statistically significant.

The eclipsing binary discrimination tests described above are implemented in DV as χ2 hy-
pothesis tests. Such a formulation supports the statistical comparison of multiple independent
measurements although only two are compared in each test. Consideration was also given to
apply this formulation to assess the consistency of (1) depths of all individual transits associated
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with a given TCE, and (2) transit depths determined separately from the quarterly data associated
with each given TCE; such metrics were never implemented, however. The consistency check
of N independent measurements of a parameter, denoted as xi, i = 1, 2, . . . , N with associated
uncertainties σi is modeled as a statistical test with the null hypothesis that the xi are drawn
from N independent Gaussian distributions with the same mean value and standard deviations
σi. As described by Wu et al. (2010), the test statistic and significance level (i.e., p-value) are
determined by

s =
(x1 − x̄)2

σ2
1

+
(x2 − x̄)2

σ2
2

+ . . .+
(xN − x̄)2

σ2
N

(11.5)

and

s =
(x1 − x̄)2

σ2
1

+
(x2 − x̄)2

σ2
2

+ . . .+
(xN − x̄)2

σ2
N

(11.6)

and

p = Pr(χ2
N−1 > s), (11.7)

where x̄ is the weighted mean of the measurements xi (with weights inversely proportional to
σ2
i ), χ2

N−1 denotes a χ2-distribution with N − 1 degrees of freedom, and Pr() denotes “proba-
bility of”.

Acceptance of the null hypothesis for the equality of odd/even transit depths and odd/even
transit epochs is consistent with a planetary classification for the transit source. Acceptance of
the null hypothesis for equality in either of the shorter/longer period comparison tests, however,
is not consistent with a planetary classification for the transit source. The convention in DV is to
report diagnostic test significance such that significance values∼ 1 are consistent with transiting
planets (on target stars), and significance values ∼ 0 are inconsistent with transiting planets.
Hence, the reported significance for the shorter/longer period comparison tests is reported as
(1− p) with p as defined in Equation 11.7.8

It should be noted that for the purpose of the odd/even transit depth comparison test, the
standard deviations σi are determined by the uncertainties in the respective transit depths as
reported by DV. In the cases of the odd/even epoch test and the shorter/longer period comparison
tests, however, the standard deviations σi are set equal to the transit durations derived from
the fits to all transits for the respective TCEs. The essence of the comparison in these cases is
therefore to test that the transit timing and orbital periods agree to within the transit duration and
not within the actual uncertainties in the fitted epochs and periods which are typically very small.

The phase folded odd and even transits are shown in Figure 11.9 for KOI 6996.01 in the
Q1–Q17 DR25 data set. The mismatch between the odd and even transit depths is clear. The
difference reported for the odd/even transit depth comparison in this case was 7312± 35.5 ppm;
this is significant at the 206σ level (p = 0). The source of this false positive transiting planet
detection is a circular eclipsing binary (Kirk et al., 2016) that was detected in TPS at one-half of
its true orbital period when the secondary eclipses were folded onto the primary eclipses in the
transit search.

The phase folded light curve is shown in Figure 11.10 for KOI 140.01 in the Q1–Q17 DR25
data set. The source of this false positive transiting planet detection is a background eclips-
ing binary. Primary and secondary eclipses are both evident. The first TCE on this target was
triggered by the primary eclipses. A second TCE was generated for the secondary eclipses at

8The significance of the eclipsing binary discrimination tests is commonly reported as a percentage rather than a fraction
in the DV Report and one-page DV Report Summary, i.e., 100 × p or 100 × (1 − p) as applicable. This applies to the
other DV diagnostic tests as well.
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Figure 11.9 Relative flux versus orbital phase in hours for the odd and even numbered “transits” of
KOI 6996.01. Detrended flux values are plotted in black. Binned and averaged flux values are displayed
in cyan. KOI 6996.01 is a circular eclipsing binary that was detected in TPS at one-half of its true orbital
period. The event depth in each case is marked with a solid red line and the relatively small 1σ uncertainties
are marked with dashed red lines. The difference between the depths of the odd and even transit events is
clear.

nearly the same orbital period as the first (19.9782 versus 19.9787 days). The significance of the
shorter/longer period comparison in this case was reported to be (1− p) = 0.0005; this result is
inconsistent with a planetary classification for the transit source.

11.3.4 Difference Imaging and Centroid Offset Analysis

The intent of the weak secondary (Subsection 11.3.1) and eclipsing binary discrimination tests
(Subsection 11.3.3) is to identify TCEs for which the source of a transit-like signature is likely
to be an eclipsing binary (either foreground or background). DV also includes diagnostics de-
signed to identify cases where the source of the transit (or eclipse) signature is likely to be a
background star or stellar system. The goal of these diagnostics is to locate the source of the
transit (or eclipse) signature; the offset between the source and target locations is measured and
its significance determined. The first of these diagnostics is difference imaging and centroid off-
set analysis which will be discussed in this section. The second diagnostic is the centroid motion
test which will be discussed in Subsection 11.3.6. The utility of these diagnostics for identifica-
tion of background false positives in Kepler data was documented by Bryson et al. (2013). In
this paper, we describe their implementation in the DV component of the Kepler Pipeline.

Difference imaging has proven to be a powerful diagnostic for identifying astrophysical false
positive detections due to background sources (transits on background stars or background eclips-
ing binaries). The difference images are constructed from pixel data associated with each given
target. The technique exploits spatial information contained in the pixel data and is capable of
accurately identifying transit sources beyond the extent of the photometric apertures; this spatial
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Figure 11.10 Relative flux versus orbital phase in days for KOI 140.01. Detrended flux values are plotted
in black. Binned and averaged flux values are displayed in cyan. The transiting planet model fit is overlaid
in red. A red triangle marks the phase of the events that triggered the initial TCE for this target, and a blue
triangle marks the phase of the events that triggered a second TCE at nearly the same orbital period as the
first. The shorter/longer period comparison is statistically significant. The two TCEs were triggered by the
primary and second eclipses of a background eclipsing binary.

information is not available in photometric flux and centroid time series. Difference images, dif-
ference image centroids, and centroid offsets are computed on a quarterly basis (for each quarter
in which transits are observed) for each TCE as described by Twicken (2016) and Bryson et al.
(2013).

For each TCE, mean in- and out-of-transit images are constructed by first averaging the flux
in and near each transit on a per pixel basis, and then averaging over all transits in the given
observing quarter. In- and out-of-transit cadences are identified from the transiting planet model
that was fitted earlier to the target light curve. The difference image is produced by subtracting
the mean in-transit flux value for each pixel from the mean out-of-transit flux value. Uncertainties
in the respective images are propagated from uncertainties in the calibrated pixel data by standard
methods.

The photocenters of the out-of-transit and difference images are computed by fitting the ap-
propriate Pixel Response Function (PRF) for the given channel and CCD coordinate position
(Bryson et al., 2010, 2013). The out-of-transit centroid locates the DV target, subject to aperture
crowding. In extreme cases, the PRF-based centroiding algorithm locks on to a nearby star in the
aperture mask that is brighter than the target. The difference image centroid locates the source of
the transit signature (which may or may not be the target) with precision as dictated by available
S/N. The quarterly offsets between difference and out-of-transit image centroids provide both
absolute and statistical measures of the separation between transit source and target.

The offset is also computed per TCE and observing quarter between the difference image
centroid and the target location specified by its celestial KIC coordinates. The offset from the
KIC reference position is not subject to aperture crowding, but is subject to KIC errors and
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centroid bias. Difference image generation and centroid offset analysis will be described in
detail in the following two subsections.

11.3.4.1 Difference Image Generation In-transit, out-of-transit, and difference images are
generated for each DV target, TCE, and quarter as long as (1) the transiting planet model fit
for the given TCE converged successfully or a trapezoidal model is available as fallback, and
(2) there are one or more clean transits for the TCE in the given quarter. A clean transit is
one that occurred during a period when valid science data were collected, and one which is not
excluded from the difference imaging process as described later in this section. DV produces a
so-called “direct” image displaying the mean flux per pixel over the duration of the quarter in the
event that a difference image cannot be generated for a given TCE and observing quarter.

An overview of the difference image generation process is shown in Figure 11.11. The iter-
ations over quarters and TCEs are illustrated. First, Pipeline data anomaly flags are parsed and
anomalous cadences are defined. In- and out-of-transit cadences are then identified for all TCEs
over the duration of the unit of work. The model light curve is generated for each TCE based
on parameter values of the transiting planet model fit (or trapezoidal model fit if transit model
is unavailable). In-transit cadences are defined as those for which the transit depth in the model
light curve exceeds a specified fraction (typically 0.75) of the maximum depth. Out-of-transit
(i.e., “control”) cadences are defined before and after each transit to establish the baseline flux
level; the width of the out-of-transit cadence sequence both preceding and following each transit
is equal to the transit duration derived from the model fit. The total number of out-of-transit
cadences associated with each transit is therefore two times the transit duration. A buffer (typi-
cally three cadences) is specified to isolate control cadences from transit events and preserve the
integrity of the difference images in the event that the transit model fit is imperfect or there are
moderate transit timing variations.

Formulate In-Transit,
Out-of-Transit, and
Difference Images

No

Identify
Data Anomaly

Cadences

Identify In- and
Out-of-Transit Cadences 

for all Planets

Calibrated Pixels,
Planet Model Fits,

Anomaly Flags Exclude
Corrupted
Transits

Iterate
Over

Quarters

Iterate
Over
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More
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More
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for DV Report
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and Figures
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Figure 11.11 Overview of the difference image generation process for a given target star. The process is
described in the text. Formulation of in-transit, out-of-transit, and difference images is illustrated further in
Figure 11.12. Diagnostic figures and associated captions are created per planet and quarter for inclusion in
the DV Report. Image data and diagnostic metadata are also saved for delivery to the archive. Pixel data
provided as input are calibrated, cosmic ray corrected, and background subtracted.

Transits corrupted by known data anomalies or by the transits of other TCEs associated with
the same target are excluded from the difference image generation process (Twicken, 2016;
Bryson et al., 2013). The purpose of this is to prevent compromising the quality and integrity of
the difference image. Uncertainties in the resulting image values are larger than they otherwise
would be if the corrupted transits were not excluded (because averaging is performed over fewer
transit events), but the image values are more accurate if the impacted transits are excluded.

Transits are excluded from computation of the respective difference images if the associated
in- or out-of-transit cadences overlap (1) the transit of another TCE for the given target, (2) a
known spacecraft anomaly (e.g., Earth-point for data downlink, safe mode, attitude tweak, and
multiple-cadence loss of fine spacecraft pointing), (3) the start or end of the given observing
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quarter, or (4) cadences marked for exclusion by the Pipeline operator. The thermal settling
period following return from Earth-point and safe mode during which transits are excluded from
difference image generation is parameterized; typically this period is set to one day. A transit
is logistically excluded if any cadence between the first and last out-of-transit control cadence
(inclusively) associated with the transit is coincident with at least one of the known data anomaly
cadences including quarter start and end, or at least one of the in-transit or buffer cadences for
another TCE associated with the same target. Note that a transit is not excluded from difference
image generation if it is only coincident with the out-of-transit cadences of another TCE for the
given target.

The pipeline may optionally be configured to prevent exclusion of transits that overlap transits
of another TCE associated with the same target if doing so would prevent the construction of
a difference image in any given observing quarter; the rationale is that a possibly corrupted
difference image is better than no difference image at all. Warnings are generated in such cases
(see Subsubsection 11.5.1.11), but it is nevertheless true that such difference images may be
difficult to interpret and are potentially misleading. DV was configured in this fashion for the
Q1–Q17 DR25 run.

The process for formulating the mean in-transit, mean out-of-transit and difference images
is shown in Figure 11.12. The iteration over transits is illustrated. The algorithm is vectorized
so that it is performed in parallel for all pixels in the aperture mask associated with a given
target. For each transit, the in-transit flux value is estimated by averaging the calibrated pixel
values (after removal of cosmic rays and background estimates) over the in-transit cadences and
the out-of-transit flux value is computed by averaging the calibrated pixel values over the out-
of-transit control cadences. Gapped (i.e., invalid or unknown) pixel values are ignored for the
purpose of estimating the flux values and ultimately constructing the difference image. The total
numbers of valid and gapped in- and out-of-transit cadences are included in the figure caption for
each difference image displayed in the DV Report. Uncertainties in the in- and out-of-transit flux
values for each transit are computed from uncertainties in the calibrated pixel values by standard
methods under the assumption that the respective pixel values are temporally uncorrelated.
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Flux Values*
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In- and Out-of-
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Figure 11.12 Formulation of the in-transit, out-of-transit, and difference image for a given target star,
planet (i.e., TCE), and observing quarter. The algorithm is described in the text. Pixel data provided as
input are calibrated, cosmic ray corrected, and background subtracted.

Mean in- and out-of-transit flux values are computed for each pixel by averaging the in- and
out-of-transit flux estimates associated with each of the transits over all transits in the given
quarter. The difference image flux value for each pixel is then determined by subtracting the
mean in-transit flux value from the mean out-of-transit value. Once again, uncertainties in the
mean in- and out-of-transit flux values and in the difference flux value are computed by standard
methods under the assumption that pixel values are temporally uncorrelated.
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Figure 11.13 Flux value in e-/cadence versus relative cadence number for the brightest pixel associated
with Kepler-11 in Q5. Fifty cadences of the pixel time series are displayed including a single transit of
Kepler-11e. The cadences employed to estimate the out-of-transit flux value for this transit are marked in
green. The out-of-transit flux estimate is displayed as a horizontal green line. Uncertainties at the 1σ level
in the out-of-transit flux value are shown in black above and below the mean level. The cadences used to
estimate the in-transit flux value are marked in red. The in-transit flux estimate is displayed as a horizontal
red line with associated 1σ uncertainties shown in black. Difference images are computed by averaging
over all transits associated with the TCE in the given quarter.

Figure 11.13 illustrates the computation of the in- and out-of-transit flux values for one transit
of Kepler-11e (KIC 6541920). Fifty cadences are displayed from the time series associated with
the brightest pixel in the optimal aperture of Kepler-11 in Q5. In- and out-of-transit cadences and
flux values are shown. Control cadences both preceding and following the transit permit mean-
ingful averages and differences to be computed without first detrending the pixel time series.
The depth of this transit based on the out-of-transit flux value and flux difference is 1385 ppm.
The cadences employed to estimate the in- and out-of-transit flux values for this transit are deter-
mined from the DV model fit to all transits in the quarter-stitched, corrected flux time series of
this target. The in-transit cadences are those for which the transit depth in the model light curve
exceeds 75% of the maximum depth; the width of the in-transit cadence sequence is therefore
less than one transit duration. The width of the out-of-transit cadence sequences preceding and
following the transit is one transit duration in both cases. There is also a three cadence buffer to
isolate the control cadences from the leading and trailing edges of the transit.

The Q1–Q17 DR25 DV difference image diagnostic result for Kepler-11e in Q5 is shown in
Figure 11.14. The mean out-of-transit flux values are displayed in the upper right panel as a
function of the CCD coordinates9 of the respective pixels in the target mask. The mean in-transit
flux values are displayed in the lower left panel. The difference flux values are displayed in

9The convention for numbering CCD rows and columns on the Kepler focal plane is that the row/column coordinate of
the pixel at the origin of the module output is (0, 0). This is not a visible pixel, however; the origin of the photometric
pixel region of each module output is row/column coordinate (20, 12) because the first 20 rows are masked and the
leading 12 columns are virtual.
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Figure 11.14 Difference image diagnostic result for Kepler-11e in Q5. Pixel values by CCD row and
column for module output 20.1 are displayed in units of e-/cadence. The target mask in Q5 is outlined
with a solid white line in each panel. The photometric aperture is outlined with a dashed white line. North
(N) and East (E) directions on the sky are marked in yellow. The KIC ID associated with Kepler-11e is
6541920; the catalog position of this target in Q5 is marked ‘x’ in all panels. The positions of all other
catalog objects in the vicinity are marked with asterisks; in the DV Reports they are also identified by KIC
ID and magnitude (Kp). The position of the out-of-transit centroid is marked ‘+’ in the two upper panels;
the position of the difference image centroid is marked ‘∆’ in the two upper panels. Upper left: difference
image. Upper right: mean out-of-transit image. Lower left: mean in-transit image. Lower right: difference
image S/N.

the upper left panel, and the difference S/N (flux value divided by uncertainty for each pixel) is
displayed in the lower right.

Kepler-11e is a confirmed planet; it is the largest of the six known transiting planets of Kepler-
11 (Lissauer et al., 2011). The scaling of the difference image values is nearly three orders of
magnitude less than that of the mean out-of-transit values, but the visual character of the figures
displayed in the two upper panels is essentially identical. The reference position for this target
based on its KIC right ascension and declination is marked on all panels. The centroids of the
out-of-transit and difference images are marked on the two upper panels. Centroiding of these
images and centroid offset analysis will be discussed in Subsubsection 11.3.4.2. The markers
identifying target position and difference image centroid are closely spaced; it is difficult to
distinguish between target and transit source for this bona fide transiting planet.

The Q1–Q17 DR25 difference image diagnostic result for the TCE associated with the pri-
mary eclipses of KOI 140.01 (KIC 5130369) in Q3 is shown in Figure 11.15. KOI 140.01 is an
astrophysical false positive detection (background eclipsing binary). The pixels with the largest
flux differences in- and out-of-transit for this TCE are clearly not coincident with the brightest
pixels associated with the target. In fact, the pixels with the largest flux differences do not even
lie in the optimal photometric aperture in this quarter. The transit source as identified by the cen-
troid of the difference image is clearly offset from the position of the target as indicated by both
the KIC reference position and the out-of-transit centroid. The centroid of the difference image
is nearly coincident with the position of KIC 5130380. This object is 2.5 magnitudes (10 times)
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fainter than the target and is almost certainly the source of the transit (i.e., eclipse) signature in
the light curve of KOI 140.01.
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Figure 11.15 Difference image diagnostic result for KOI 140.01 in Q3. Pixel values by CCD row and
column for module output 6.3 are displayed in units of e-/cadence. The target mask in Q3 is outlined with a
solid white line in each panel. The photometric aperture is outlined with a dashed white line. North (N) and
East (E) directions on the sky are marked in yellow. The KIC ID associated with KOI 140.01 is 5130369;
the catalog position of this target in Q3 is marked ‘x’ in all panels. The positions of all other catalog objects
in the vicinity are marked with asterisks. The position of the out-of-transit centroid is marked ‘+’ in the
two upper panels; the position of the difference image centroid is marked ‘∆’ in the two upper panels. The
source of this false positive TCE is almost certainly KIC 5130380 (explicitly identified in all panels). Upper
left: difference image. Upper right: mean out-of-transit image. Lower left: mean in-transit image. Lower
right: difference image S/N.

We will briefly address the issue concerning when specific difference images can and cannot
be trusted. In cases involving saturated transit sources (foreground or background), the differ-
ence images generally cannot be trusted (Bryson et al., 2013); the transit signature is not visible
in the pixels associated with the core of the transit source, but rather in the pixels at the ends of
the bleeding column(s). In very low S/N cases, the difference images often cannot be trusted.
In cases involving short time-scale stellar variability (time-scales comparable to the transit dura-
tion), the difference images cannot be trusted. A quality metric is computed in DV which appears
to assess the respective difference images in a reliable fashion (Bryson et al., 2013). The quality
metric is computed by correlating the given difference image with the row/column pixel samples
of the PRF centered on the coordinates of the difference image centroid; sign is preserved so that
quality metric values are in the range [–1, 1]. The value of the quality metric ∼ 1 if the shape of
the difference image closely matches that of the PRF and the S/N is high; the quality metric ∼ 0
when the difference image and PRF are uncorrelated; the quality metric ∼ −1 when the differ-
ence image and PRF are anti-correlated. The quality metric for each quarterly difference image
is compared against a configurable threshold (typically 0.7). A difference image is considered
reliable if the quality metric exceeds the threshold; otherwise, it is considered unreliable.

A summary difference image quality metric is computed and reported for each TCE which
represents the fraction of quarterly difference image quality metrics that exceed the specified
quality threshold. Mean centroid offsets are considered reliable when a majority of the difference
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images from which they are computed are considered good. DV may be configured to ignore
the centroid offsets based on unreliable difference images (the so-called “quarter killer”). This
functionality was not generally exercised in DV. The issue remained concerning how to handle
cases where most or all quarterly centroid offsets would be disregarded in computation of the
mean offset; it was not clear that such a result would be any more informative than the usual
mean offset computation that does not account for difference image quality.

11.3.4.2 Centroid Offset Analysis Difference imaging is a powerful tool for identifying false
positive transiting planet detections due to background sources. This is accomplished by taking
advantage of the spatial information inherent in the pixel time series to precisely locate the transit
source in the photometric mask of the given target and determine the offset between the transit
source and the target itself. The target location is identified by two different methods. Each
method has associated advantages and disadvantages which will be discussed later. Offsets are
computed with respect to each of the target locations. In cases where the results are significantly
different, the consumer of the DV products must decide which result is more reliable.

In the first case, the target CCD location is determined from its KIC right ascension and
declination coordinates by evaluating so-called “motion polynomials,” and averaging over the
in-transit cadences in the given quarter. Motion polynomials are computed in PA, and repre-
sent robust two-dimensional polynomial fits to the PRF-based centroids of 200 gold standard
(Kp ∼ 12 and relatively uncrowded) targets on each module output; essentially these polynomi-
als provide a cadence by cadence mapping between the sky and the focal plane (see Chapter 6).
The gold standard targets are the brightest for which the CCDs do not saturate, and therefore
provide the highest fidelity centroids to determine the sky to focal plane mapping.

Evaluating the motion polynomials on the in-transit cadences and averaging the results allows
the mean focal plane position of the target to be determined for the clean transits in the given
quarter.10 The row and column coordinate estimates are assumed to be independent because the
motion polynomials are separately computed in PA from row and column centroid coordinates
and do not support the determination of row/column covariances.

In the second case, the target location on the CCD is determined for each quarter by comput-
ing the PRF-based centroid of the out-of-transit control image. The centroid aperture includes
all pixels in the target mask. PRF-based centroiding is performed with a nonlinear fit that simul-
taneously solves for row/column translations and PRF scaling that best fit the pixel values in the
given image (Bryson et al., 2013). A row/column covariance matrix is produced for each centroid
so that propagation of centroid uncertainties to later offset computations is not required to be per-
formed under the assumption that row and column coordinates are independent. Out-of-transit
centroids are transformed to sky coordinates by inverting motion polynomials and averaging over
the in-transit cadences for the given quarter.

The location of the transit source is determined for each TCE and quarter by computing the
PRF-based centroid of the respective difference image. This centroid represents the location of
the transit source because the in- and out-of-transit flux differences by pixel are characterized
by a star image centered on the transit source (assuming sufficient S/N). The difference image
centroid is transformed as before to sky coordinates with associated uncertainties.

Once the target and transit source locations have been computed, centroid offsets are deter-
mined on both focal plane (in units of pixels) and sky (in units of arcsec). The ratio of the sky to
CCD offsets represents the Kepler plate scale. The process for computing the centroid offsets is
illustrated in Figure 11.16. The magnitude of the offset is computed in each case as the quadrature
sum of the right ascension and declination offset components. The uncertainty in the magnitude
of each offset is computed by standard propagation of uncertainty methods. The centroid offsets

10The target position on the focal plane is not static, but changes dynamically due to differential velocity aberration
(DVA), temperature and focus variations, pointing variations, and commanded photometer pointing updates.
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are not computed if the difference image centroid cannot be successfully determined for a given
TCE and observing quarter. Furthermore, the centroid offsets are only determined with respect
to the KIC reference position if the difference image centroid is successfully computed, but the
out-of-transit centroid is not.
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Figure 11.16 Computation of quarterly centroid offsets. The source of the transit signature is identified
by the centroid of the difference image. The location of the target is identified by (1) the centroid of the
out-of-transit image, and (2) the KIC position of the target. Centroid offsets are determined by subtracting
the centroid of the out-of-transit image from the difference image centroid in one case, and subtracting the
KIC position of the target from the difference image centroid in the other. The relative merits of the two
alternative centroid offset definitions is discussed in the text. The quarterly centroid offsets are subsequently
averaged in a robust fashion to produce mean offsets over all quarters with observed transits.

The quarterly centroid offsets are robustly averaged over the quarters in which transits were
observed to improve the accuracy of the diagnostic (Twicken, 2016; Bryson et al., 2013). The
centroid offsets are weighted by inverse variances to emphasize offsets with relatively small un-
certainties and deemphasize those with relatively large uncertainties. The mean is computed
robustly to deemphasize outliers. The magnitude of the mean centroid offset provides both ab-
solute and statistical measures of the separation between the target and the transit source (which
may be the target itself). A potential planet candidate is viable if the magnitude of the offset
is statistically insignificant; it may still be the case that there is a background source (transiting
or eclipsing) near the target, but it is not likely that there is a background source well separated
from the target. The viability of a TCE must be called into question if the magnitude of the offset
is significant; additional investigation is warranted in this situation.

There are advantages and disadvantages associated with computing the centroid offsets with
respect to each of the target locations described earlier. These must be understood to properly
interpret the computed offsets. The out-of-transit image centroid is subject to crowding in the
target mask whereas the difference image centroid is not. It is therefore possible in a crowded
field to obtain a significant offset with respect to the out-of-transit centroid even for a genuine
transiting planet. The KIC reference position is not subject to crowding, but the centroid offset
with respect to the KIC position is subject to KIC errors and biases in the PRF centroiding
process. These biases tend to cancel when the offset is computed between PRF-based centroids
for both out-of-transit and difference images, but do not cancel when the offset computation
involves only one PRF-based centroid. For high proper motion targets, the offset with respect to
the out-of-transit image centroid is more accurate than the offset with respect to the KIC position;
the Kepler DV component does not account for proper motion in catalog coordinates.

Centroid offsets are the principal tool employed in the TCE vetting process to identify false
positive detections due to eclipses or transits of background stars. The offsets have been trusted
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on the order of 0.2 arcsec. It is not generally accepted that the presence of a background source
can be established for offsets less than 0.2 arcsec. In order to prevent the offsets for high S/N
TCEs with small propagated centroid uncertainties from appearing to be significant when in
fact they are not, a quadrature error term has been introduced into the computation of the mean
centroid offset components and the magnitude of the mean offset. The value of this error term
is a configurable Pipeline parameter. DV is typically run with a quadrature error term equal
to 0.2/3 = 0.0667 arcsec. The minimum 3σ uncertainty in the magnitude of the mean offset
is therefore 0.2 arcsec, and no offset less than that is considered significant. The quadrature
error term does not appreciably affect the vast majority of DV TCEs for which the propagated
uncertainties in the centroid offsets are much larger than 0.0667 arcsec. The quadrature error
parameter may also be set to 0 arcsec in which case it has no bearing on the offset analysis.
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Figure 11.17 Difference image centroid offsets for Kepler-11e. The quarterly offsets are displayed in
green. The error bars indicate 1σ uncertainties in right ascension and declination for each offset. The offsets
are marked with the quarterly data set (“Qn”) with which they are associated. The robust mean offset over
the 17 quarterly data sets is displayed with error bars in magenta. The 3σ radius of confusion (i.e., three
times the uncertainty in the magnitude of the mean offset) is displayed in blue. The location of the target
is marked with a red asterisk. The source of the transit signature is indistinguishable statistically from the
target. Left: centroid offsets with respect to the out-of-transit image centroids. Right: centroid offsets with
respect to the catalog position of the target.

The DR25 difference image centroid offsets for Kepler-11e are shown in Figure 11.17. The
offsets of the quarterly difference image centroid relative to the out-of-transit image centroid are
displayed in the left panel, and the offsets of the quarterly difference image centroid with respect
to the KIC position of the target are displayed in the right panel. The robust mean offset over
the 17 quarterly data sets and the 3σ radius of confusion are also displayed in each case. The
target is located at the origin in each panel which lies comfortably within the respective radii
of confusion. The transit source cannot be statistically differentiated from the target in either
case. Kepler-11e is, of course, a confirmed transiting planet. The Q5 difference image for this
planet was shown in Figure 11.14. Robust averaging of multiple quarterly offsets improves the
accuracy of the estimate of transit source location. The magnitude of the quadrature sum of the
mean right ascension and declination offsets was 0.1010± 0.0819 arcsec (1.23σ) with respect to
the out-of-transit centroid, and 0.1365± 0.0969 arcsec (1.41σ) with respect to the KIC position
of the target.

The difference image centroid offsets for the TCE associated with the primary eclipses of
KOI 140.01 in the DR25 data set are displayed in Figure 11.18. The target is located at the
origin in the offset reference frame which lies well outside the respective radii of confusion.
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KOI 140.01 is an astrophysical false positive detection (background eclipsing binary). The Q3
difference image for this KOI was shown in Figure 11.15. The magnitude of the quadrature sum
of the mean right ascension and declination offsets was 5.801±0.073 arcsec (79.4σ) with respect
to the out-of-transit centroid, and 5.860± 0.071 arcsec (82.5σ) with respect to the KIC position
of the target. The robust mean offsets suggest that the true source of the transit signature for this
TCE is KIC 5130380 which is 2.5 magnitudes fainter than the target.
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Figure 11.18 Difference image centroid offsets for KOI 140.01. The quarterly offsets are displayed in
green. The error bars indicate 1σ uncertainties in right ascension and declination for each offset. The offsets
are marked with the quarterly data set (“Qn”) with which they are associated. The robust mean offset over
the 17 quarterly data sets is displayed with error bars in magenta. The 3σ radius of confusion (i.e., three
times the uncertainty in the magnitude of the mean offset) is displayed in blue. The location of the target is
marked with a red asterisk. The robust mean offsets suggest that the true source of the transit signature for
this TCE is KIC 5130380. Left: centroid offsets with respect to the out-of-transit image centroids. Right:
centroid offsets with respect to the catalog position of the target.

11.3.5 Statistical Bootstrap

The purpose of the statistical bootstrap is to determine the false alarm probability associated with
each TCE, i.e., the probability that a given TCE would have been generated with the same mul-
tiple event detection statistic or larger due to noise alone in the absence of the transit signature.
The false alarm probability is key to assessing TCE reliability (Twicken et al., 2016). The the-
ory underlying the derivation of the statistical bootstrap algorithm for assessing TCE false alarm
probability is beyond the scope of this paper. The statistical bootstrap diagnostic employed in
TPS and DV has been well documented (Jenkins, 2002; Jenkins et al., 2002; Seader et al., 2015;
Jenkins et al., 2015, and see Chapter 10). The bootstrap as implemented in the final DV code
base (SOC 9.3) is discussed in this section.

The DV bootstrap is computed for each TCE on a given target from a “null” SES time series
generated in the final multiple planet search call to TPS; the final transit search is the one for
which an additional transit signature that meets the search criteria cannot be identified and a TCE
is not returned. Null SES time series are designated as such because the transit events associated
with all TCEs identified for the given target are removed from the target light curve before the
SES are computed. The null statistics therefore represent single transit detection statistics for
each cadence based on noise (Gaussian or otherwise) alone.

TPS returns null SES time series for all trial transit pulse durations employed in the transit
search. The null SES time series employed to perform the bootstrap false alarm probability
calculation for a given TCE is the one computed at the trial transit pulse duration for which the
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TCE was generated. It is possible that null statistics are not produced for a DV target, for example
when the iteration limit of ten TCEs is reached and the multiple planet search is halted. In cases
such as this, the DV bootstrap diagnostic is not computed for any of the TCEs associated with
the given target because null statistics are unavailable. Null SES time series at all trial transit
pulse durations are included in the DV Time Series file that is archived for each DV target (see
Subsection 11.5.3). Each SES time series includes two components: a correlation time series
and a normalization time series. The single event detection statistic S is essentially determined
for each cadence by

S =
C

N
=

x̃ · s̃√
s̃ · s̃

, (11.8)

where x̃ is the whitened target flux time series and s̃ is the whitened trial transit pulse. The
numerator of Equation 11.8 represents one sample C of the correlation time series, and the
denominator represents one sample N of the normalization time series. The samples correspond
to a particular shift of the trial transit pulse with respect to the target light curve.

As described by Jenkins et al. (2015), the multiple event detection statistic Z is obtained for a
given TCE from P single event detection statistics by

Z =

P∑

p=1

C(p)

/√√√√
P∑

p=1

N(p), (11.9)

where P is the number of observed transits, and C(p) and N(p) represent correlation and nor-
malization statistics for the pth transit. The joint probability density function for a single event
f(C,N) is obtained in DV from a two-dimensional histogram of correlation and normaliza-
tion pairs drawn from the null SES time series at the pulse duration of the given TCE. For the
purpose of computing the statistical bootstrap, the joint probability distribution for P events
f(CP , NP ) is obtained by drawing P times from the single-event distribution with replacement.
The joint probability density function f(CP , NP ) is therefore determined by convolving the
f(C,N) distribution P times. The two-dimensional convolutions are not implemented as such;
rather, f(CP , NP ) is computed by raising the two-dimensional Fourier transform of f(C,N) to
the P th power, and then computing the inverse Fourier transform. Determination of the joint
distribution for P events in this fashion is computationally efficient, but requires care to prevent
aliasing because the desired linear two-dimensional convolutions are circular when implemented
by Fourier transformation.

The two-dimensional joint distribution f(CP , NP ) for P events is collapsed into a one-
dimensional histogram that represents the probability density function of the multiple event
statistic Z (Jenkins et al., 2015). The width of the histogram bins is typically 0.1σ. The proba-
bility of exceeding any given multiple event detection statistic in the absence of the transit signal
may then be estimated by summing the multiple event statistic histogram probabilities associated
with all bins above the given detection statistic. In DV, the false alarm probability for a given
TCE is determined by summing the histogram probabilities associated with all bins above the
MES associated with the TCE. For strong detections with high MES, it may be impossible to
achieve the specified MES strictly by drawing from the null event statistics. The false alarm
probability must be extrapolated with a linear asymptote to the probabilities computed for lower
detection statistics in cases such as this.

The DV bootstrap result for Kepler-186f in the Q1–Q17 DR25 transit search is shown in
Figure 11.19. Kepler-186f is a confirmed Terrestrial-sized planet orbiting in or near the HZ
of a cool M-dwarf (Quintana et al., 2014). The false alarm probability curve as determined
from the null event statistics for trial pulse duration = 5 hr is plotted as a function of detection
statistic. Given MES = 7.7σ for Kepler-186f, the probability of false alarm was estimated to
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be 2.97x10−13. This is equivalent to a 7.2σ detection on a Gaussian distribution. The detection
threshold on the MES distribution derived from the null statistics in this case would have to
be 7.6σ in order to achieve the same false alarm probability as a 7.1σ threshold on a Gaussian
distribution.
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Figure 11.19 False alarm probability for Kepler-186f versus multiple event detection statistic in units of
noise level σ. The false alarm probability is displayed in blue on a logarithmic scale. Given the detection
MES (7.7σ) for Kepler-186f, the probability of false alarm is estimated to be 2.97x10−13 (marked on the
figure with a green star). The false alarm probability for a Gaussian noise process is displayed in red.

Jenkins et al. (2002) estimated the total number of statistical tests for all targets in the four-
year Kepler transit search to be ∼1012. The false alarm probability for one statistical false
positive given whitened Gaussian noise distributions is therefore 10−12. The Pipeline transit
search detection threshold (7.1σ) was set to support such a false alarm probability. DV bootstrap
results for all TCEs in the DR25 transit search were presented by Twicken et al. (2016). A large
population of TCEs with bootstrap false alarm probabilities well in excess of 10−12 was evident.
These must be attributable to phenomena other than Gaussian noise and so require careful vetting.

The DV bootstrap result for Kepler-62c in the Q1–Q17 DR25 transit search is shown in Fig-
ure 11.20. Kepler-62c is a Mars-sized planet in a five-planet system that includes two potential
HZ super-Earths (Borucki et al., 2013). Given MES = 8.5σ for Kepler-62c with trial pulse
duration = 3.5 hr, the probability of false alarm was estimated by asymptotic extrapolation as
described earlier to be 6.27x10−17 (marked on the figure with a green star). This is equivalent
to a 8.3σ detection on a Gaussian distribution. The detection threshold on the MES distribution
derived from the null statistics in this case would have to be 7.3σ in order to achieve the same
false alarm probability as a 7.1σ threshold on a Gaussian distribution.

11.3.6 Centroid Motion Test

It was shown in Subsection 11.3.4 that difference imaging may be utilized to identify the loca-
tion of the transit source (which may be the target) associated with a given Pipeline TCE, and
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Figure 11.20 False alarm probability for Kepler-62c versus multiple event detection statistic in units of
noise level σ. The false alarm probability is displayed in blue on a logarithmic scale. Given the detection
MES (8.5σ) for Kepler-62c, the probability of false alarm is estimated by asymptotic extrapolation to be
6.27x10−17 (marked on the figure with a green star). The false alarm probability for a Gaussian noise
process is displayed in red.

determine the offset of the transit source from the target in question. Centroid motion, i.e., the
shift in the position of the photometric centroid during transit, may alternatively be employed to
locate the transit source and determine the offset of the source with respect to the target.

Flux-weighted centroids are computed for every target and cadence in the PA component of
the Pipeline (Twicken et al., 2010b, and see Chapter 6). These identify the photocenter of the
target within its centroid aperture in every Kepler image frame. Target centroid positions vary
with time due to systematic effects discussed earlier. Centroid positions also vary as a result
of changes in stellar brightness associated with transiting planets and eclipsing binaries. There
is no centroid motion in principle for foreground transiting planets and eclipsing binaries when
aperture crowding is negligible and the background is perfectly removed. In practice, however,
all apertures are crowded to some degree and background removal is imperfect. Hence, centroids
shift during transit or eclipse to a measurable extent in many cases. Whether or not the motion is
statistically significant must be ascertained.

Centroids are computed in PA in the Kepler focal plane coordinate system, i.e., row and col-
umn index for a given CCD module and output. The flux-weighted centroid aperture includes
the optimal photometric aperture plus a single halo ring of pixels. For the purpose of the cen-
troid motion test, all centroids are first converted from focal plane to celestial coordinates (right
ascension and declination) by inverting the motion polynomials computed on every cadence in
PA (see Subsubsection 11.3.4.2).

The centroid motion test is performed for each TCE identified in the Pipeline. There are two
aspects to the centroid motion test. We first seek to assess the degree of correlation between
the centroid time series computed for the given target in PA and the model light curve derived
from the DV transit model fit (or trapezoidal model fit if transiting planet model results are
unavailable) to all transits for each associated TCE. It is unlikely that the transit signal is due to a
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background source if the degree of correlation is low. It is possible that the transit signal is due to
a background source if the degree of correlation is significant. It is also possible that the target is
the source of the transit signal, and that centroid motion is correlated with the model light curve
as a result of aperture crowding or imperfect background removal. A centroid motion detection
statistic is computed for each TCE that is distributed as a χ2 random variable with two degrees
of freedom; the significance of the statistic is also reported.

We also seek in the centroid motion test to determine the location of the transit source and in
particular the offset between the transit source and the target itself (as determined by its KIC co-
ordinates). The location of the transit source is expected to be consistent with the target location
when the centroid motion detection statistic is insignificant. The location of the transit source
may be inconsistent with the target in cases where centroid motion is significant. Flux-weighted
centroids are a useful tool for differentiating between foreground and background transit sources,
but it must be emphasized that the accuracy of the centroid test is dependent upon both target
and transit source being well contained within the photometric aperture. As discussed in Subsec-
tion 11.3.4, source offsets determined by analysis of difference image centroid offsets are also
reliable when the background source is beyond the photometric aperture.

An overview of the DV centroid motion test is shown in Figure 11.21. As discussed in Sec-
tion 11.2, there is a time limit for jobs that run on the NAS Pleiades computing cluster. The com-
putationally intensive centroid motion test is conducted only if there is sufficient time remaining
in DV to complete the test and subsequently generate the DV Report and TCE Summaries for the
given target. Otherwise, there is a risk that the job will time out and no DV results of any kind
will be available for the target in question. The development team adopted to the philosophy that
it is better to obtain an incomplete set of results for some targets rather than no results at all.
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Figure 11.21 Overview of the centroid motion diagnostic test for a given target star. The test is conducted
only if there is sufficient time available in DV. The algorithm is described in the text. Test results and
diagnostic figures are saved for inclusion in the DV Report and delivery to the archive.

The quarterly flux-weighted centroid time series are converted cadence by cadence from CCD
row and column coordinates to celestial coordinates by inverting PA motion polynomials that
map between sky and focal plane. Systematic effects are then removed by cotrending the celes-
tial centroid time series independently against spacecraft engineering data (e.g., local detector
temperatures) and motion proxies (Twicken et al., 2010a). Centroid shifts due to brightness
changes in the centroid aperture of a given target remain in the cotrended time series, but shifts
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common to the ensemble of targets on a given CCD are eliminated or at least highly attenuated.
The cotrended quarterly centroid time series are stitched together with compensation for level
shifts and edge effects, and gaps in the time series are filled (see Chapter 9).

Light curves derived from the transit model parameters for all TCEs are jointly fitted (in
amplitude only) to the right ascension and declination centroid time series for the given target.
The process is performed iteratively in a whitened domain with the same machinery employed
in the DV transit model fitter (Li et al., 2019). Detection statistics are computed separately for
the right ascension (α) and declination (δ) centroid time series components. As discussed by Wu
et al. (2010) and Bryson et al. (2013), the detection statistics are defined for each TCE by

lφ =
b̃φ · s̃φ√
s̃φ · s̃φ

, for φ = α, δ (11.10)

where b̃φ is the whitened centroid time series component and s̃φ is the scaled whitened transit
model for the given TCE. The detection statistic lφ should be significant if centroid motion in the
direction of the associated celestial coordinate is correlated with the transit signature of the given
planet, and insignificant if there is no correlated motion in the coordinate direction. Transit sig-
natures for all other TCEs on the given target are removed from the whitened centroid time series
before each detection statistic is computed. The detection statistic therefore represents the cor-
relation only of the whitened transit model against the centroid time series signature associated
with the given TCE.

The squares of the detection statistics are actually computed for each TCE in DV as the change
in χ2 for the respective fits:

l2φ =
∥∥b̃φ
∥∥2 −

∥∥b̃φ − s̃φ
∥∥2
, for φ = α, δ (11.11)

where ∥∥u
∥∥2 ≡ u · u.

For each TCE, the total centroid motion detection statistic is computed11 as the sum of the
squared statistics in each coordinate (α, δ), that is

t = l2α + l2δ . (11.12)

The total motion detection statistic is distributed as a χ2 random variable with two degrees of
freedom. It is reported by DV for each TCE for which the transiting planet model fit is successful
(and the iterative whitening and amplitude fitting process converges). The p-value for the total
centroid motion detection statistic is given by

p = Pr(χ2
2 > t). (11.13)

The p-value represents the probability that a χ2 statistic as large as t or larger would have been
computed in the absence of correlated centroid motion due to random fluctuations in the centroids
alone. This is reported as the significance for the test and follows the convention of the other
statistical tests in DV. As stated earlier, it is likely that the transit source is the target itself if
centroid motion is insignificant (p ∼ 1). Significant centroid motion (p ∼ 0) does not necessarily
imply that the transit source is a background object, however. Centroid motion may be correlated
with a transit signal on the target star because the photometric aperture is crowded or background
removal is imperfect.

11The definition of the centroid motion detection statistic was updated in SOC 9.3 to be t = l2α cos2(δt) + l2δ where δt
is the target declination. This definition weights motion equally in right ascension and declination.
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The peak centroid shift during transit and the transit depth associated with a given TCE may
be utilized to estimate the location of the transit source (Wu et al., 2010; Bryson et al., 2013). For
a fractional transit depth D that is small compared to unity and a peak angular centroid shift δφ
during transit, the source offset ∆φ from the nominal out-of-transit centroid position may be
estimated by

∆φ = −δφ
(

1

D
− 1

)
= −δφ

(
1−D
D

)
. (11.14)

The negative sign associated with δφ in Equation 11.14 indicates that the centroid moves in the
direction opposite that of the transit source when the source brightness decreases during transit.

The joint fit of the model light curves for the respective TCEs to the two centroid time series
components produces scale factors that identically represent the source offsets in right ascension
and declination with respect to the nominal out-of-transit centroid (Wu et al., 2010). The peak
centroid shift in each coordinate is therefore computed in DV by inverting Equation 11.14 as
follows

δφ = −∆φ

(
D

1−D

)
. (11.15)

The uncertainty σδφ in the peak centroid shift during transit relative to the nominal out-of-transit
photometric centroid is given by standard propagation of uncertainties methodology as

σδφ =

[(
D

1−D

)2

σ2
∆φ +

(
∆φ

[
1−D

]2

)2

σ2
D

]1/2

, (11.16)

where σ∆φ is the uncertainty associated with the source offset and σD is the uncertainty in the
transit depth.

The transit source offsets are added to the nominal out-of-transit centroid coordinates to es-
timate the absolute source location. Source offsets are then redefined with respect to the KIC
position of the target by subtracting the KIC coordinates from the source location. Peak centroid
shifts and source offsets in right ascension ultimately reported by DV are corrected by a cosine
of target declination term to produce proper right ascension angular measures. The magnitude of
the peak centroid shift during transit is computed as the quadrature sum of the peak right ascen-
sion (corrected) and declination shifts, and the magnitude of the source offset is computed as the
quadrature sum of the source right ascension (corrected) and declination offsets.

The following centroid test quantities are computed and tabulated in the DV Report for each
TCE: total centroid motion detection statistic and significance, peak centroid shift in right ascen-
sion during transit, peak centroid shift in declination during transit, magnitude of peak centroid
shift during transit, source offset from target location in right ascension, source offset from target
location in declination, magnitude of source offset from target location, absolute source right
ascension coordinate, and absolute source declination coordinate. Uncertainties in all quantities
but motion detection statistic are computed by standard methods and are also tabulated in the
DV Report. Peak centroid shifts during transit, source offsets from target star, and all associated
uncertainties are reported in units of arcsec.

Centroid motion test results for KOI 140.01 in the Q1–Q17 DR25 data set are shown in Fig-
ure 11.22. Detrended and phase folded flux values are shown in the upper panel, cotrended
and phase folded right ascension centroid shifts are shown in the middle panel, and cotrended
and phase folded declination centroid shifts are shown in the bottom panel. Although the cen-
troid shifts are computed in the whitened domain, the diagnostic figures are displayed in the
unwhitened domain. Centroid motion is clearly correlated with the transit model in both right
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ascension and declination. The magnitude of the peak centroid shift during transit was reported
to be 13.94± 0.098 mas. The total centroid motion detection statistic was reported to be 32,100;
the significance of this statistic is essentially p = 0. Centroid motion is incontrovertible.

-30 -20 -10 0 10 20 30

R
e

la
ti

v
e

 F
lu

x
 (

p
p

m
)

-4000

-3000

-2000

-1000

0

1000

2000

-30 -20 -10 0 10 20 30R
A

 C
e

n
tr

o
id

 S
h

if
t 

(m
a

s
)

-20

-15

-10

-5

0

5

Orbital Phase (hours)
-30 -20 -10 0 10 20 30D

e
c

 C
e

n
tr

o
id

 S
h

if
t 

(m
a

s
)

-15

-10

-5

0

5

10

Figure 11.22 Centroid motion test result for KOI 140.01. The source of the transit signature for this false
positive KOI is a background eclipsing binary located approximately 5.8 arcsec from the target; centroid
motion during transit is significant. Top: relative flux time series in units of ppm versus orbital phase in
hours. Middle: flux-weighted centroid shift in right ascension in units of milliarscseconds (mas) is displayed
in blue versus orbital phase in hours. Bottom: flux-weighted centroid shift in declination in units of mas
is displayed in blue versus orbital phase in hours. The scaled transit model is overlaid on the centroid data
in the middle and bottom panels in red. Note that the relative flux and centroids appear to follow multiple
tracks in transit because the background binary that is the source of the transit signature moves from quarter
to quarter with respect to the photometric and centroid apertures.

The magnitude of the source offset for KOI 140.01 from the KIC position of the target was
determined to be 19.8 arcsec (146σ). This overestimates the true source offset for this false
positive KOI where the background eclipsing binary source is believed to be located 5.8 arcsec
from the target. The discrepancy is due to the fact that the background source fell on the boundary
or outside of the photometric aperture in most quarters. The transit depth was underestimated
which then led to an overestimate of the source offset. This issue is discussed in more detail by
Bryson et al. (2013).

Centroid motion test results for Kepler-62f in the Q1–Q17 DR25 data set are shown in Fig-
ure 11.23. The transit signature is clearly visible in the detrended and phase folded flux displayed
in the top panel, but there is little discernible centroid shift in either right ascension or declina-
tion. The magnitude of the peak centroid shift was determined to be 0.294±0.338 mas. The total
centroid motion detection statistic was reported to be 2.57 for which the significance is p = 0.28
(not statistically significant). The magnitude of the source offset from the KIC position of the
target was estimated to be 1.08 arcsec (1.50σ). The fitted transit depth for this confirmed HZ
super-Earth (Borucki et al., 2013) was 470± 31 ppm.
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Figure 11.23 Centroid motion test result for Kepler-62f. This is a confirmed planet; centroid motion
during transit is insignificant. Top: relative flux time series in units of ppm versus orbital phase in hours.
Middle: flux-weighted centroid shift in right ascension in units of mas is displayed in blue versus orbital
phase in hours. Bottom: flux-weighted centroid shift in declination in units of mas is displayed in blue
versus orbital phase in hours. The scaled transit model is overlaid on the centroid data in the middle and
bottom panels in red.

11.3.7 Optical Ghost Diagnostic Test

A new diagnostic test was introduced in the final revision of DV (SOC 9.3) to identify cases
for which a TCE was likely generated due to optical ghosts (or other well-distributed contam-
ination) that exhibit transit-like behavior. Such ghosts may be produced by reflections of light
from relatively bright sources between CCD and field flattener lens or Schmidt corrector plate
(Caldwell et al., 2010b; Coughlin et al., 2014; Van Cleve & Caldwell, 2016). The test involves
correlating flux time series derived from photometric core and halo aperture pixels against the
transit model light curve for the given TCE. The core aperture flux time series should be more
highly correlated with the transit model if the target is the source of the transit signature. The
halo aperture flux time series may be more highly correlated with the transit model if the source
of the transit signature is an optical ghost or distributed contamination.

An overview of the DV optical ghost diagnostic test is shown in Figure 11.24. As discussed in
Subsection 11.3.6, the computationally intensive ghost diagnostic test is conducted only if there
is sufficient time remaining in DV to complete the test and subsequently generate the DV Report
and TCE Summaries for the given target.

A core aperture flux time series is derived for each DV target by summing the calibrated pixel
values (after cosmic ray correction and background removal) in the optimal photometric aperture
on each successive cadence. The optimal aperture pixels are defined separately for each quarterly
Kepler data set. The total flux in the core aperture is normalized by the number of optimal
aperture pixels on each cadence to yield a core aperture flux time series that represents the mean
flux value per core aperture pixel. Likewise, a halo aperture flux time series is derived for each
DV target by summing the calibrated pixel values (after cosmic ray correction and background
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removal) in a halo ring around the optimal photometric aperture pixels on each cadence. Once
again, the total flux in the halo aperture is normalized by the number of pixels in the halo ring
on each cadence to yield a halo aperture flux time series that represents the mean flux value per
halo pixel. Under the assumption that halo flux represents a broad optical ghost or distributed
contamination, the normalized core flux values are corrected by subtracting the normalized halo
flux values cadence by cadence.

No
Calibrated Pixels,

Photometric Apertures,
Planet Model Fits YesSufficient

Time?

Skip
Test

Construct Core and
Halo Aperture Flux

Time Series

Cotrend Core and
Halo Aperture Flux

Time Series
Stitch Quarters

Whiten Core and 
Halo Aperture Flux

Time Series

Compute Core and
Halo Aperture

Correlation Statistics*

Optical Ghost 
Diagnostic Test 

Results 

*Per Planet Candidate

Figure 11.24 Overview of the optical ghost diagnostic test for a given target star. The test is conducted
only if there is sufficient time available in DV. The algorithm is described in the text. Test results are saved
for inclusion in the DV Report and delivery to the archive. Pixel data provided as input are calibrated,
cosmic ray corrected, and background subtracted.

Systematic errors in the core and halo aperture flux time series are removed by independently
cotrending against ancillary engineering data and motion proxies on a quarter by quarter basis
(Twicken et al., 2010a). Core and halo aperture flux time series are each quarter-stitched and gap-
filled in preparation for computation of the optical ghost diagnostic correlations as described in
Chapter 9. The core and halo aperture correlation statistics are then computed in the same man-
ner as the centroid motion detection statistics in Equation 11.10. The core aperture correlation
statistic lc and halo aperture correlation statistic lh are determined by

lc =
b̃c · s̃√
s̃ · s̃

(11.17)

and

lh =
b̃h · s̃√
s̃ · s̃

, (11.18)

where b̃c and b̃h are the whitened core and halo aperture flux time series respectively, and s̃ is the
whitened transit model light curve for the given TCE. The transit signatures for all other TCEs
on the given target are first removed from the core and halo aperture flux time series so that the
respective correlations are computed against the flux signature associated with the given TCE
only. This applies only to targets with multiple TCEs.

The significance of the respective core and halo aperture correlation statistics is computed in
DV under the null hypothesis that the respective flux time series are white Gaussian processes.
The significance p of the statistic l (representing lc or lh) is determined by

p = 0.5

(
1 + erf

(
l√
2

))
. (11.19)
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The correlation statistics are signed. A large positive correlation statistic value indicates that
there is a strong signal in the associated flux time series that is matched to the transit model light
curve for the given TCE; in this case the significance p ∼ 1. A correlation statistic value near
zero indicates that there is no match between the associated flux time series and the transit model
light curve for the given TCE; in this case the significance p ∼ 0.5. A large negative statistic
value indicates that there is a strong signal in the associated flux time series that is anti-correlated
with the transit model light curve for the given TCE; in this case the significance p ∼ 0.
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Figure 11.25 Mean flux per pixel in Q4 for KOI 3900.01 in units of e-/cadence. The optimal photometric
aperture is outlined with a dashed white line. These pixels represent the core aperture in this quarter for
the optical ghost diagnostic test. A one-pixel halo surrounding the optimal photometric aperture is outlined
with a dashed red line. The pixels outside the photometric aperture but within the outline of the halo ring
represent the halo aperture in this quarter. The positions of the target and nearby catalog objects in Q4 are
marked on the figure.

An image representing the mean flux per pixel for KOI 3900.01 in Q4 of the DR25 data
set is displayed in Figure 11.25. This KOI is attributable to the antipodal ghost of a bright
eclipsing binary reflected by the Schmidt corrector plate (Coughlin et al., 2014). The orbital
period associated with the source of the transit signature is 359 days; the first eclipse occurred
in Q4. The respective optical ghost diagnostic core and halo apertures for the given quarter are
shown in the figure.

It is expected that the core aperture correlation statistic will exceed the halo aperture corre-
lation statistic for a given TCE when the observed target is the source of the transit signature;
targets are generally well centered in the photometric apertures. A set of 3402 “golden” KOIs
was identified for assessing the performance of the final version (SOC 9.3) of the Pipeline code
base (Twicken et al., 2016). The bulk of these well-established, high-quality KOIs were classi-
fied by TCERT as PC (i.e., likely to represent transiting planets on the associated target stars).
The Q1–Q17 DR25 DV run produced ghost diagnostic results for 3348 of the “golden” KOIs
that were also classified (at the time) as PC. The core aperture correlation statistic exceeded the
halo aperture correlation statistic for 3291 (98.1%) of these PC KOIs as would be expected.

For TCEs due to broad optical ghosts (or other distributed contamination), it is expected that
the halo aperture correlation statistic will exceed the core aperture correlation statistic because the
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mean flux per halo pixel is subtracted from the mean flux per core pixel before the core statistic
is computed. It has also been observed that the halo aperture correlation statistic may exceed the
core aperture correlation statistic for astrophysical false positive TCEs attributable to background
objects (e.g., background eclipsing binaries) that lie outside the quarterly photometric apertures
associated with the given target. We discussed other DV diagnostic tests specifically designed to
identify such cases earlier (difference imaging and centroid offset analysis in Subsection 11.3.4
and centroid motion test in Subsection 11.3.6).

The DR25 core and halo aperture flux time series for KOI 3900.01 are folded and displayed
versus orbital phase in Figure 11.26 after normalizing by the number of pixels in the quarterly
core and halo apertures, and correcting the core values by subtracting the respective halo values
cadence by cadence. The transit model light curve is overlaid on the core and halo aperture time
series data. It is evident that the core time series is not highly correlated with the transit model
(core aperture correlation statistic = 1.33), whereas the halo time series is highly correlated with
the transit model (halo aperture correlation statistic = 29.02). Once again, KOI 3900.01 has been
attributed to the antipodal ghost of a bright eclipsing binary.
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Figure 11.26 Optical ghost diagnostic test result for KOI 3900.01. This false positive KOI is due to the
antipodal ghost reflection of a bright eclipsing binary from the Schmidt corrector plate (Coughlin et al.,
2014). Relative flux is plotted in black versus orbital phase in hours. Binned and averaged flux values are
displayed in cyan. The transiting planet model that was fitted to the photometric light curve is overlaid in
red. The scaling is identical in both panels. Top: optical ghost diagnostic core aperture time series. Bottom:
optical ghost diagnostic halo aperture time series.

Optical ghost diagnostic test results for some representative KOIs in the Q1–Q17 DR25 transit
search are displayed in Table 11.2. The core aperture correlation statistic exceeded the halo aper-
ture correlation statistic for the three KOIs (157.03, 701.04, and 571.05) associated with well-
known confirmed planets (Kepler-11e, Kepler-62f, Kepler-186f). The halo aperture correlation
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statistic exceeded the core correlation statistic for the KOI (3900.01) attributable to antipodal
reflection and the KOI (4718.01) attributable to field flattener reflection of RR Lyrae (Coughlin
et al., 2014). Furthermore, the halo aperture correlation statistic exceeded the core correlation
statistic for the KOI (140.01) attributable to a background eclipsing binary that fell at the bound-
ary or beyond the photometric aperture of the target star in most observing quarters.

Table 11.2 Q1–Q17 DR25 Optical Ghost Diagnostic Results for Representative KOIs

KOI Description Core Halo Core > Halo
Number Statistic Statistic
157.03 Confirmed planet (Kepler-11e) 61.79 14.21 Y
701.04 Confirmed planet (Kepler-62f) 8.87 2.11 Y
3900.01 Antipodal reflection ghost 1.33 29.02 N
4718.01 Field flattener ghost (RR Lyrae) 3.86 7.05 N
140.01 Background eclipsing binary –16.40 117.40 N

11.4 KOI Matching

All TCEs identified in the Kepler Pipeline transit search and fitted in DV are (optionally) matched
against the ephemerides of KOIs known at the time that DV is executed. The KOI ephemerides
are downloaded by a Pipeline operator from the cumulative KOI table at the Exoplanet Archive
at NExScI, and imported into the Pipeline database prior to firing DV. Ephemeris matches at
the target (e.g., KOI 157) and planet (e.g., KOI 157.01) levels are reported in the DV archive
products for the benefit of the Kepler Project and science community. KOIs that are not matched
are also reported. KOI matching was enabled in DV for the Q1–Q17 DR24 and DR25 runs. The
algorithm implemented in DV for matching ephemerides of known KOIs and Pipeline TCEs is
discussed in this section. A different matching algorithm has been employed by TCERT for fed-
erating Pipeline TCEs with existing KOIs (Mullally et al., 2015; Coughlin et al., 2016; Thompson
et al., 2018).

We wish to emphasize that prior knowledge of KOI ephemerides is not employed in TPS
or DV to guide the transit search or data validation. DV results are matched against KOI
ephemerides strictly as a benefit to consumers of DV products. KOI matching permits users
to quickly differentiate the known from the unknown, and to focus their efforts accordingly.

KOI matching at the target level is performed by simple comparison of integer KIC IDs.
Planet level matching of KOI and TCE ephemerides is performed by computing correlation coef-
ficients for rectangular transit time series generated from the ephemerides (orbital period, epoch
of first transit, and transit duration) of each of the known KOIs associated with a given target
against similar time series generated from DV fit ephemerides for all TCEs associated with the
same target. The time series consist of transit indicators such that each temporal in-transit sample
is assigned value = 1, while each out-of-transit sample is assigned value = 0. The time series are
oversampled at ∼5 min intervals whereas the LC data in the pipeline are sampled at ∼30 min.
Scaling is such that the correlation coefficient ∼ 1 when the in-transit samples of the KOI and
TCE match exactly, and the correlation coefficient ∼ 0 when there is no overlap between the
in-transit samples associated with the KOI and TCE over the duration of the time series.

If t1 and t2 denote two rectangular transit time series, the ephemeris matching correlation
coefficient ρ is computed by

ρ =
t1 · t2∥∥t1
∥∥∥∥t2

∥∥. (11.20)
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The coefficients computed for correlations between KOIs and Pipeline TCEs are compared
against a configurable matching threshold (typically 0.75). A KOI and TCE are determined
to match if the correlation between them is greater than or equal to the matching threshold.
There are two caveats, however. First, an ephemeris match is not reported if the correlation
coefficients between one KOI on a given target and more than one TCE on the same target
exceed the matching threshold. Second, an ephemeris match is not reported if the correlation
coefficients between one TCE on a given target and more than one KOI on the same target
exceed the matching threshold. This occurs for duplicate KOIs, e.g. KOIs 1101.01/1101.02 and
KOIs 2768.01/2768.03.

KOI and TCE ephemeris matching results for the Q1–Q17 DR25 transit search were pre-
sented by Twicken et al. (2016). That publication focused on the matching results for a set of
3402 “golden” KOIs on 2621 unique target stars. DV reported an ephemeris match at the KOI
matching threshold or better for 3354 of the “golden” KOIs; furthermore, 92.0% of the matches
were reported with correlation coefficient> 0.9. The authors also stated that 40 of the 48 remain-
ing “golden” KOIs were recovered in the transit search without producing ephemeris matches at
the specified threshold. The reasons for failure to meet the matching threshold were varied, but
are illuminating. Some ephemeris matching failures resulted from differences between the KOI
and TCE periods by an integer factor; there were instances where the DV period appeared to be
incorrect, instances where the KOI period appeared to be incorrect, and one instance where the
true period was ambiguous due to data gaps. A number of ephemeris matching failures occurred
in systems with TTVs where there is no true linear ephemeris. There were failures to match
ephemerides of eclipsing binaries and one heartbeat star (Kirk et al., 2016) that does not feature
conventional transits or eclipses. There were also failures to match ephemerides of the duplicate
KOIs described earlier because DV does not report matches against duplicates by design.

The matching threshold (0.75) was selected to ensure that matches are only reported when
an actual KOI-TCE ephemeris match is highly likely. The correlation coefficients for matches
against well-established, high-quality KOIs are typically well above 0.75 as evidenced earlier,
so the chosen threshold leaves some margin for low-level discrepancies between respective KOI
and TCE ephemerides. The matching threshold does not generally permit matches to be declared
when KOI and TCE orbital periods differ by integer factors. This can occur in the Pipeline,
for example, when secondary events associated with circular eclipsing binaries are folded onto
primary events (as discussed in Subsection 11.3.3); the KOI may have been assigned the correct
eclipsing binary orbital period which would be twice the period reported by DV. The correlation
coefficient in cases where the orbital periods differ by an integer factor N is generally on the
order of 1/

√
N ; this is less than the matching threshold employed in the Pipeline for all N > 1.

Differences in the respective KOI and TCE epochs of “first” transit by an integer number of
orbital periods have no effect on the computation of the correlation coefficient.

It should be noted that Kepler Names are also reported at the target and planet levels (e.g.,
KOI 157 = Kepler-11 and KOI 157.01 = Kepler-11c) in the DV archive products for matches
against KOIs associated with confirmed planets. A Kepler Names file for associating confirmed
planets with known KOIs is downloaded from the Kepler Names table at the Exoplanet Archive
and imported into the Pipeline database prior to firing DV. The Kepler Names reported in the DV
archive products of course apply only to planets confirmed at the time that DV is executed.

11.5 Archive Products

Archive products are generated for export to the community at large that summarize the infor-
mation that is provided to DV and the results of the transiting planet model fits and diagnostic
tests within DV. We reiterate that the design specification of DV was not to determine the like-
lihood that a particular TCE represents a legitimate transiting planet; rather the design goals of
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DV were to characterize each TCE and perform a uniform set of diagnostic tests to enable con-
sumers of DV products to vet the TCEs and assess the candidate planets. The DV products can
only be briefly summarized here. Space does not permit a complete description of all aspects of
these products. It should be noted that the DV products evolved with each release of the Kepler
Pipeline code base. The descriptions provided apply to SOC 9.3 which was employed for the
final Q1–Q17 transit search (DR25).

Four types of DV archive products are generated. Comprehensive DV Reports are produced
in PDF format for each target with at least one TCE; the DV Report is summarized in Sub-
section 11.5.1. One-page DV Report Summaries are produced in PDF format for each TCE; the
Report Summary is summarized in Subsection 11.5.2. DV Time Series files are produced in FITS
format for each target with at least one TCE; this product is summarized in Subsection 11.5.3.
Reports, Report Summaries, and Time Series files are exported to the NASA Exoplanet Archive
(see Section 11.2) where they are available to the science community and general public. Finally,
a single XML file is produced which contains the tabulated results for all targets in a given DV
run. The XML file is used to populate tables at the Exoplanet Archive. Although it is a text file,
it is not considered to be human readable and will not be discussed further in this publication.

11.5.1 DV Report

A comprehensive DV Report is produced in PDF format for each target with a least one TCE
in a given Pipeline run. The Reports are automatically generated with LaTeX and delivered to
the NASA Exoplanet Archive at NExScI where they are accessible by the science community
and general public. The DV Report is organized into logical sections; these will be summarized
below. The PDF files include tabs for sections and sub-sections to allow users to quickly locate
specific DV results for a given target. The DV Report evolved significantly over the course of
the Kepler Mission.

11.5.1.1 Summary Following a cover page and table of contents, the DV Report begins with
a summary. This may be considered an executive summary; if a user only wants the basic DV
results for a given target it may not be necessary to delve any further than this.

The summary includes tables with target properties, data characteristics, and transit signature
properties. The target properties represent the stellar parameters (and associated uncertainties)
that are provided to DV: magnitude, celestial coordinates, radius, effective temperature, surface
gravity, and metallicity. A provenance string is included for each stellar parameter to inform users
about the source of the information. Keys to the provenance strings are published separately.

The data characteristics table includes one entry for each quarter in which the given target was
observed. For each quarter, the table specifies the quarter, the CCD module output, the crowding
metric and flux fraction in aperture employed to correct the light curve in PDC (Twicken et al.,
2010a; Stumpe et al., 2012), and the limb darkening coefficients determined from the stellar pa-
rameters. DV was designed to accommodate quarter (and hence module output) specific limb
darkening coefficients, but this functionality was never deemed sufficiently necessary to imple-
ment in the Pipeline. Hence, the target-specific limb darkening coefficients do not change on a
quarterly basis.

The potential planet candidate characteristics table includes one entry for each TCE associated
with the given target. The table specifies period, epoch, semimajor axis, planet radius, and
equilibrium temperature for each DV TCE, along with a flag to indicate whether or not DV
suspected the TCE to be an eclipsing binary (based on transit depth alone, typically 250,000 ppm)
and therefore omitted the transit model fits which do not implement an eclipsing binary model.

DV was updated in SOC 9.2 to include KOI numbers and Kepler Names (for confirmed plan-
ets) where applicable in the target and planet properties tables. Matches at the target level are
determined by KIC ID; matches at the planet level are determined by correlating KOI and DV
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model fit ephemerides as described in Section 11.4. We emphasize that the KOI and Kepler Name
information displayed in the DV archive products pertain to known KOIs at the time that DV was
executed; new KOIs identified from the TPS/DV results of a given run will not be marked as such
in the archive products produced for that particular run. We also note that the Pipeline and the
matching process at the planet level are not perfect. The summary includes a list of planet-level
KOIs that could not be matched successfully against the DV results for the given target.

11.5.1.2 UKIRT Images The celestial context in the vicinity of the target star can be invalu-
able for digesting and interpreting the DV diagnostics that attempt to establish the location of
the transit source with respect to the target. To that end, we have downloaded images from the
UKIRT Wide Field Camera (WFCAM) J-band survey (Casali et al., 2007) for nearly every tar-
get that has appeared on a Kepler target list. For each target, the image displayed in the DV
Report covers a region approximately one arcmin square. Difference image centroid offsets and
centroid motion test source offsets are also displayed on UKIRT images for the associated target
stars. Right ascension and declination grid lines are overlaid on the UKIRT images. We were
unable to obtain images for all Kepler targets due to lack of coverage in the survey data.

11.5.1.3 Flux Time Series The quarter-stitched PDC (i.e., systematic error corrected) light
curve is displayed with markers to indicate the transit times of the various TCEs associated with
the given target. This is the light curve that is first subjected to the transiting planet search. The
light curve is segmented by quarter, and each quarter is displayed separately with a vertical offset
for clarity. As part of the quarter-stitching process, the quarterly segments are normalized and
strong harmonic content is removed. Gaps are filled in the quarter-stitching process, but gap
filled data are not displayed in this section. Gaps for monthly data downlinks and spacecraft safe
modes are clearly visible in these figures. The figures are particularly valuable diagnostic tools
for TCEs based on relatively few transits. The detection is suspect if the transit markers in such
cases overlay uncorrected or partially corrected SPSDs or spacecraft attitude adjustments, fall on
the boundaries of data gaps, or occur during particularly noisy data segments.

The quarterly PA (i.e., SAP) light curves are also shown in this section. This is a valuable
diagnostic tool because the data are displayed prior to systematic error correction in PDC and
quarter-stitching in TPS/DV. Gross discrepancies between the PA and quarter-stitched PDC light
curves may imply that post-PA processing has been off-nominal for the given target. For exam-
ple, short period transit signatures may be inadvertently degraded in some or all quarters in the
harmonics identification and removal function of the quarter-stitching algorithm (Christiansen
et al., 2013, 2015). It is a red flag if transits are clearly visible in the PA SAP light curve, but are
not present in the quarter-stitched PDC light curve. The error corrected and quarter-stitched light
curve in question has been distorted in a well-intentioned attempt to improve sensitivity to the
most valued planets in the Kepler Mission, i.e., small planets orbiting in the HZ of Sun-like stars.
Christiansen et al. (2015) measured the degradation in Pipeline sensitivity to short-period transit
signatures as a function of orbital period. The reduction in completeness at short periods due
to harmonics identification and removal must be accounted for in determination of occurrence
rates.

11.5.1.4 Dashboards There is one dashboard figure for each TCE associated with the given
target. The dashboards summarize the model fit and selected DV diagnostic test results. Each
region on the dashboard figure is color coded; the caption on the dashboard fully explains the
coding. In general, nominal results are displayed in green, borderline results in yellow, and
results that may call the planetary nature of any TCE into question are displayed in red. The
regions are colored blue when results are unavailable.

The dashboard provides a means to view DV results at a glance and focus quickly on issues
pertaining to any given TCE. It must be emphasized, however, that if a region is colored red
the TCE may still be planetary in nature. We discussed in Subsection 11.3.3 that short period
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planets with detectable occultations may trigger the eclipsing binary discrimination test for equal
periods. We also discussed in Subsection 11.3.6 that there may be significant centroid motion
during transit for targets with transiting planets in crowded fields. In neither of these cases does
red coloring invalidate the planetary nature of the TCE.

11.5.1.5 Centroid Cloud Plot The change in flux is displayed versus change in right ascen-
sion (blue) and declination (red) centroid coordinates. The flux and respective centroid time
series are unwhitened and median detrended. In-transit centroid motion manifests itself as a de-
viation from the vertical below the out-of-transit jitter cloud. The centroid cloud plot is a course
representation of the motion detection statistic and peak in-transit centroid shift discussed in
Subsection 11.3.6 in regard to the centroid motion diagnostic test. If correlated centroid motion
is present in the centroid cloud plot then its presence is incontrovertible. Significant centroid
motion may still be present, however, if correlated centroid motion is not visible in the centroid
cloud plot.

11.5.1.6 Image Artifacts The rolling band contamination diagnostic (see Subsection 11.3.2)
results are displayed in a table for each DV TCE. The table indicates the number of transits (and
fraction of total) that are coincident with rolling band image artifacts at each of the defined sever-
ity levels (see Table 11.1). As discussed earlier, the severity levels range from 0 (low) to 4 (high).
The reliability of a TCE is questionable if a significant fraction of the total number of transits are
coincident with severity levels > 0, particularly for long-period TCEs with relatively few tran-
sits. Individual transits with non-zero severity levels are highlighted in a panel on the one-page
DV Report Summary, and the fraction of good transits with severity level = 0 is indicated.

11.5.1.7 Pixel Level Diagnostics Pixel level diagnostic test results are displayed separately
for each TCE associated with the given target. The difference image summary quality metrics
(see Subsubsection 11.3.4.1) are presented in a table; the table includes the correlation threshold
that defines the cutoff between good and bad quality difference images. The difference image
centroid offsets discussed in Subsubsection 11.3.4.2 are displayed in both graphical and tabular
form. Offsets are displayed with respect to the out-of-transit centroid and with respect to the KIC
position of the target. Robust mean results are also displayed for all TCEs. The value of the error
term that is added in quadrature to the robust mean offsets is included in the figure captions. The
offsets are also overlaid on the UKIRT image associated with the given target if such an image is
available.

The difference images discussed in Subsubsection 11.3.4.1 are displayed quarter by quarter.
The caption for each difference image includes the value of the quality metric for the given
quarter. The caption also indicates the number of transits and valid cadences that were used
to compute the difference image for the given quarter, and the number of in- and out-of-transit
cadence gaps. Quarterly PRF centroid results and centroid offsets are tabulated for the focal
plane (in units of pixels) and the sky (in units of arcsec). Nearby catalog objects are marked on
the respective difference images, as are the image centroids and target KIC position.

11.5.1.8 Phased Light Curves Full phase-folded light curves are displayed in both unwhitened
and whitened domains for each of the TCEs associated with the given target. Colored event tri-
angles below each figure mark the phase of the transits associated with all of the TCEs for the
target. The phased light curves are particularly useful in multiple TCE systems to study the
phase relationships between the transit-like signatures. This applies to multiple planet systems
which may have resonant relationships between TCEs and to binary systems where primary and
secondary eclipses have a common period but different phase. The phased light curves can also
highlight false detections in multiple planet systems due to image artifacts where “transits” of
multiple TCEs are observed on the same module output(s). The long orbital periods are not
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identical, but similar; in these cases the event triangles for the false detections share a common
region of phase space and appear in clusters.

Beginning with SOC 9.2, median detrending is applied to the unwhitened data prior to phase
folding. In earlier code releases, the unwhitened data were not detrended prior to phase folding.
In the SOC 9.3 release, phase-folded light curves by quarter, by observing season12, and by
year are also displayed for each TCE. These phase-folded light curves are derived from median
detrended, unwhitened data.

11.5.1.9 Planet Candidate Results The bulk of the transit model fit and diagnostic test re-
sults are presented in a section of the DV Report dedicated to each TCE. Each section begins with
tables containing the TCE parameters for the given signature and the results of the model fit to all
transits. Fit results include parameter values and associated uncertainties. The quarter-stitched
PDC light curve for the given TCE is displayed in quarterly segments with markers highlighting
the transit events. This differs from the quarter-stitched PDC light curve described in Subsub-
section 11.5.1.3 in that transits for all DV TCEs prior to the given one have been removed.
Essentially, the light curve displayed here is the one in which the transiting planet detection was
made for the given TCE in TPS.

Diagnostic figures illustrating the phase-folded flux time series data in the unwhitened and
whitened domains are presented. The whitened transit model is overlaid on the phase folded
data in the whitened domain. Colored markers differentiate between the data points that were
included and emphasized in the robust model fit and those that were deemphasized or otherwise
ignored. Reduced parameter fit results are displayed graphically and in tabular form as a function
of impact parameter. The quality of the fit results are often only weakly dependent on impact
parameter; the reduced parameter fits may therefore represent a family of equally valid results for
the given TCE. This information is useful to the community because it clarifies that in many cases
the planet characteristics are not uniquely determined by transit model fitting in the Pipeline.
Robust transiting planet model fitting and reduced parameter model fitting were summarized in
Section 11.2.

Weak secondary test results are displayed both graphically and in tabular form. The weak
secondary test was described in Subsection 11.3.1. The centroid motion test results (see Sub-
section 11.3.6), eclipsing binary discrimination test results (see Subsection 11.3.3), statistical
bootstrap test results (see Subsection 11.3.5), and optical ghost diagnostic test results (see Sub-
section 11.3.7) are displayed in separate tables. Centroid motion test results are derived from
flux-weighted centroids that are computed in PA for all targets and cadences. Finally, a series
of diagnostic figures are displayed illustrating flux-weighted centroid motion for the given TCE.
Detrended phase-folded flux and centroid time series are shown first, followed by figures that
mark the transit times on the respective quarterly flux and centroid time series.

11.5.1.10 Appendices Appendices to the DV Report contain valuable diagnostic information
despite the fact that they are not displayed in the main body of the document. The robust weights
for the transit model fit to all transits for each TCE associated with the given target are displayed
as a time series and also with folded phase. Issues with the robust transit model fit may be
highlighted by irregularities in the figures. Histograms of fit residuals for constraint points and
all valid data points are also displayed with Gaussian overlays.

Results of the model fits to the sequences of odd and even transits are displayed for each TCE
in tabular form. These support the eclipsing binary discrimination tests discussed in Subsec-
tion 11.3.3. Of particular interest are the transit depths and associated uncertainties for the odd
and even transit fits. The difference in the fitted depths for the odd and even transits divided by

12Kepler observing seasons are denoted by S0, S1, S2, S3. Each season corresponds to a specific photometer roll
orientation. As discussed earlier, the photometer was rolled by 90◦ between quarters in order to maintain illumination of
the solar panels.
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the uncertainty in the difference essentially determines the significance of the odd/even depth
comparison test.

Diagnostic figures illustrating the phase folded flux time series data in both unwhitened and
whitened domains are presented for the odd and even transit model fits for each TCE. As before,
the whitened transit model is overlaid on the phase folded data in the whitened domain. Colored
markers differentiate between the data points that were emphasized in the respective robust model
fits and those that were deemphasized or otherwise ignored.

11.5.1.11 Alerts Alerts are generated at run time in DV (and other Pipeline components) to
flag off-nominal conditions. Pipeline alerts are categorized as either Warnings or Errors. The
alerts issued by DV largely flag Warning conditions only. An alert consists of a time stamp,
severity (i.e., “warning” or “error”) state, and message string. DV alert message strings include
the KIC ID of the target, the index of the TCE where applicable, and the name of the DV sub-
component in which the alert was raised. The alerts were originally implemented to support the
operation and maintenance of the Pipeline, but it was decided to include the alerts in the DV
Report as a service to the user community. The quantity or character of the alerts associated with
a given TCE should not, however, impact directly on the assessment of its planetary nature.

11.5.2 DV Report Summary

A one-page Report Summary is produced in PDF format for each TCE identified in the transit
search. The Report Summary includes useful diagnostic figures and tabulated model fit and diag-
nostic test results. The one-page summary was first introduced in the SOC 8.2 code base; it has
proven to be extremely beneficial for assessing the character of DV TCEs. The TCERT vetting
process was summarized in Subsubsection 8.6.4.1. Following its introduction, the Report Sum-
mary served as the basis for the TCERT triage process to quickly identify non-transiting/eclipsing
false positives TCEs. The Report Summary was also employed by TCERT along with other vet-
ting products for TCE classification (as PC or FP). Use of the one-page summary in manual
TCERT vetting activities and Kepler catalog generation was described by Burke et al. (2014);
Rowe et al. (2015), and Mullally et al. (2015).

The detrended, quarter-stitched light curve in which the TCE was identified by TPS is dis-
played in one panel; quarter boundaries and transit events are marked. The same light curve is
displayed after phase folding in a second panel; the transit model is overlaid on the full phase
folded light curve. Two additional panels display the phase folded light curve with reduced ab-
scissa ranges centered on the primary transit and strongest secondary eclipse respectively. The
phase folded light curve, transit model, and fit residuals are displayed in one panel in the whitened
domain where the limb-darkened transiting planet model fit is performed. The detrended, phase
folded odd and even transit signals are displayed side by side for comparison in one panel; the
derived transit depth and associated uncertainties are marked in each case. A final panel displays
the quarterly centroid offsets with respect to the out-of-transit centroid, and the robust mean
offsets over all quarters.

DV model fit results are tabulated in a text box. These include both fitted and derived tran-
siting planet model parameters, and the secondary event model parameters described in Subsec-
tion 11.3.1. Uncertainties are displayed for all parameters. Selected DV diagnostic test results
are also tabulated in the text box; the significance is displayed for test results where applicable.
Diagnostic test results are highlighted in red if they are statistically inconsistent with a planetary
classification for the given TCE.

Stellar parameters for the target star and KOI matching results for target and TCE (where
applicable) are also displayed on the one-page summary. Stellar parameters are highlighted
in red if Solar values were assumed in DV because KIC values or overrides were unavailable.
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Finally, the date/time on which the one-page summary was generated and the name of the SOC
code branch employed to run DV are displayed at the bottom.

A useful guide to the version of the Report Summary generated for the Q1–Q17 DR25 TCEs
was produced by the Kepler Project, and is hosted at the Exoplanet Archive.13 This guide pro-
vides detailed explanations of all DV Report Summary content; the case study is the DR25 Report
Summary for Kepler-186f.

11.5.3 DV Time Series

A DV Time Series file in FITS format is generated for each LC target with at least one TCE
by the AR component of the Kepler Pipeline. The file includes time series data relevant to the
processing of each given target in TPS/DV and all associated TCEs. The DV Time Series file was
enhanced extensively in SOC 9.3. The Time Series file content applicable to the Q1–Q17 DR25
transit search was documented by Thompson (2016); this Kepler Mission document is hosted at
the Exoplanet Archive.14

11.6 Conclusion

Data Validation (DV) is the final component of the Kepler Science Data Processing Pipeline. All
target stars for which a Threshold Crossing Event (TCE) is generated in the Transiting Planet
Search (TPS) component of the Pipeline are processed in DV. The primary tasks of DV are
to characterize potential transiting planet signatures identified in the Pipeline transit search, to
search for additional planets after transit signatures are modeled and removed from target light
curves, and to perform a comprehensive suite of diagnostic tests to aid in human and automated
vetting of transiting planet signatures identified in the Pipeline. We have described the architec-
ture of the DV component of the Pipeline, the suite of DV diagnostic tests, and the data products
produced by DV for vetting Pipeline TCEs. We have focused the discussion on the final revision
of the DV code base (SOC 9.3); the source files associated with the final code base have been
released through GitHub for the benefit of the community. We have also discussed how DV is
run on the Pleiades computing cluster of the NASA Advanced Supercomputing (NAS) Division.
Characterization of Pipeline TCEs in DV and the search for multiple transiting planet signatures
on individual target stars are described in a companion paper (Li et al., 2019). The final DV
code base was employed for the DR25 processing of the four-year primary Kepler Mission data
set (Q1–Q17). DV archive products for 17,230 long-cadence target stars and 34,032 individ-
ual TCEs were generated for the DR25 transit search and delivered to the Exoplanet Archive at
the NASA Exoplanet Science Institute (NExScI). The transit search results were documented by
Twicken et al. (2016); the DR25 planet catalog has been published by Thompson et al. (2018).
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CHAPTER 12

DATA VALIDATION II – TRANSIT MODEL
FITTING AND MULTIPLE PLANET SEARCH

Jie Li1, Peter Tenenbaum1, Joseph D. Twicken1, Christopher J. Burke1, Jon
M. Jenkins2, Elisa V. Quintana1, Jason F. Rowe1, Shawn E. Seader1,

1The SETI Institute, Mountain View, CA 94043, 2NASA Ames Research Center, Moffett Field, CA 94035

Abstract. This chapter discusses the transit model fitting and multiple-planet search algorithms
and performance of the Kepler Science Data Processing Pipeline, developed by the Kepler Sci-
ence Operations Center (SOC). Threshold Crossing Events (TCEs), which are transit candidate
events, are generated by the Transiting Planet Search (TPS) component of the pipeline and sub-
sequently processed in the Data Validation (DV) component. The transit model is used in DV to
fit TCEs in order to characterize planetary candidates and to derive parameters that are used in
various diagnostic tests to classify them. After the signature associated with the TCE is removed
from the light curve of the target star, the residual light curve goes through TPS again to search
for additional TCEs. The iterative process of transit model fitting and multiple-planet search
continues until no TCE is generated from the residual light curve or an upper limit is reached.
The transit model fitting and multiple-planet search performance of the final release (9.3, January
2016) of the pipeline is demonstrated with the results of the processing of 4 years (17 quarters)
of flight data from the primary Kepler Mission. This chapter is based on the exposition of Li
et al. (2019).

Keywords: Kepler, light curve, planets and satellites: modeling.

12.1 Introduction

This chapter discusses transit model fitting and multiple-planet search algorithms and perfor-
mance that are part of the Data Validation (DV) component of the Kepler Science Data Process-
ing Pipeline (Jenkins et al., 2010a), developed by the Kepler Science Operations Center (SOC) at
NASA Ames Research Center. An introduction to the DV component is provided in a (Twicken
et al., 2018) (see Chapter 11), which also details the DV diagnostic tests and data products for
vetting transiting planet candidates. Figure 12.1 shows the DV module in the context of the
Kepler Pipeline.

The transit model fitting is designed for the following three main tasks: (1) The orbital prop-
erty and the nature of the planetary candidates are characterized; (2) The fitted parameters of
the transit model and the corresponding light curve generated from the model are used in the
diagnostic tests in DV to aid in the assessment and classification of planetary candidates; (3)
When the Transiting Planet Search (TPS) component is called, only one Threshold Crossing
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Figure 12.1 Data Validation (DV) in the context of the architecture of the Kepler Data Processing Pipeline.
As a part of the DV module, the transit model fitting fits TCEs generated by TPS to derive parameters used
in various diagnostic tests of DV.

Event (TCE) with the maximum multiple event detection statistic (MES) is generated. To search
for multiple-planetary candidates, an iterative process of transit model fitting and multiple-planet
search is implemented in DV. For each target star, the transit model parameters are fitted to each
TCE generated by TPS, the signature of known TCEs is removed from the light curve, and then
the residual is provided to TPS again to search for additional TCEs. This iteration will only
terminate once no new TCEs are identified or a preset upper limit is reached (set to 10 for the
SOC 9.3 run producing the Data Release (DR) 25 TCEs).

The transit model fitting results, such as the fitted parameters and uncertainties, derived pa-
rameters and uncertainties, goodness of fit metrics, and the diagnostic plots, are included in
comprehensive DV reports by target, and one-page DV summary reports by TCE. The reports
and summaries are accessible by the science community at the Exoplanet Archive1 at the NASA
Exoplanet Science Institute (NExScI) (Akeson et al., 2013). The final version of the SOC 9.3
codebase is available to the general public through GitHub2.

The transit model fitting and multiple-planet search algorithm in the initial revision of DV
(SOC 6.1) was described by Tenenbaum et al. (2010) and Wu et al. (2010). DV evolved greatly
since then. Major changes in the transit model fitting and multiple-planet search algorithm in-
clude: (1) The transit model described in Tenenbaum et al. (2010) and Wu et al. (2010) is changed
to the geometric transit model, including a nonlinear limb-darkening model (Claret & Bloemen,
2011), for a better modeling accuracy; (2) The reduced parameter fits are added; (3) The trape-
zoidal model fit is added.

Iterative transit fitting and multiple-planet search has been done extensively by various groups.
Foreman-Mackey et al. (2015) performs a joint fit of the transit model and systematics, which is
potentially more sensitive than the algorithm used in the SOC 9.3 codebase but is computation-
ally more expensive. Crossfield et al. (2016), Crossfield et al. (2018), Petigura et al. (2018), and
Yu et al. (2018) use the “TERRA” software package and presume the systematic error correction
has whitened the colored noise of the light curve. Dressing & Charbonneau (2015), Vanderburg
et al. (2016), and Rizzuto et al. (2017) use box least squares algorithm and also assume that the
residual observation noise is white. In this paper, the transit model fitting is implemented with
an iterative loop that includes a whitening filter and a transit fitter. In addition, compared to the

1https://exoplanetarchive.ipac.caltech.edu.
2https://github.com/nasa/kepler-pipeline.
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similar work by other groups, the reduced parameter fits described in this paper improve the con-
sistency of the results of the geometric transit model fit, and the trapezoidal model fit provides a
quick assessment of the transit signal.

In this chapter, the final SOC 9.3 version of Data Validation is described. The architecture of
transit model fitting and multiple-planet search algorithm is described in Section 12.2, and the
light curve preprocessing procedures are described in Section 12.3. The geometric transit model
is described in Section 12.4. Section 12.5 describes how a synthetic light curve is generated from
the fitted parameters of the geometric transit model, and Section 12.6 describes the algorithms
to fit the light curves with the geometric transit model. A fitting algorithm with the trapezoidal
model is described in Section 12.7, and the multiple-planet search is discussed in Section 12.8.
The performance of the transit model fitting and multiple-planet search is demonstrated in Sec-
tion 12.9. Finally, conclusions are presented in Section 12.10.

12.2 Architecture of Transit Model Fitting and Multiple-Planet Search

This section describes the architecture of transit model fitting and multiple-planet search algo-
rithm. As shown in the flowchart in Figure 12.2, it is an iterative process.

When a TCE is generated by the TPS component, the corresponding systematic error-corrected
light curve of the target star, generated by the Presearch Data Conditioning (PDC) component of
the pipeline, is furnished to DV along with the transit parameters associated with the TCE, in-
cluding the transit epoch (central time of first transit), orbital period, transit duration, and MES of
the TCE. The light curve may span one or more observing quarters. After several preprocessing
procedures, the light curve of the target star goes through a series of transit model fitting algo-
rithms, which include reduced parameter fits, all-transit fit, odd-even transit fit and trapezoidal
model fit.

As shown in Figure 12.2, the preprocessed light curve is first subjected to a set of reduced
parameter fits, in which the impact parameter is set to fixed values of 0.1, 0.3, 0.5, 0.7 and 0.9,
and only the parameters of transit epoch time, planet orbital period, ratio of planet radius to
star radius and ratio of semi-major axis to star radius are fitted to a geometric transit model.
The initial values of the fitted parameters of the reduced parameter fits are determined from
the TCE parameters. The reduced parameter fits resolve the degenerate problem of fitting the
impact parameter, which is discussed in Subsection 12.6.2. After the completion of the reduced
parameter fits, all-transit fit and odd-even transit fit follow, in which the fitting algorithms are
applied to all transits, odd transits and even transits, respectively. The all-transit fit and odd-even
transit fit are both initialized with the fitted parameters of the reduced parameter fit with the
minimum χ2 metric. The output of the all transit fit is used in several diagnostic tests of DV and
the assessment of planet candidacy, and the output of the odd-even transit fit is used in a specific
DV diagnostic test to identify false positives due to an eclipsing binary target or a target with an
eclipsing binary in the background. In addition to the fitting algorithms with the geometric transit
model, a fitting algorithm with the trapezoidal model is implemented. As shown in Figure 12.2,
an alternative detrending and normalization algorithm is applied to the PDC light curve prior to
the trapezoidal model fit. The output of the trapezoidal model fit is used in the diagnostic tests of
DV when the fit with the geometric transit model fails or when the fit is not performed, e.g. for
suspected eclipsing binaries based on transit depth.

After the completion of the transit model fitting algorithms, the signature of the known TCE,
as determined from the fitted parameters of the all-transit fit, is removed from the light curve, and
the residual light curve is subjected to a search for additional planets by calling TPS in the DV
component. If an additional TCE is generated, the residual light curve goes through the transit
model fitting algorithms discussed above once again. The iterative process of the transit model
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Figure 12.2 Flowchart of iterative process of transit model fitting and multiple-planet search. In the
flowchart, a rectangle represents an operation of data processing, a diamond represents a conditional
operation that determines which one of the two paths the process will take, an arrow line shows the order of
operations, and an oval represents the beginning or ending of the process.

fitting and multiple-planet search concludes when no additional TCEs are produced or an upper
limit is reached.

12.3 Light Curve Preprocessing

The light curves of target stars are processed in the PDC component before they are input in the
DV component. As described in in Chapter 8 (and see Stumpe et al. (2012), and Smith et al.
(2012), and Stumpe et al. (2014)), systematic errors due to the thermal transients and optical
distortions are estimated and compensated, outliers due to cosmic rays and transients due to the
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Argabrightening events3 are removed, and sudden pixel sensitivity dropouts are identified and
corrected. Nevertheless, the PDC light curves must be preprocessed further in preparation for
transit model fitting. The preprocessing procedures in DV include baseline removal, light curve
normalization, quarterly data segment stitching, harmonic removal, and timestamp conversion.

12.3.1 Baseline Removal and Light Curve Normalization

The light curve generated in the PDC component measures the brightness of the target star in
units of photo-electrons (e−) per cadence4. Since the brightness of one target star is generally
measured by four different charge coupled device (CCD) channels over the course of a year due
to the quarterly rotations of the spacecraft about the telescope boresight, the baseline of the mea-
sured light curve of the target star varies from quarter to quarter. The preprocessing procedure
of baseline removal and light curve normalization removes the baseline of the measurement and
generates the normalized light curves so that they can later be uniformly processed by the transit
model fitting algorithms. This preprocessing procedure is implemented quarter by quarter in two
steps: (1) For each target star, the median flux level is determined for each quarter. For stars on
the same CCD channel, the median flux level varies from one target star to another depending
on the magnitude and spectrum of the target star; for a given target star, the median varies from
quarter to quarter depending on the sensitivity of the CCD pixels and the sub-pixel location of
the stellar image. (2) The median is subtracted from the corresponding quarterly light curves
and the difference is normalized by the median and multiplied by 106, yielding a normalized
light curve in units of parts per million (ppm). For the out-of-transit data points, the baseline
value is zero. For in-transit data points, the normalized flux is negative and its absolute value
corresponds to the ratio of the flux blocked by the transiting planet to the total flux of the target
star. For example, to an extraterrestrial observer of a central transit, the depth of the normalized
light curve of the Earth transiting the Sun is about 84× 10−6, or 84 ppm.

12.3.2 Quarterly Data Segment Stitching

The light curve of a target star is comprised of data segments separated by gaps that may have
resulted from quarterly rolls, monthly data downlinks, or spacecraft anomalies. The preprocess-
ing procedure of data segment stitching removes the trend and transients of the light curve of
the segment edges and fills the gaps between the segments. The trend of the light curve of each
segment is identified, and the light curve at the edges of the segments, where transients are usu-
ally observed, is fitted with a model of linear and exponential components. Then the detrending
algorithm removes the identified trend and the fitted components. The gaps between the data seg-
ments are filled with different methods, depending on the length of the gaps: the short gaps are
filled with an auto-regressive model and the long gaps are filled via data reflection and tapering
(Jenkins, 2002; Jenkins et al., 2010b, and see Chapter 9).

12.3.3 Harmonic Removal

The harmonic removal procedure identifies and removes sinusoidal harmonic components, which
are significant in the light curves of target stars such as rotating and contact binaries. The light
curve is first processed with a Fast Fourier Transform (FFT) to determine the frequencies of
the significant harmonic components. Then the magnitude and phase of the components are

3An Argabrightening event, which was described by Witteborn et al. (2011), is an occasional diffuse illumination of
portions of the focal plane lasting a few minutes.
4The flux units in the Kepler light curve files exported to the Mikulski Archive for Space Telescopes (MAST) are actually
e−/second. The conversion from e−/cadence to e−/second is performed in the Archive (AR) component of the pipeline.
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fitted and the significant harmonic components are removed from the light curve (Jenkins et al.,
2010b). It is possible that the harmonic removal process may degrade the transits of short-period
planets, as discussed by Christiansen et al. (2013, 2015).

12.3.4 Timestamp Conversion

Based on Kepler’s laws of planetary motion, the transits of exoplanets are inherently periodic5

if the observer is located at the barycenter of the Solar System and the events are measured in
the Barycentric Dynamical Time (TDB) frame. However, the timestamps associated with the
PDC light curves provided to DV are Modified Julian Day (MJD) numbers, which correspond
to the time when the light of the target star arrives at the Kepler spacecraft in the Coordinated
Universal Time (UTC) frame. Before the transit model fitting algorithms are applied, barycentric
time corrections are applied to obtain timestamps in Barycentric Modified Julian Day (BMJD)
numbers, to correspond to the time when the light from the events of the target star would arrive
at the barycenter of the Solar System in the TDB frame.

The algorithm to determine each BMJD timestamp requires the following inputs: the ephemeris
of the Kepler spacecraft, the ephemeris of the Solar System, and the celestial coordinates of the
target star. Then the difference between the time when the light of the events of the target star
would have reached the barycenter of the Solar System and the time when the same light arrived
at the Kepler spacecraft, which is located in an Earth-trailing heliocentric orbit, is calculated.
Finally, the BMJD timestamps are determined as the sum of the MJD timestamps and the afore-
mentioned barycentric time corrections. To simplify the processing and storage of the Kepler
science data, a new timestamp, Barycentric Kepler Julian Date (BKJD), is defined and used in
the Kepler Science Data Processing Pipeline and the NASA Exoplanet Archive. By definition,
BKJD is equal to BMJD minus a constant of 54,832.5 days, which corresponds to 12:00:00 noon
on January 1, 2009 (the first day of the year when the Kepler spacecraft was launched). After
the preprocessing procedure of timestamp conversion, all light curves are associated with BKJD
timestamps. The time frames and the timestamps before and after timestamp conversion in the
preprocessing are summarized in Table 12.1.

Table 12.1 Time frames and timestamps before and after the timestamp conversion.

Before/After Conversion Time Frame Timestamp
before UTC MJD
after BDT BKJD (=BMJD-54,832.5)

As an example, Figure 12.3 shows two segments of the light curve of the target star KIC
8478994, or Kepler-37, before and after the preprocessing procedures. As illustrated in the figure,
the light curve before the preprocessing shows the absolute flux value in units of photo-electrons,
timestamped in MJD, and the light curve after the preprocessing shows the dimensionless nor-
malized flux value, timestamped in BKJD.

12.4 Geometric Transit Model

The transit model fitting algorithms of the DV component employ the geometric transit model
of Mandel & Agol (2002), including a nonlinear limb-darkening model, parameterized as per
Claret & Bloemen (2011). The limb-darkening depends on the stellar parameters, such as radius

5This neglects transit timing variations, which can be quite large for dynamically packed planetary systems with planets
in near-orbital resonances.
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Figure 12.3 Flux time series of KIC 8478994 before (top) and after (bottom) the preprocessing procedures.

Rs (solar radii), surface gravity log g (log10(cm s−2)), metallicity log10[M/H] (dimensionless),
and effective temperature Teff (K), which are extracted from the Kepler Input Catalog (KIC)
(Brown et al., 2011) or override to KIC parameter values (Mathur et al., 2017).

12.4.1 Fitted Parameters

In the geometric transit model, the eccentricity and the longitude of periapsis of the planet orbit
around the host star are assumed to be 0, and the five parameters to be fitted are listed below:

Transit epoch time tepoch (BKJD): the time corresponding to the center of the first detected
transit;

Orbital period P (days): the interval between consecutive planetary transits, i.e., the period
of the planet’s orbit;

Ratio of planet radius to stellar radius Rp/Rs (dimensionless): the ratio of the planet radius
divided by the stellar radius;

Ratio of semi-major axis to stellar radius a/Rs (dimensionless): since the eccentricity of
the planet’s orbit is assumed to be zero, this is the ratio of the distance between the planet
and the host star divided by the stellar radius;

Impact parameter b (dimensionless): the sky-projected distance between the center of the
stellar disc and the center of the planet disc at conjunction, normalized by the stellar radius.

As discussed in Subsubsection 12.6.1.2, the fitted parameters are determined with the iterative
Levenberg-Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963). The all-transit fit
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and odd-even transit fit are both initialized with the fitted parameters of the reduced parameter fit
with the minimum χ2 metric.

In the reduced parameter fits, the impact parameter b is set to fixed values of 0.1, 0.3, 0.5, 0.7
and 0.9. The initial values of the fitted parameters tepoch, P , Rp/Rs and a/Rs are determined
from the TCE parameters provided by the TPS component. The TPS value for orbital period can
be used directly. Note that the transit epoch time from the TPS component is in units of MJD,
while the fitted parameter of tepoch is in units of BKJD; therefore, a unit conversion is required.
The initial values of Rp/Rs and a/Rs are determined from the TCE parameters according to:
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where the single event statistic SESTPS (dimensionless), orbital period PTPS (days), and transit
duration dtr,TPS (hours) are TCE parameters determined in the TPS component. rflux is the
ratio of the light curve value to the uncertainty. dlc (hours) is the duration of a long-cadence
(LC) interval (29.4 min or 0.49 hr).

12.4.2 Derived Parameters

Once the transit model fitting algorithm has converged, several additional parameters regarding
the planet or the transits can be derived from the fitted parameters.

Given the stellar radius Rs, the planet radius Rp is determined directly from the fitted param-
eter Rp/Rs:

Rp =

(
R�
R⊕

)(
Rp
Rs

)
Rs, (12.3)

where R� and R⊕ are radii of the Sun and the Earth, respectively, both in units of m. Since Rs
is in units of solar radii, Rp given by Equation 12.3 is in units of Earth radii.

Before calculating the semi-major axis of the planet orbit a, the planet-star separation for a
circular orbit, the acceleration due to gravity at the surface of the star g should first be determined
from the stellar parameter log g as:

g =
1

100
10log g. (12.4)

A factor of 1/100 is required to convert acceleration g to units of m s−2 from log g in units of
log10(cm s−2).

The semi-major axis of the planetary orbit a is not determined directly from the fitted param-
eter a/Rs, but derived from the fitted orbital period P based on Kepler’s third law:

a =
1

fAU

[
(86400P ) (RsR�)

√
g

2π

] 2
3

, (12.5)
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where fAU is the factor to convert the astronomical unit (AU) to m (i.e., the number of m in one
AU). Please note P and Rs are in units of days and solar radii, respectively, so Equation 12.5
gives the semi-major axis of the planet orbit, a, in AU.

The inclination of the planet orbit i in units of degrees, is determined from fitted parameters b
and a/Rs:

i =
180

π
cos−1

(
b

a/Rs

)
. (12.6)

As illustrated in Figure 12.4, the transit depth D, transit duration dtr, and transit ingress time
din are another set of parameters defining the size and shape of a transit. The transit depth D is
determined as the absolute value of the minimum of the normalized light curve generated from
the fitted parameters (to be discussed in Section 12.5), multiplied by a factor of 106 to convert
the dimensionless normalized flux value to the transit depth in units of ppm. The parameters dtr
and din, both in units of hours, are derived from fitted parameters Rp/Rs, a/Rs, b, and P with
the following equations:

dtr =
24P

π
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The planet equilibrium temperature Teq , an estimate of the surface temperature of the planet,
is calculated assuming a thermodynamic equilibrium is reached between the incident stellar flux
and the radiated heat from the planet:

Teq = Teff (1− α)
1
4

√
RsR�
2 a fAU

, (12.9)

where a is the semi-major axis of the planetary orbit in AU determined by Equation 12.5, α is
the albedo of the planet, whose default value is set to 0.3, and both Teff and Teq are in K.

The planet effective stellar flux, φeff , defined as the ratio of the flux of the host star at the top
of planet’s atmosphere to the solar flux at the top of Earth’s atmosphere, is calculated as

φeff =

(
Rs
a

)2 (
Teff
Teff,�

)4

, (12.10)

where a is determined by Equation 12.5 and Teff,� is the effective temperature of the Sun in
units of K.

The fitted and derived parameters of the transit model are summarized in Table 12.2.

12.5 Geometric Transit Signal Generator

The geometric transit signal generator generates a light curve at an array of cadence timestamps
in BKJD (nominally the timestamps corresponding to the midpoints of cadences) with the fitted
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Figure 12.4 Schematic of planetary transit and associated light curve with the depth, duration, ingress
time, and epoch time indicated.

Table 12.2 Fitted and derived parameters of the transit model.

Parameter Symbol Unit Fitted/Derived
transit epoch time tepoch BKJD fitted

planet orbital period P day fitted
ratio of planet radius to star radius Rp/Rs dimensionless fitted

ratio of semi-major axis to star radius a/Rs dimensionless fitted
impact parameter b dimensionless fitted

planet radius Rp Earth radius derived
planet orbit semi-major axis a AU derived

planet orbit inclination i degree derived
transit depth D ppm derived

transit duration dtr hour derived
transit ingress time din hour derived

planet equilibrium temperature Teq K derived
planet effective stellar flux φeff dimensionless derived

parameters of a geometric transit model described in Subsection 12.4.1. The coefficients of
the limb-darkening model are determined by the stellar parameters of the target star (Claret &
Bloemen, 2011).

The computation of the light curve is implemented in the following steps. First, an array of
oversampled timestamps is constructed from the input array of timestamps. This is necessary in
order to obtain an accurate flux level estimate at the temporal resolution of the data (29.4 min).
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For each element in the input array of timestamps, a sub-array of 11 oversampled timestamps is
generated. The step size of the oversampled timestamps is 1/11 of a LC interval, or 2.67 min.
The center element of the sub-array, the 6th of the 11 elements, is equal to the corresponding
element in the input array of timestamps. The oversampled timestamps that fall within a given
transit (including a small buffer on each side of the transit) are identified with the parameters
tepoch and P . A circular Keplerian orbit, normalized by the stellar radius Rs, is determined from
the parameters a/Rs and b. The position vectors of the planet in the orbit are computed and the
corresponding impact parameters are determined by projecting the position vectors to the plane
perpendicular to the direction of the target star. The relative flux value, the ratio of the stellar flux
blocked by the transiting planet to the unblocked stellar flux, is calculated for each oversampled
timestamp with the impact parameter b, the fitted parameter Rp/Rs, and the limb-darkening
coefficients. Finally, the relative flux at each of the input timestamps is determined as the mean
of 11 relative flux values at the corresponding oversampled timestamps.

Figure 12.5 shows the normalized flux time series generated by the geometric transit signal
generator with following parameters: tepoch = 138.50000 days, P = 10.30405 days, Rp/Rs =
0.0155697, a/Rs = 18.7471, and b = 0.1, which are determined by the reduced parameter
fit (to be discussed in Subsection 12.6.2) of the 6th TCE of the target star KIC 6541920, also
known as the planet Kepler-11b. As shown in the figure, the step size of the input timestamps
is the duration of a LC (29.4 min), and the normalized flux values at the input and oversampled
timestamps are plotted in red and blue, respectively.

Figure 12.5 Normalized light curve of the 6th TCE of KIC 6541920 generated by the geometric transit
signal generator. The normalized flux values at the oversampled timestamps, whose step size is 1/11 of a
LC interval, or 2.67 min, are plotted in blue. Each of the normalized flux values at the LC interval, or 29.4
min, is determined as the mean of 11 corresponding values at oversampled timestamps and plotted in red.

Since the surface brightness of a star appears to vary due to the limb-darkening effect, the
calculation of the normalized flux value is implemented with an iterative numerical integration
algorithm. At each iteration, the integration step is cut in half and an updated normalized flux
time series is determined with the nonlinear limb-darkening model. The iterative process is ter-
minated when the required precision is satisfied or when an upper limit of the execution time of
the iterative algorithm is reached. If the parameter Rp/Rs is less than 0.01, a small-body ap-
proximation is used to speed up the algorithm, assuming the stellar surface brightness is constant
under the disc of the eclipsing object (Mandel & Agol, 2002).

The five fitted parameters defined in Subsection 12.4.1 can be divided in two relatively inde-
pendent groups: (1) the transit epoch time tepoch and the orbital period P define the occurrence
time of the transits; (2) the ratio of planet radius to star radius Rp/Rs, the ratio of semi-major
axis to star radius a/Rs, and the impact parameter b, define the depth, duration, and shape of the
transits.
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Figure 12.6 illustrates how the variations of the parameters Rp/Rs, a/Rs, and b change the
depth, duration, and shape of the transits in the light curves. As the reference for comparison, the
light curve shown in Figure 12.5 is plotted as blue in Figure 12.6. The corresponding parameter
values are used as references for the parameter variations. When Rp/Rs is increased by 10%
and 20% to its reference value, the corresponding model light curves are plotted as red and black
lines, respectively, in the plot on the top of Figure 12.6. Since Rp/Rs defines the relative size of
the transiting planet to the host star, an increase of Rp/Rs, meaning more stellar flux is blocked
by the transiting planet, leading to an increase of the transit depth. When a/Rs is increased
by 10% and 20% to its reference value, the corresponding model light curves are plotted as red
and black lines, respectively, in the middle plot of Figure 12.6. Since the orbital period, P , is
fixed, an increase of a/Rs, indicating a decrease of the stellar radius, Rs, leads to a decrease of
the transit duration. When b is changed to 0.3, 0.5, 0.7, and 0.9, the corresponding model light
curves are plotted as red, black, magenta, and green lines, respectively, in the plot on the bottom
of Figure 12.6. An increase of b moves the transit trajectory toward the edge of the stellar disc
and results in a decrease of the transit duration. Since the point at the center of the transit moves
toward the edge of the stellar disc, the transit depth decreases as well due to the limb-darkening
effect.

12.6 Geometric Model Fitting Algorithms

The inputs of the geometric model fitting algorithms include (1) the light curve after the pre-
processing procedures described in Section 12.3, and (2) the TCE parameters, including transit
epoch time, orbital period, trial transit duration, and single and multiple event statistics, gener-
ated by the TPS component (Jenkins, 2002; Jenkins et al., 2010b; Tenenbaum et al., 2012, 2013,
2014; Seader et al., 2015; Twicken et al., 2016).

Subsection 12.6.1 discusses an iterative whitening and model fitting process, used in the all-
transit fit, odd-even transit fit, and reduced-parameter fit. The TCE parameters are used to seed
the initial values of reduced parameter fits. Subsection 12.6.2 describes a fitting algorithm to
resolve the degenerate problem of fitting the impact parameters. Subsection 12.6.3 describes the
algorithms to fit odd and even transits, whose outputs are used in the diagnostic test to distinguish
transiting planets from circular eclipsing binaries that have been detected at one-half of their true
orbital period (Twicken et al., 2018).

The fitter outputs, which are generated when the fitting algorithm completes successfully,
are described in Subsection 12.6.4. The alert messages, which are generated when the fitting
algorithm fails, are discussed in Subsection 12.6.5.

12.6.1 Iterative Whitening and Model Fitting

Compared to transit features, secular variations due to pointing drift, focus variations, and stellar
variability can be quite large. Secular variations of the light curve, appearing as correlated noise,
can lead to biases in the fitted parameters of the geometric transit model. Therefore, a whiten-
ing filter is applied to the light curves before transit model fitting to account explicitly for the
correlation structure of the noise. Considering that the whitening filter changes the shape of the
transits, the same whitening filter is applied to the model light curve generated by the geometric
transit signal generator.

The flux time series of a target star at times ti, i = 1, 2, . . . N , is denoted as y(ti). Let θθθ
denote a 5×1 vector of fitted parameters:

θθθ =
[
tepoch P Rp/Rs a/Rs b

]T
. (12.11)
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Figure 12.6 Light curves generated by the geometric transit signal generator with different parameters of
Rp/Rs (top), a/Rs (middle), and b (bottom). See text for an explanation.

The predicted light curve generated from the geometric transit model with the parameter vector
θθθ is denoted as s(ti, θθθ). When the whitening filter is applied to the time series y(ti) and s(ti, θθθ),
the corresponding whitened time series are denoted as ỹ(ti) and s̃(ti, θθθ), respectively. The geo-
metric transit model fitting is implemented with a LM algorithm to search for the vector θθθ in the
parameter space to minimize the following weighted nonlinear least-squares cost function:

χ2 (θθθ) =

N∑

i=1

wi [ỹ (ti)− s̃ (ti, θθθ)]
2 (12.12)



330 DATA VALIDATION II – TRANSIT MODEL FITTING

where wi, i = 1, 2, . . . N are weights, ranging between 0 and 1. During the fit, these robust
weights are adjusted to deemphasize points with large departures from the model values, in order
to reduce the impact of outliers (Holland & Welsch, 1977).

Let ỹ and s̃(θθθ) denote vectors of measured and predicted light curves in the whitened domain,
respectively, and W denote a diagonal matrix of the weights. Equation 12.12 can be rewritten in
the following matrix form:

χ2(θθθ) = [ỹ− s̃(θθθ)]T W [ỹ− s̃(θθθ)]. (12.13)

Since the out-of-transit light curve data just show the measurement noise around the baseline
value of zero, they offer no information to characterize the transits. Therefore, the transit model
fitting is restricted to the data within or close to the transits. The center times of the transits are
predicted from the parameters tepoch and P , and only the light curve data whose timestamps fall
in the time ranges of 5 times the transit duration, centered at the transit center, are used in the ge-
ometric transit model fit. The data selection can also be viewed as a model fit implemented with
different weights to all data points; the weight is set to 1 in Equation 12.12 when the difference
between the timestamp of the data point and the center time of the nearest transit is less than 2.5
times the transit duration; otherwise, the weight is set to 0.

For each TCE generated by TPS, the geometric transit model fitting is implemented with a
loop that includes an adaptive whitening filter and a robust LM transit fitter, as shown in Fig-
ure 12.7. The whitening filter transforms the correlated noise in the measured flux time series to
uncorrelated, or white, noise. The predicted light curve is subjected to the same whitening filter,
so the fitted parameters of the geometric transit model are determined by nonlinear least-squares
fitting in the whitened domain. The fit residual is utilized to update the parameters of the whiten-
ing filter on each iteration. Robust weights are assigned to each point of the flux time series so
that data with large errors are assigned small weights in the nonlinear least-squares fitting algo-
rithm. The iterative whitening and fitting loop is terminated when both the whitening filter and
the transit fitter converge or a predefined iteration limit is reached.

12.6.1.1 Whitening filter Considering the non-stationary nature of the stellar variability, an
adaptive whitening filter is generated and used to remove variations in the light curve.

The whitening filter is implemented in the following steps: 1) The flux time series and the
model transit light curves are mapped into a two dimensional array of whitening coefficients,
localizing the signal both in time and in frequency with the Overcomplete Wavelet Transform
(OWT), a modified version of the discrete wavelet transform (Jenkins, 2002); 2) The noise power
in each wavelet bandpass is estimated using a moving median absolute deviation (MAD) filter;
3) The wavelet coefficients of the flux time series and the model transit light curve are normal-
ized by the root-mean-square (rms) noise power estimates. Finally, the whitened time series are
reconstructed from the updated wavelets with the inverse OWT. The whitening filter is discussed
in detail in Chapter 9.

A consequence of the whitening filter is that the shape of the transit in the measured flux time
series is distorted by the filter; it is therefore necessary to apply the same filter to the predicted
model light curve. The fitted parameters of the geometric transit model are determined by the
nonlinear least-squares fitting in the whitened domain.

Figure 12.8 shows the whitened flux time series of KIC 8478994 in an interval of 100 days,
which is produced when the unwhitened normalized flux time series, shown earlier on the lower
panel of Figure 12.3, is processed with a whitening filter. Figure 12.9 illustrates the same un-
whitened and whitened flux time series in an interval of 6 days; the distortion of the whitening
filter on the shape of the transit is evident. It can be seen that the depth of the transit is approxi-
mately 6×10−4, or 600 ppm, while stellar variability produces variations of more than 3×10−4
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Figure 12.7 Block diagram of the iterative whitening and model fitting process. Two loops are shown in
the figure: the outer loop, shown in the rectangle of dashed lines, includes a whitening filter and a transit
model fitter, and the parameters of the whitening filter are updated on each iteration with the residuals of
the transit model fitter; the inner loop, shown in the area surrounded by dotted lines, includes the LM fit and
robust weight reassignment.

in the unwhitened flux time series. The whitened flux time series, whose standard deviation is
equal to 1, is in units of standard deviations of the unwhitened flux.

Figure 12.8 Whitened flux time series of KIC 8478994.

12.6.1.2 LM fit of geometric transit model parameters The LM algorithm is employed to
search for parameters that minimize the nonlinear least-squares cost function defined in Equa-
tion 12.12 and 12.13.

In the general form of the LM algorithm, there is no restriction on the values of the fitted
parameters. However, in the geometric transit model, the parameters P , Rp/Rs, a/Rs, and b
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Figure 12.9 Flux time series of KIC 8478994 before (top) and after (bottom) a whitening filter is applied.
The length of the data segment shown in the figures is 6 days. A single transit is visible in each panel.

must be positive. Therefore, in the geometric transit model fitting algorithms, all of the fitted
parameters are forced to be positive values. When an updated value of a parameter is negative in
the search process, the parameter is set to the absolute value of the updated value so that all fitted
parameters are positive.

An additional subtlety to the parameterization is that the impact parameter is constrained to
lie in the range [0, 1] but the LM algorithm implicitly requires all fit parameters to be valid over
all real values. To address this mismatch, a nonlinear transformation in the form of a sin func-
tion is performed between the “internal” parameter used by the LM algorithm and the “external
parameter” used in the geometric transit model; this transformation maps the range [-∞,∞] used
by the LM algorithm to the range [-1, 1] for the impact parameter in the geometric transit model.
Negative values are also updated with the corresponding absolute values, as discussed above.

In the DR25 processing with SOC 9.3 codebase, the iterative search process for the parame-
ter vector θθθ halted if the relative variation of the χ2 metric was less than 0.1%, or the absolute
value of the difference of the fitted parameters was less than 10% of the corresponding uncer-
tainties, or a preset limit of 100 iterations was reached. The threshold values are configurable
DV parameters.

12.6.1.3 Robust fit In the weighted nonlinear least-squares fitting problem given by Equa-
tion 12.12 or Equation 12.13, the weight of each data point used in the fit is initialized to either 1
or 0, depending on whether the timestamp of the data point is within 2.5 times the transit duration
from the center time of the nearest transit. However, when some of the selected data points are
outliers, the fitting algorithm converges to a compromised solution between the valid data points
and outliers, usually resulting in biases in the fitted parameters.

The robust fitting algorithm, which is optional, works by assigning a weight in the range
between 0 and 1 to each data point for the fit. The outliers are assigned weights close to 0 so
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that the output of the robust fitting algorithm is less sensitive to the outliers in the data. The
robust fitting algorithm is executed after the convergence of the non-robust LM fit. The weights
are reinitialized and the LM fit is done iteratively. In each iteration, the weight of each data
point is calculated from the fit residual of the previous iteration with a bisquare function, so
that the data points with larger residuals are assigned smaller weights. The iterative process of
weight re-assignment and LM fit continues until the fitted parameters converge within a specified
tolerance.

Figure 12.10 Folded flux time series of KIC 6960446 and model light curve generated with fitted
parameters of the TCE, both in the whitened domain, when robust fit is disabled (top) and robust fit is
enabled (bottom).

The effect of robust fit is demonstrated with the following example. The primary and sec-
ondary eclipses of an eclipsing binary target (KIC 6960446) are identified as one TCE by the
TPS component. Figure 12.10 shows the folded flux time series of the target and the folded
model light curve generated with the fitted parameters of the TCE, both in the whitened domain,
when the robust fit is off (top) and on (bottom), respectively. The secondary eclipse, which has
a smaller depth, is located at phase 0 of the plot. A small phase offset is observed in the folded
primary and secondary eclipses. In the plot, the flux data points are illustrated as dark green
dots when the weights of the robust fit are larger than 0.1, otherwise, illustrated as light blue
dots. When the weights of the fit are equally set to 1 for the data points, the fitted model light
curve compromises between the primary and secondary eclipses. However, the weights of the
fit are calculated iteratively in the robust fitting algorithm. As a result, most data points of the
primary eclipses are identified as outliers and assigned weights less than 0.1 at the end of the
iterative process. The robust fit algorithm generates unbiased fitted parameters to characterize
the secondary eclipses only.

12.6.1.4 Goodness of Fit Metrics Two goodness of fit metrics are calculated when the transit
model fitting algorithm is completed successfully. One includes the χ2 metric and the number of
degrees of freedom, the other is the signal-to-noise ratio (SNR) of the fit.
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The χ2 metric is determined with Equation 12.12, and the number of degrees of freedom is de-
termined as the sum of the weights minus the number of fitted parameters. It is noted the weights
take values of either 0 or 1 when the robust fit is disabled, as described in Subsubsection 12.6.1.3.

The SNR of the fit is determined as:

SNRfit =

√
s̃
(
θ̂θθ
)T

W s̃
(
θ̂θθ
)
, (12.14)

where θ̂θθ is the vector of fitted parameters and s̃
(
θ̂θθ
)

is the whitened model light curve generated

with θ̂θθ. W is a diagonal matrix of robust weights as before.
The χ2 metric and the number of degrees of freedom measure the distance between the flux

time series and the model light curve in the whitened domain. The SNR shows the strength of
the TCE relative to the noise.

12.6.1.5 Uncertainties of fitted and derived parameters Let H denote the Jacobian of the
model light curve s̃(θθθ) to the vector of fitted parameters θθθ, such that:

H =
∂ s̃ (θθθ)

∂θθθ
. (12.15)

Based on the approximation to the Hessian, the covariance matrix of the fitted parameters is
determined as

Cov
(
θ̂θθ
)

=
(
HT WH

)−1
(σres)

2
, (12.16)

where σres is the root of the mean squared (rms) value of the residuals of the fit. The elements
of the Jacobian H are determined numerically.

Let ααα and ψψψ denote vectors of stellar parameters and derived parameters, as defined below:

ααα =
[
Rs g Teff

]T
and (12.17)

ψψψ =
[
Rp a i dtr din D Teq φeff

]T
, (12.18)

where g is the acceleration due to gravity at the surface of the star, determined from the stellar
parameter log g as shown in Equation 12.4. The uncertainty of g (m s−2) can be determined from
the uncertainty of log g (log10(cm s−2)) multiplied by g ln 10.

As discussed in Subsection 12.4.2, ψψψ is a function of θθθ and ααα. The covariance matrix of ψψψ,
Cov (ψψψ), includes the components propagated both from the covariance matrix of θθθ, Cov (θθθ),
and the uncertainties of the elements of ααα, as shown below:

Cov (ψψψ) =

(
∂ψψψ

∂θθθ

)T
Cov (θθθ)

(
∂ψψψ

∂θθθ

)
+

(
∂ψψψ

∂ααα

)T
Cov (ααα)

(
∂ψψψ

∂ααα

)
(12.19)

where Cov(ααα) is a diagonal matrix whose elements are squares of the uncertainties of the corre-
sponding stellar parameters. Note that uncertainties in stellar parameters are provided by the KIC
or overrides to the KIC; they are assumed to be independent. ∂ψψψ/∂θθθ and ∂ψψψ/∂ααα are Jacobians,
which are described in Appendix.

The uncertainties of the fitted and derived parameters, the elements of vectors θθθ and ψψψ, are
determined as the square roots of the diagonal elements of the matrices Cov (θθθ) and Cov (ψψψ),
respectively.
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12.6.2 Reduced Parameter Fits

Of the five fitted parameters of the geometric transit model defined in Section 12.4, the impact
parameter b, ranging between 0 and 1, basically describes the slope of the edges of transits.
When b is closer to 0, the edges are steeper. Due to the limb-darkening effect of the host star,
it is difficult to determine exactly where the transit edges start and end. Therefore, in case of
a low SNR for the flux time series, there is insufficient information to determine the impact
parameter, which leads to large uncertainties in the fitted parameters. When DV is run with
different hardware or in different computational environments, the results of the geometric transit
model fit may be inconsistent, even with the same code and input data. To resolve this problem,
a set of reduced parameter fits are implemented before the geometric model fitting of all transits
and odd-even transits: the impact parameter b is set to fixed values 0.1, 0.3, 0.5, 0.7, and 0.9,
and only the parameters tepoch, P , Rp/Rs, and a/Rs are allowed to vary. After completion of
the reduced-parameter fits, the all-transit fit and the odd-even transit fit follow with initial values
set to the fitted parameters of the reduced-parameter fit with the minimum χ2 metric and the
corresponding value of the impact parameter.

Figure 12.11 shows the diagnostic plots of the reduced parameter fits of the 6th TCE of the
target star KIC 6541920. As shown in the figure, as the fixed value of b increases from 0.1 to 0.9,
the χ2 metric varies less than 0.2% in the reduced parameter fits. However, Rp/Rs increases by
approximately 20% and a/Rs decreases by more than 50%. The results of the reduced parameter
fit with the minimum χ2 metric are labeled with red dashed lines in the figure. As illustrated in
Figure 12.6 of Section 12.5, an increase in Rp/Rs leads to an increase in the transit depth, an
increase in a/Rs leads to a decrease in the transit duration, and an increase in b results in the
decrease in both the transit depth and duration. The observations of Figure 12.6 are consistent
with the systematic variations in Rp/Rs and a/Rs versus b in the reduced parameter fits shown
in Figure 12.11: when the fixed value of b increases, both the transit depth and duration tend to
decrease. Therefore, Rp/Rs increases and a/Rs decreases to compensate for the effect of the
increase of b, so that a good fit of the model light curve to the flux time series is achieved.

The plot on the top of Figure 12.12 shows the light curves generated by the geometric transit
signal generator with the fixed values of b and the corresponding sets of fitted parameters tepoch,
P , Rp/Rs, and a/Rs of the reduced parameter fits of the 6th TCE of KIC 6541920. The light
curves corresponding to the fixed b values of 0.1, 0.3, 0.5, 0.7, and 0.9 are plotted as blue, red,
black, magenta, and green lines, respectively. The plot on the bottom of Figure 12.12 shows the
differences between light curves with fixed b values of 0.3, 0.5, 0.7, and 0.9 and the one with
b = 0.1. It is observed that the difference in the light curves with different values of b is small;
therefore, any small variation in the input flux time series may result in a large change in the
fitted parameters of Rp/Rs, a/Rs, and b in the all-transit fit and odd-even transit fit.

12.6.3 Odd-Even Transit Fit

When the fitting of all transits converges successfully, the same fitting algorithm is executed to
fit the odd and even transits to the geometric transit model. The results of the odd-even transit
fits are used in the diagnostic tests of the DV component to identify false positives generated by
a circular eclipsing binary target or background eclipsing binary.

The depths of multiple transits of a planet are ideally the same, and the transits of a planet
are evenly spaced in time (in the absence of significant transit-timing variations). In contrast, the
depths of primary and secondary eclipses of an eclipsing binary system are generally different
due to the difference in size and brightness of the two stars. In the odd-even transit fit, two
sets of parameters, one set for odd transits and the other set for even transits, are determined
through an iterative whitening and model fitting process described in Subsection 12.6.1, and
the derived parameters are calculated for each. For each TCE, the transit depths and epochs
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Figure 12.11 Reduced parameter fits of the 6th TCE of KIC 6541920: χ2 metric (top), fitted parameters
Rp/Rs (middle), and a/Rs (bottom) vs. impact parameter, b.

and the corresponding uncertainties derived from the odd-even transit fit are used in the eclipsing
binary discrimination tests to distinguish the flux time series of an eclipsing binary system whose
primary and secondary eclipses are identified as one TCE in the TPS component. That is, the
trial orbital period identified in TPS is half the true orbital period, so that the secondary eclipses
are folded on top of the primary eclipses. The details of the eclipsing binary discrimination tests
in the DV component are discussed in Twicken et al. (2018).

Figure 12.13 shows the folded unwhitened flux time series of the odd and even transits of
the eclipsing binary target KIC 6960446. Figure 12.14 shows the folded whitened flux time
series of the odd and even transits of the same target and the folded whitened model light curves
generated with fitted parameters of the odd and even transits, respectively. As shown in the
figures, the primary and secondary eclipses are identified as one TCE by the TPS component, the
fits of odd and even transits, which are actually primary and secondary eclipses, demonstrate that
the derived transit depths of odd and even transits are different by approximately 15% and that
the transit epoch time of the even transits has a small offset of approximately one hour relative
to that of the odd transits.
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Figure 12.12 The plot on the top shows light curves generated with the geometric transit signal generator
with the fixed b values of 0.1, 0.3, 0.5, 0.7, and 0.9 and the corresponding sets of fitted parameters tepoch,
P ,Rp/Rs, and a/Rs of the reduced parameter fits of the 6th TCE of KIC 6541920. The plot on the bottom
shows the differences between light curves with fixed b values of 0.3, 0.5, 0.7, and 0.9 and one with b = 0.1.

Figure 12.13 Folded unwhitened flux time series of the odd (left) and even (right) transits of KIC 6960446.

12.6.4 Outputs of Geometric Transit Model Fits

When a TCE is identified in the multiple-planet search, as described later in Section 12.8, a
simple check is implemented before fitting the TCE. When the eclipsing depth is more than
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Figure 12.14 Folded flux time series and model light curves, both in whitened domain, of the odd (top)
and even (bottom) transits of KIC 6960446.

250,000 ppm, the TCE is labeled as a suspected eclipsing binary and geometric transit model
fitting is not performed.

When the geometric transit model fitting algorithm is completed successfully, the fitted pa-
rameters and uncertainties, the derived parameters and uncertainties, and the goodness of fit
metrics, etc. are saved in the DV output structure. In addition, a set of diagnostic figures are gen-
erated by the geometric transit model fitting algorithm. The diagnostic figures are included in
the DV report produced for each target with at least one TCE (Twicken et al., 2016) and archived
at the Exoplanet Archive at NExScI (Akeson et al., 2013). As examples, the diagnostic plots
of the all-transit fit of the 6th TCE of the target star KIC 6541920 are shown in Figure 12.15,
Figure 12.16, and Figure 12.17.

The plot on the top of Figure 12.15 shows the detrended, folded unwhitened flux time series
of all transits of the TCE, and the plot on the bottom of Figure 12.15 shows the corresponding
folded whitened flux time series in the same phase range. It is noted that the vertical scales
of the two plots in Figure 12.15 are different: the unwhitened flux on the top is dimensionless
while the whitened flux on the bottom is in units of the standard deviation of the unwhitened
flux. The transit depth derived from the all-transit fit is illustrated with a horizontal red line in
the plot on the top. In the plot on the bottom, the folded whitened light curve is illustrated in red,
which is generated by the geometric transit signal generator with the fitted parameters derived
from the robust fit to all transits. The flux data whose robust weights are larger than 0.1 in the
all-transit fit are plotted as dark green dots, otherwise, in light blue dots. The residuals of the fit,
determined as the difference of the binned average values of the whitened flux and the whitened
model light curve, are plotted as green dots. The same residuals, offset by 180◦ in phase, are
plotted as magenta dots, to aid in the detection of a secondary eclipse. Figure 12.16 shows the
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folded weights of the robust fit of the all-transit fit of the 6th TCE of the target star KIC 6541920,
in the same phase range as Figure 12.15.

Figure 12.15 Folded flux time series and model light curve of the all-transit fit of the 6th TCE of KIC
6541920: unwhitened flux (top), and whitened flux and whitened model light curve (bottom).

Figure 12.16 Folded robust weights of the all-transit fit of the 6th TCE of KIC 6541920.

Figure 12.17 shows the detrended, folded unwhitened flux time series of the transits of the 6th
TCE of the target star KIC 6541920 by quarter and season, as well as the corresponding folded
unwhitened model light curves of the all-transit fit. The folded transits from the same year of the
Kepler mission are plotted in the same row, and the folded transits in the same season are plotted
in the same column. For example, the folded transits in Q4 are shown in the upper right corner
of the figure. The folded transits of the first year, including Q1, Q2, Q3, and Q4, are shown in
the upper left corner, and the folded transits in Season 2, including Q4, Q8, Q12, and Q16, are
shown in the lower right corner. At the lower left corner, the folded transits in all 17 quarters of
the Kepler science data are illustrated.
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Figure 12.17 Folded flux time series of the transits and folded model light curves of the all-transit fit,
both unwhitened, of the 6th TCE of KIC 6541920 by quarter and season.

For the odd-even transit fit, as illustrated in Figure 12.13 and Figure 12.14, the plots of folded
unwhitened flux time series of odd and even transits are placed horizontally, and the plots of
folded flux time series and folded model light curves, both whitened, are placed vertically, so
that the difference in the derived depths and the offset in the fitted transit epoch times of the odd
and even transits can be easily observed.

For the reduced parameter fits, a set of diagnostic plots, the same as those of the all-transit fit,
are generated for each fit. In addition, as illustrated in Figure 12.11, several diagnostic plots are
generated to illustrate the variations of the χ2 metric and fitted parameters versus the fixed value
of the impact parameter. The fit with the minimum χ2 metric is labeled with red dash lines on
these figures.

12.6.5 Alerts of Failed Fitting Cases

When the geometric transit model fit fails, an alert is generated indicating what the failure is and
where it occurs. Table 12.3 lists the top five alerts of the failed all-transit fits.

When the geometric transit model fit fails, an alert is generated indicating the nature of the
failure and where it occurs. These alerts are included in the Appendix of the DV report. Ta-
ble 12.3 lists the top five alerts of the failed all-transit fits in the DR25 DV processing.

As shown the the table, the most common failure of the all-transit fits is that the time used
by the fitting algorithm goes beyond the preset limit and the fit is stopped during the call of the
function “model function.” This usually happens when an anomalously noisy flux time series is
fitted with a transit model; the criterion of convergence can never be met and the algorithm goes
into an infinite loop.



TRAPEZOIDAL MODEL FITTING ALGORITHM 341

Table 12.3 Top five alerts of failed all-transit fits in DR25 DV run.

Index Alert Type Number
1 dv:modelFunction:fitTimeLimitExceeded 1,012
2 dv:fitTransit:transitEpochBkjdBigDifferenceFromTceValue 592
3 dv:fillPlanetResults:transitDurationSmallerThanLowerBound 262
4 dv:computeLargeBodyTransitLightCurve:takingTooLong 45
5 dv:transitFitClass:insufficientTransitsToFit 41

In the fitting algorithm, several check points are set to verify the validity of the fit results, or
else the fit results are labeled as invalid. For example, the fitted parameter of the transit epoch
time tepoch should fall in a range centered on the corresponding TCE value given by the TPS
component. Furthermore, the derived transit duration cannot be smaller than the duration of a
LC interval (29.4 min). As shown in items 2 and 3 of Table 12.3, the alerts of invalid fit results
are generated during the call of the functions “fit transit” and “fill planet results.”

The fourth alert of Table 12.3 is generated when the time used in the iterative numerical
integration algorithm, as described in Section 12.5, exceeds the preset limit in the call of the
function to compute the transit light curve when the small-body approximation is not applicable.
The fifth alert occurs during the call of the function “transitFitClass” when too many flux data
points are gapped and the number of remaining transits is less than 2 in the all-transit fit; as a
result, there is insufficient information to determine reliable parameters of the transit model.

12.7 Trapezoidal Model Fitting Algorithm

As an optional configuration of the transit model fitting in the DV component, the light curve of
the target for which a TCE is generated can also be fitted by a trapezoidal model. The trapezoidal
model is a simple description of the basic characteristics of the transits, and may converge to a
successful fit when the limb-darkened transit model fit fails. In these cases, the trapezoidal model
fit parameters can be used to support subsequent DV diagnostic tests, which otherwise could not
be performed (see Chapter 11 Twicken et al., 2018).

The trapezoidal model includes the following four fitted parameters:

Transit epoch time tepoch (BKJD): same as the fitted parameter of the geometric model
defined in Subsection 12.4.1;

Transit depth D (ppm): same as the derived parameter of the geometric model defined in
Subsection 12.4.2;

Transit mid-duration dmid (hours): the duration of transit at half of the transit depth, as
illustrated in Figure 12.4;

Ratio of ingress time to mid-duration din/dmid (dimensionless): the transit ingress time
din is same as the derived parameter defined in Subsection 12.4.2, but this is the ratio of the
ingress time to mid-duration.

The orbital period P (days) is set to the corresponding TCE parameter value provided by the
TPS component in the transit signal generator with the trapezoidal model.

An alternative detrending algorithm based on the nonparametric penalized least squares method
from Garcia (2010) is applied to the PDC light curve prior to the trapezoidal model fit. The algo-
rithm allows for missing data via weight assignment and solves for the free parameter controlling
the amount of smoothing using a generalized cross validation method. To prevent suppression
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of the transit signal we treat data in transit according to the TCE ephemeris and transit duration
as missing with a weight of zero. Each quarterly PDC light curve is detrended independently.
When a high frequency (similar or shorter time scale than the transit signal) astrophysical signal
is present in a light curve, the automated method for determining the smoothing parameter results
in unwanted suppression of the transit signal. To prevent over-smoothing, the smoothing parame-
ter is determined on a light curve with a low-pass filter applied. The low-pass filtered light curve
is generated by subtraction of a high-pass (simple two-point difference) filtered version of the
light curve. The adopted detrending model, which results from using the smoothing parameter
estimated from the low-pass filtered version of the light curve, is used in normalization of the
PDC light curve.

The trapezoidal model fitting algorithm is implemented with 10 repeated LM fits. For each
fit, the initial value of the fitted parameter is set randomly with a uniform distribution in a pre-
determined range. The outputs of the trapezoidal model fitting algorithm are determined as those
of the LM fit with the minimum χ2 metric.

Figure 12.18 shows a diagnostic plot generated in the trapezoidal model fit of the 6th TCE
of KIC 6541920. Only the flux data whose timestamps fall in the time ranges of 8 times the
transit duration (one of the TCE parameters generated by the TPS component) and centered at
the transit center time are employed in the trapezoidal model fit. The flux data points within this
range used in the fit are plotted as dark green dots in the figure, otherwise, in light blue dots. The
folded light curve generated by the trapezoidal model with the fitted parameters is plotted as red
lines and the residual of the fit is offset vertically for clarity and plotted as green dots. Since the
whitening filter, described in Subsubsection 12.6.1.1, is not used in the trapezoidal model fitting
algorithm, all the data shown in Figure 12.18 are in the unwhitened domain.

Compared to the plot on the bottom of Figure 12.15 of Subsection 12.6.4, the bottom of the
transit is flat in the model light curve shown in Figure 12.18 since the limb-darkening effect is
not included in the trapezoidal transit model.

The trapezoidal model fit provides a quick assessment of the transit signal. The fitted trape-
zoidal transit model is used in the diagnostic tests of the DV component when the fit with the
geometric transit model fails or when the fit is not performed, such as for suspected eclipsing
binaries.

Figure 12.18 Folded flux time series and folded model light curve of the trapezoidal model fit, both
unwhitened, of the 6th TCE of KIC 6541920.

12.8 Multiple-Planet Search

After the fitting process has completed, the data points within 1.5 times the transit duration from
the central time of the nearest transit are removed, where the transit duration and the central time
of transits are determined from the fitted parameters of the all-transit fit. So the signature of the
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known TCE is removed, and the residual flux is subjected to a search for additional planets by
calling TPS in the DV component. The transit model fitting algorithms, including the reduced
parameter fits, all-transit fit, odd-even transit fit, and the trapezoidal model fit, are applied again if
an additional TCE is generated. The search for additional planets concludes when no additional
TCEs are produced or an iteration limit is reached, as shown in the flowchart of Figure 12.2.

Figure 12.19 shows the light curve of KIC 6541920 (Kepler-11) from Q1 to Q4. The quarterly
segments are offset vertically for clarity. The transits of six TCEs are labeled with different
colors and symbols in the figure. The first TCE, labeled with red circles, is identified by the TPS
component and the corresponding parameters to characterize the TCE are provided to DV. The
remaining five TCEs are identified in the multiple-planet search by calling TPS directly in the
DV component.

Figure 12.19 Light curve of KIC 6541920 from Q1 to Q4 and transits of six TCEs.

Figure 12.20 shows the folded flux time series of KIC 6541920 in the unwhitened domain,
phased with the fitted parameters tepoch and P of the 5th and 6th TCEs, respectively. The binned
average values of the folded flux and the folded model light curve are plotted as blue and red
dots, respectively. The triangles in different colors show the location of the transits of all six
TCEs in the phased flux time series.

12.9 Performance of Transit Model Fitting

The 17 quarters of primary mission science data, collected by the Kepler spacecraft from May 13,
2009 to April 8, 2013, were processed by the SOC 9.3 codebase of the Kepler Data Processing
Pipeline in January 2016. 17,230 target stars, which generated TCEs in the TPS component,
were processed successfully by the DV component. This pipeline run is referred to as DR25, and
the TCE population was described in Twicken et al. (2016).
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Figure 12.20 Phased flux time series of KIC 6541920 with the fitted parameters tepoch and P of the 5th
(top) and 6th (bottom) TCEs, respectively.

Among a total of 34,032 TCEs generated in the TPS component and in the multiple-planet
search of the DV component, 239 (0.7%) TCEs were labeled as suspected eclipsing binaries,
2,062 (6.1%) TCEs failed in the all-transit fit, and 31,731 (93.2%) TCEs completed the all-transit
fit successfully. Out of 31,731 TCEs with successful all-transit fits, 2,620 (8.3%) TCEs failed in
the odd-even transit fit, and 29,111 (91.7%) TCEs completed the odd-even transit fit successfully.
33,125 (97.3%) out of 34,032 TCEs completed the trapezoidal model fit successfully.

Figure 12.21 compares the orbital period of the DV all-transit fit and the corresponding KOI
parameter produced independently (Rowe et al., 2014). The plot on the left shows all orbital
periods in the comparison and the plot on the right shows the orbital periods ranging from 0 to
20 days only. The diagonal green line shows where the DV fitted orbital period value is equal to
the KOI parameter value; the other four green lines indicate that the two period values differ by
a factor of 1/3, 1/2, 2, and 3, respectively. It is observed in Figure 12.21 that the orbital periods
of some TCEs identified in TPS and DV are double or half of the corresponding KOI values.

Figure 12.22 compares the transit depth derived from the DV all-transit fit and the corre-
sponding KOI parameter. Similar to Figure 12.21, the plot on the left shows all-transit depths
in the comparison and the plot on the right shows the transit depths ranging from 0 to 500 ppm
only. The diagonal green line shows where the DV fitted transit depth value is equal to the KOI
parameter value. It is observed that the KOI values of the transit depth are larger than the corre-
sponding DV fitted values for many TCEs. Investigations show some short-period transit signals
are degraded in the light curve preprocessing procedure of harmonic removal when the orbital
period is small (Christiansen et al., 2013, 2015).

A software defect introduced into the SOC 9.3 code for the reduced parameter fits came to
light after the DR25 run. As discussed in Subsection 12.6.1, only the data points within the range
of the transit and a buffer on each side of the transit are employed in the weighted nonlinear least-
squares fitting. The weights are assigned 1 and 0, respectively, depending on whether the data
points are used in the fitting or not. As shown in Equation 12.12, the χ2 metric is related to how
many data points are used in the fit: the more data points used in the fit, the larger the χ2 metric.
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Figure 12.21 Comparison of DV Fitted parameters and KOI parameters: all orbital periods (left) and
orbital periods ranging from 0 to 20 days (right).

Figure 12.22 Comparison of DV Fitted parameters and KOI parameters: all-transit depths (left) and
transit depths ranging from 0 to 500 ppm (right).

In the SOC 9.3 codebase, the data points employed in the reduced parameter fits are related to
the fixed value of the impact parameter b. As a result, the calculated χ2 metric is improperly
related to the value of b: the closer b is to 1, the smaller the χ2 metric. The software defect
was corrected in a modified SOC 9.3 codebase, which was used in a supplemental DV run in
August 2016. Figure 12.23 shows the diagnostic plots of the χ2 metric versus b of the reduced
parameter fits of the 1st TCE of KIC 6541920 (the planet Kepler-11e), which were generated
by the SOC 9.3 codebase in January 2016 and the modified SOC 9.3 codebase in August 2016,
respectively. As shown in the plot on the top of Figure 12.23, due to the software defect, the
χ2 metric systematically decreases as b increases so the result of the reduced parameter fit with
the fixed value of b = 0.9 is always selected to seed the all-transit fit. The same was true for
all TCEs in the DR25 DV run. In the plot on the bottom of Figure 12.23, there is no systematic
decrease of the χ2 metric as b increases, and b = 0.5 is selected to seed the all-transit fit.

As shown in Subsection 12.6.2, flux time series with low SNR including those with transiting
planet signatures of small planets (relative to the size of their host stars) may be well fitted over
a wide range of impact parameter values. Figure 12.24 shows the distributions of the fitted
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Figure 12.23 The diagnostic plots of χ2 versus b of the reduced parameter fits of the 1st TCE of KIC
6541920, generated by the SOC 9.3 codebase in January 2016 (top) and the modified SOC 9.3 codebase in
August 2016 (bottom), respectively. As shown in the plot on the top, due to a software defect introduced
into the 9.3 codebase, the χ2 metric of the reduced parameter fit systematically decreases as the fixed value
of the impact parameter b increases. In the plot on the bottom, there is no systematic decrease of the χ2

metric as b increases.

parameter b in the all-transit fits of a set of 16,514 TCEs, generated in the DR25 run with the
SOC 9.3 codebases in January 2016 and in the supplemental DV run with the modified SOC 9.3
codebase in August 2016, respectively. The 16,514 TCEs were selected from the 1st TCEs of
the targets, which completed the all-transit fits successfully in both runs. The distribution of the
fitted parameter b is biased toward the initial seed value of b = 0.9 in the outputs of the all-transit
fits with the SOC 9.3 codebase, as shown in the plot on the top of Figure 12.24. In the plot on the
bottom of Figure 12.24, there is no bias toward b = 0.9 in the distribution of the fitted parameter
b in the all-transit fits with the modified SOC 9.3 codebase. Figure 12.25 shows the distributions
of the fitted parameter b in the all-transit fits of a set of 1,292 TCEs in both DV runs. The set
of 1,292 TCEs, a subset of the 16,514 TCEs, was selected as the fitted parameter Rp/Rs was
larger than 0.1 in the supplemetal DV run in August 2016. It is observed that the convergence of
the all-transit fit is essentially independent of the initial seed value of the impact parameter b for
large planets.

As discussed by Twicken et al. (2016), transiting planets with a high impact parameter must
be larger than those with a lower impact parameter for given transit depths on the same host stars
because of the limb-darkening effect. It is noted that all planetary candidates in the DR25 Kepler
Mission catalog by Thompson et al. (2018) were modeled independently by the TCE Review
Team (TCERT), so the bias discussed here relates only to TCE products of the SOC 9.3 DR25 of
the Kepler Science Data Processing Pipeline at the NASA Exoplanet Archive.
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Figure 12.24 Distribution of the fitted parameter b of the all-transit fits of a set of 16,514 TCEs, generated
by the SOC 9.3 codebase in January 2016 (top) and the modified SOC 9.3 codebase in August 2016 (bottom),
respectively. As shown in the plot on the top, the distribution of the fitted parameter b is biased toward
b = 0.9 in the outputs of the all-transit fit of the SOC 9.3 codebase. In the plot on the bottom, there is no
bias toward b = 0.9 in the distribution of the fitted parameter b in the outputs of the all-transit fit of the
modified SOC 9.3 codebase.

12.10 Conclusions

We have presented the transit model fitting and multiple-planet search algorithm of the Data
Validation component of the Kepler Science Data Processing Pipeline. The performance of the
algorithm is demonstrated by the results of processing 17 quarters of Kepler science data using
SOC 9.3 codebase of the Kepler Science Data Processing Pipeline in January 2016 (DR25).
The results of the transit model fitting of the TCEs identified by the pipeline are accessible by
the science community at the NASA Exoplanet Archive. The Kepler SOC 9.3 codebase is also
available to the general public through GitHub. A software defect that biased the seeding of the
limb-darkened model fits and ultimately the model fit results for small planets was corrected in a
modified SOC 9.3 codebase, which was implemented in a supplemental DV run after DR25.

Appendix A: Jacobians in Subsubsection 12.6.1.5

The Jacobians ∂ψψψ/∂θθθ and ∂ψψψ/∂ααα in Subsubsection 12.6.1.5 have the following forms:
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Figure 12.25 Distribution of the fitted parameter b of the all-transit fits of a set of 1,292 TCEs, generated
by the SOC 9.3 codebase in January 2016 (top) and the modified SOC 9.3 codebase in August 2016 (bottom),
respectively. The set of 1,292 TCEs, a subset of the 16,514 TCEs, was selected as the fitted parameter
Rp/Rs was larger than 0.1 in the supplemental DV run in August 2016. It is observed that the convergence
of the all-transit fit is essentially independent of the initial seed value of the impact parameter b for large
planets.
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Note that the derived parameters i, dtr, din, and D are determined independently of the stel-
lar parameters; therefore, their partial derivatives with respect to the stellar parameters are all
identically zero.

Since the transit depthD is determined from the model light curve generated by the geometric
transit signal generator, the elements ∂D/∂ (Rp/Rs), ∂D/∂ (a/Rs), and ∂D/∂b of the Jacobian
∂ψψψ/∂θθθ are determined numerically. The other non-zero elements of the Jacobians ∂ψψψ/∂θθθ, and
∂ψψψ/∂ααα are calculated according to the following equations:
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CHAPTER 13

ACRONYMS AND ABBREVIATION LIST

ADB Array Data Base

ADC Analog-to-Digital Converter

ADU Analog-to-Digital Unit

AED Ancillary Engineering Data

AR Archive to DMC Pipeline Module

ARP Artifact Removal Pixels

AU Astronomical Unit

BART 2-D Black and Artifact Removal Tool

BDT Barycentric Dynamic Time

BKJD Barycentric-corrected Kepler Julian Date

BMJD Barycentric-corrected Modified Julian Date

CAL Calibration Pipeline Module

CCD Charge Coupled Device

CDF Cumulative Distribution Function

CDPP Combined Differential Photometric Precision

CDQ Check Data Quality Pipeline Module

CM Catalog Management Pipeline Module

COA Create Optimal Apertures Pipeline Submodule in TAD

COMP COMPression Pipeline Module

CSCI Computer Software Configuration Item

CTE Charge Transfer Efficiency

DAWG Data Analysis Working Group

DG Data Goodness Pipeline Module

DMC Data Management Center
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DR Data Receipt Pipeline Module

DS Data Store Pipeline Module

DSN Deep Space Network

DV Data Validation Pipeline Module

DVA Differential Velocity Aberration

DYN Dynamic Black (aka Dynablack) Pipeline Module

Dec Declination

EPIC Ecliptic Plane Input Catalog

ETEM End-To-End Model Pipeline Module

FAP False Alarm Probability

FAR False Alarm Rate

FC Focal plane Characterization

FFI Full Frame Image

FFT Fast Fourier Transform

FGS Fine Guidance Sensor

FITS Flexible Image Transport System

FOP Follow-up Observation Program

FOV Field of View

FP False Positive

FPG Focal Plane Geometry model

GOF Goodness of Fit metric

GO Guest Observer

HAC Histogram Accumulator in COMP

HAG Histogram Aggregator in COMP

HGA High Gain Antenna

HGN Histogram GeNerator in COMP

HZ Habitable Zone

KADN Kepler Ames Design Notes

KIC Kepler Input Catalog

KJD Kepler-modified Julian Date

KOI Kepler Object of Interest
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LC Long Cadence

LDE Local Detector Electronics

LM Levenberg-Marquardt algorithm

LS Least-Squares

LSI Linear Shift-Invariant system

LUN Logical Unit Number

MAD Median Absolute Deviation

MAP Maximum A Posteriori

MAST Mikulski Archive for Space Telescopes

MES maximum Multiple Event Statistic

MJD Modified Julian Date

MLE Maximum Likelihood Estimator

MLM Maximum Likelihood Method

MMO Mission Management Office

MMOC Multi-Mission Operations Center

MOC Mission Operations Center

MOM Message Oriented Middleware

MPD Moiré Pattern

MR Mission Reports Pipeline Module

NAS NASA Advanced Supercomputing Division

NExScI NASA Exoplanet Science Institute

OWT Overcomplete Wavelet Transform

PA Photometric Analysis Pipeline Module

PAD PPA Attitude Determination Pipeline Module

PAG PMD Aggregator Pipeline Module

PC Planet Candidate

PCHIP Piecewise Cubic Hermite Interpolation

PDC Pre-Search Data Conditioning Pipeline Module

PDC-MAP Pre-Search Data Conditioning Maximum A Posteriori algorithm

PDC-msMAP Pre-Search Data Conditioning MultiScale Maximum A Posteriori algorithm

PDF Probability Density Function
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PDQ Photometer Data Quality Pipeline Module

PI Pipeline Infrastructure Pipeline Module

PMD PPA Metrics Determination

POOF Pixel Overlay On FFI

POU Propagation of Uncertainties

PPA Photometer Performance Assessment Pipeline Module

ppm Parts-per-million

PRF Pixel Response Function

PSD Power Spectral Density

PSF Point Spread Function

RMOM Remote Message Oriented Middleware

rms Root Mean Square

ROI

RP Reference Pixel

RS

SAN Storage Area Network

SAP Simple Aperture Photometry

SAS Science Analysis System

SBT Sandbox Tools

SC Short Cadence

SDF Suspect Data Flag

SES Single Event Statistic

SLIB Support LIBraries

SNR Signal-to-Noise Ratio

ssh Secure Shell Protocol

SO Science Office

SOC Science Operations Center

SOL Start of Line

SOLR Start of Line Ringing

SPSD Sudden Pixel Sensitivity Dropout

SPWG Stellar Properties Working Group



359

SSR Solid State Recorder

STFT Short Time Fourier Transform

STScI Space Telescope Science Institute

SVD Singular Value Decomposition

TAD Target and Aperture Definitions Pipeline Module

TCAT Temperature Coefficient Analysis Tool

TCE Threshold Crossing Events

TCERT Threshold Crossing Event Review Team

TESS Transiting Exoplanet Survey Satellite

TPS Transiting Planet Search Pipeline Module

TTV Transit Timing Variation

TUS Target Under Study

UOW Unit Of Work

UTC Coordinated Universal Time

WGN White Gaussian Noise

ZMUV Zero-Mean, Unit-Variance WGN
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