Towards an Improved High Dispersion Ripple Correction

The current SIPS high dispersion ripple correction formula is a para-

meterized sinc function of the form
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sin ﬂz (1 + aﬂzxz)
(7X)
where
X = MIN m (A Ac -l m being the order number, and A
c
2.61/mw

the central wavelength corres-

ponding to the peak of the blaze.

The parabolic factor was introduced when the observed blaze function was

found to be broader than the theoretical sinc. In NASA IUE Newsletter, 14

I. Ahmad suggested that the SWP ripple correction could be better repre-

sented by a sinc function with no parabolic correction of the form

.2
sin  TOX

(TraX)2

where o = 0.85. This function appeared to fit the ends of the orders better
and had the aesthetic advantage of introducing the parameterization directly
into the sinc function.

In an attempt to justify the Ahmad fit, an investigation was begun to
derive a more complete theoretical form of the diffraction envelope produced
by a perfect plane blazed grating used in high orders. The result is that,
with a slight change in the definition of X, the Ahmad parameterization is the
appropriate functional form that should be used for the ripple correction, the
parameter & being dependent upon the profile of the grating grooves.

In addition an effort was made to find a theoretical cause for the
apparent variation of the grating constant K = mAc as documented, for example,
by Beeckmans and Penston (Three-Agency Meeting Report, 1979). With this
simple theory, no explanation could be found.

The following sections discuss the derivation of the blaze function in
wavelength space, the least-squares fitting of the sinc function to IUE
standard stars, and the limits of using this function to connect for the

ripple.
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a. Derivation of the Blaze Function

The blaze function of a plane grating used in high orders can be
adequately approximated in scalar theory by the diffraction pattern
produced by a single groove facet. Consider the grating profile of figure 1

for a grating with groove frequency 1/d, facet length a and blaze angle Y.

Figure 1

The dispersive properties of the grating are set by the incident and dif-
fracted angles with respect to the grating normal and the groove spacing d

through the grating equation
= i + si .
m A d (sin Ol sin @2)

The blaze pattern is determined by the facet length a and the incident and

diffracted angles measured from the facet normal:
sin® X / (T%)° (1)
where
a . .
= = +
X 5 (sin Wl sin WZ)

Substituting Wi = Gi - Y, one can show that

[cos Y ( %?-) - sin v (cos Ol + cos 02)] .

>l

To eliminate the cos Ol texrm, we note that the maximum of the diffraction

envelope occurs where Wl = - Wz, so that at the center of the blaze

61 + OZC = 2 y. From the grating equation we can show that
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cos @1 = coty (m Ac / d) - cos OZc

and thus
a m .
N {cos Y (Ep (A - XC) - sin Y (cos 92 - cos Ozc) } .

Differentiating the grating equation with respect to 62 yields
cos O_ = 2 PQ
2 a a
2
so we find that the argument for the sinc function is of the form

X=mcos Y (%) %— { ( A - Xc) - tan Yy (g%- - %%‘ ) } (2)
2 2c
Note that this is similar to the Ahmad form with a = cos vy (a/d), i.e.,
determined completely by the grating profile. A term also arises due to
the change in angular dispersion across the orders.

Since the IUE echelles are used nearly in Littrow mode, we can eliminate
the angular dispersion factor in the following manner. We write the angular
dispersion in the form

\ 992 ) sin Ol + sin 92 .
dai

cos @2

In near Littrow mode, O, > 92 % Yy and the dispersion can be approximated

1
by
a8
A ai2 = 2 tan Yy . (3)
We then arrive with
X=l/2mcosy(%)[l—)\/l] (4)
c

which is of the Ahmad form with the modification that the term in brackets in
(2) has been divided by A rather than Xc.
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Since the Ahmad o merely sets the width of the blaze function and
cannot explain the observed variation of K, a more complex functional form
of X was also examined that included the dispersion term in (2). Writing

this term in the form

d\ dr ax (5)
- aA ar oA -1
tany 35 (5 / ES) )
2c 2 2c

and assuming a constant camera focal length for each wavelength along an
order so that the ratio of angular to linear dispersions is constant,

equations (2), (3) and (5) yield
X=mao a ai } (6)
{l - AC/A [ 1+ 0.5 (E§ / a;é - lﬂ

b. Fits to the Sinc Function

Least-squares fits of equations (1), (4), and (6) were performed on
IUE standard stars using the software developed by Ahmad. The fitting
routine yields values of the grating constant K, fitting parameter o,
and the intensity normalization scale factor as derived for each order. To
minimize the effects of noise at the ends of the orders, the first and last
25 points were eliminated from the fitting.

Figure 2 shows a typical fit to the full dispersion sinc form compared
to the correction supplied by SIPS. The shape of the two ripple curves both
adequately follow the observed blaze function, but because the SIPS correction
utilizes a constant K, the peak of the curve is shifted in wavelength.

Figure 3 jllustrates a typical variation of K and o with order for both
spectrographs from equation (6). While K establishes the wavelength center-
ing, the 0 parameter determines the width of the ripple and is found to be
constant with order except at the weakly exposed highest and lowest orders.

It was found that even the full dispersion fit could not remove the
apparent variation of K. Some of the variation can be attributed to camera
wavelength sensitivity changes across each order. This affects both the shape
and wavelength center of the observed blaze. Figure 4 shows the LWR K values
‘derived by using the low dispersion sensitivity curve as an approximation for

the camera sensitivity. As expected, the greatest difference occurs at the
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lowest and highest orders where the slope of the sensitivity curve is the
steepest.

Figure 5 illustrates part of a ripple-corrected LWR spectrum using
fits to equation (4) both with and without the low dispersion sensitivity.
When ignoring the sensitivity curve, each order is merely flattened so that
the ends do not properly overlap with adjacent orders. Including the
sensitivity gives the appropriate overlap. Clearly a more detailed
formulation incorporating a treatment of the full echelle setup will be

necessary to derive accurate flux measurements. Such work is now underway.

Conclusions

The parameterized sinc function as suggested by Ahmad is found to be a
more appropriate form for the ripple correction because it can be justified
from physical optics. 1In practice, the current SIPS function differs
marginally in shape from the true form; however for both corrections, a
varying K factor is necessary to properly align the peak of the blaze pattern
to the observed values.

Work has begun to determine a set of K values that can be used to insure
that adjacent orders properly overlap. Already there is evidence that the
K values change with time and camera temperature due to shifts of the spectral
format on the camera faceplates.

As the theoretical blaze derived in this study is appropriate for a
single perfect plane grating illuminated in unpolarized light, it is not
suwrprising that the simple sinc form cannot explain all the details of a full

echelle system.

Thomas B. Ake

9 September 1981
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