Table of Contents

ESA IUE Newsletter No. 46 Februa	ary 1996
Observatory Controllers Message	3
Personnel Changes	5
IUE Observing Restrictions for the 19th Episode D. Hermoso	10
IUE Data Processing and Distribution Policies E. Solano, D. de Martino, J.D. Ponz	13
The IUE Data Base of the 19th Episode M. Barylak	19
A WWW server for IUE's 19th episode data distribution I. Yurrita	23
Status of the IUE Final Archive at VILSPA D. de Martino, J.D. Ponz, E. Solano	25
IUE-SAX coordination <i>K.S. de Boer</i>	27
IUE plumbing: "Bent-pipe Operations" <i>M. Barylak</i>	29
Prediction of Background Radiation H. Andernach, C. la Dous	31
Beyond US Science Operations R. Arquilla, M.T. Carini	34
Some IUE Highlights	35
Parking IUE Norbert Schartel	37
List of approved IUE 19th episode proposals and their contact RAs \ldots	38
Teleworking for IUE M. Barylak	50
Form for Requesting IUE Archive Material	53

(This page intentionally left blank)

...

Editor M. Barylak

Published by ESA IUE Observatory Apartado 50 727 E-28080 Madrid - SPAIN Telephone +34 1 813 1100 Telex 42555 VILS E FAX +34 1 813 1139 Internet: iueobs@vilspa.esa.es

OBSERVATORY CONTROLLER'S MESSAGE

W. Wamsteker

ESA IUE Observatory

Since the IUE Project has completely revised its organizational structure, the operational philosophy and the user services for the 19th and Final Episode, it is logical that the current Newsletter is mainly dedicated to the practical implementations of the associated "Hybrid" IUE Operations.

As all of you will know by now, the withdrawal of NASA from the IUE science operations has been utilized by the ESA IUE Project to fully modernize the IUE Project. Of course some units have had to be maintained with their original H/W, since a replacement would have been unrealistic for the two years of the Final IUE Science Program as planned by the Joint IUE Allocation Committee in July last year.

As a consequence of the increased demand for support in the Hybrid's 16 hrs. science operations mode from VILSPA, you will find in this newsletter the presentation of a large number of new science and telescope-operations staff. All these people have run through an extremely rigid training to bring them up to speed in the IUE operations. The success of the operational "Hybrid" mode is not in the last part due to their dedication to the task ahead but also to the senior staff for the enormous efforts done to transfer the knowledge of operations both as known to them and the one adjusted to the new operational configurations.

> On February 22, 1996, ESA's Science Programme Committee decided to terminate the IUE operations not later than September 30, 1996, as explained by Prof. R.M. Bonnet (see following page) to the IUE users. This decision was a consequence of the budgetary restrictions imposed on the Science Programme of ESA at the Council of Ministers Level in October 1995.

D.SCI/RMB/db/1176

Paris, 26 February 1996

To: IUE Users

Dear Colleagues,

As was already announced in the Call for Proposals, the actual duration of the 19th and last Episode of IUE Observing was uncertain at the time of issue. Although we have considered all possible options, conditions have changed sufficiently after the financial reductions imposed on the Science Programme of ESA at the last Council of Ministers in October 1995, and a serious review of all activities supported by the Science Programme had to be initiated. As I announced in the December Newsletter, I have requested the Space Science Advisory Committee (SSAC) to review the situation in depth during a workshop which was held in January 1996.

The recommendations of the SSAC included the termination of the IUE Project. This recommendation was presented to the ESA Science Programme Committee (SPC) on 22 February 1996. After extensive consideration, the SPC accepted, with a large majority, the SSAC recommendation not to extend the IUE orbital science operations beyond 30 September 1996. This is not a happy moment, but we are living in times which are becoming more and more difficult. IUE, incidentally, is not the only programme affected by budget reductions. Nearly all other missions of the Horizon 2000 and 2000 Plus Programmes will be affected, either being descoped, delayed or cancelled.

As a consequence of the SPC decision, I have requested the ESA IUE Project Manager to ensure that a proper termination of the IUE Observing Programme will be prepared and implemented. All of those who are currently participating in the 19th Episode of IUE Observing will be contacted as soon as possible about the detailed implications of the SPC decision for the, now curtailed, 19th Episode of IUE Observations.

I would like to thank you at this stage for the continued support you have given to the IUE Project over the years. It is self-evident that the strong participation of the users has been one of the driving forces in the extraordinary success of the IUE Project. I hope that the efforts which are being made by the Project to ensure the completion of the IUE Final Archive will allow this exceptionally successful project to leave for the astronomers a data set of lasting value as a credit to all of those who have, over the years, dedicated their best efforts to the IUE Project.

Yours sincerely,

Man

R.M. Bonnet Director Scientific Programme

European Space Agency Agence spatiale ouropéenne

> Headquarters - Siège 8-10 run Marin-Hikin - F-75738 Paris Cedex 15 16 (33) 15 38 97 6 54 - For (33) 1 53 69 75 60 - Trinx ESA 202 744 F

ESA IUE Newsletter No. 46

February 1996

Personnel Changes

-.-

ESA IUE Observatory

Heinz Andernach joined the IUE Observatory as Resident Astronomer in February 1995. He received his PhD from Bochum University in 1981. He spent five postdoctoral years at the *MPI* für Radioastronomie Bonn studying the radio continuum of extragalactic sources and galaxy clusters. After a short spell in German space industry (OHB Bremen) he discovered the charm of Latin America, e.g. at the Instituto Argentino de Radioastronomía (1987/8) and the Instituto de Pesquisas Espaciais (INPE, Brasil, 1988–91) and the (almost latin-american) Canary Islands (IAC Tenerife, Spain, 1991–93). In the team of the "Lyon-Meudon Extragalactic Database" at Obs. de Lyon (France, 1993–95) he extended his database experience to the optical domain.

When he is not busy with IUE duties (or cycling back and forth to Vilspa) he works on the realization of a publicly accessible database of radio sources.

In August 1995, Armin Theissen joined the IUE team as Resident Astronomer. A former research associate at the Observatory at Bonn University, he finished his PhD thesis on "Hot subdwarf stars in binary systems" in October 1994. For his diploma in pysics he studied "Hot Subdwarf Stars in the Halo of the Galaxy".

His hobbies (beside astronomy) are reading, movies and playing guitar (Blues, Jazz, Rock, and loud) or anything which creates and modifies whatever kind of sounds or noises (he would have liked to become a sound engineer). He enjoys Sundays in bed, nights in pubs,...

Lucky Francisco Javier Marcos Fernandez got his first job as IUE S/C controller here at VILSPA. Having finished his career as Technical Telecommunication Engineer at the "Universidad Politecnica de Madrid", he took up duty starting May, 1995.

He enjoys photography and any kind of outdoor activities. For seeing a good film or listening to Blues concert, you can count him in.

Twenty five year old Cristina García Miró got the B. Sc. in Physics (specialty: astrophysics) at the "Universidad Complutense de Madrid". She likes her duties as IUE S/C controller because of helping astronomer to do science. She continues studying for her PhD at the "Laboratorio de Astrofísica Espacial y Física Fundamental (LAEFF)" concerning "Parsec scales in Active Galactic Nuclei".

Her hobbies, among others, are classical music (especially listening to live concerts), playing the piano, dancing, animals, cinemas and traveling.

Cristina Calderon Riaño holds two degrees; one in Electronics Engineering and the second in Telematics Engineering which she obtained in 1993. Planning to do an air-traffic-controller course, she joined the IUE project as IUE S/C controller instead.

She likes flying, traveling and going to the cinema. She has practiced parachuting, skydiving and paragliding and she would like to do ballooning if she continues to survive the other activities.

Another new female IUE S/C controller is Victoria Ester Moll who finished her studies as Technical Telecommunications Engineer (specialty: radio) in November 1994.

Her hobbies and interests are: music, cinema, reading, swimming, and skiing. She enjoys meeting her friends and doing long walks.

Yet another IUE S/C controller is Santiago Pascual Calviño. He studied Telecommunications Engineering in the "Escuela Tecnica Superior de Ingenieros de Telecomunicacion of the "Universidad Politecnica de Madrid" between 1981 and 1987. He has been working for four years in R+D companies in the telecommunication field. In 1992 he received a grant of the Spanish Ministry of Education to carry out research at the "European Space Research and Technology Centre (ESTEC)" – the well-known ESA establishment in Noordwijk, The Netherland.

His hobbies are: jogging, music, astronomy and ornithology¹.

¹study of birds

Francisco Jose Manso Noguerales's first job is being a IUE S/C controller. He is still studying Technical Telecommunication Engineering at the "Universidad Politecnica de Madrid" and his final project specializes in "Process and System Control".

He enjoys playing football (as goalkeeper) and likes almost all kinds of music especially "Heavy Metal". Other hobbies are sports, cinema and traveling.

Nora Loiseau did her PhD thesis (1984) at the Instituto Argentino de Radioastronomia, on the stucture and kinematics of the Small Magellanic Cloud. As a post-doc she worked for 3 years at the Max-Planck-Institut fuer Radioastronomie (Bonn, Germany) where she was involved in continuum and CO lines observations of nearby galaxies, done with various radiotelescopes (Effelsberg, the VLA and the Pico Veleta). At the INPE (Brazil), she continued studying the molecular gas distribution and kinematics of starburst and active galaxies, with the SEST radiotelescope (La Silla). Before joining IUE as IUE Resident Astronomer she worked at the Instituto Astronomico de Canarias (Tenerife).

Maria Luisa Garcia Vargas took up duty as IUE Resident Astronomer in September, 1995. She finished her studies in Physics in 1987 at the Universidad Complutense de Madrid. During the following 8 years, she worked as research assistant at the Universidad Autonoma de Madrid (UAM) and the UAM's observatory. In 1989 she received an extraordinary price for her final work in Astrophysics and the ZONTA Amelia Earhart Fellowship Award given to qualified women for advanced studies in aerospacerelated science and engineering. In 1991 she finished her PhD in Physics. The main topics of her currect research are the theoretical and observational study of stellar populations from normal extragalactic star-forming regions to active galaxies.

Her hobbies are reading, movies, swimming, rafting, and having parties with friends.

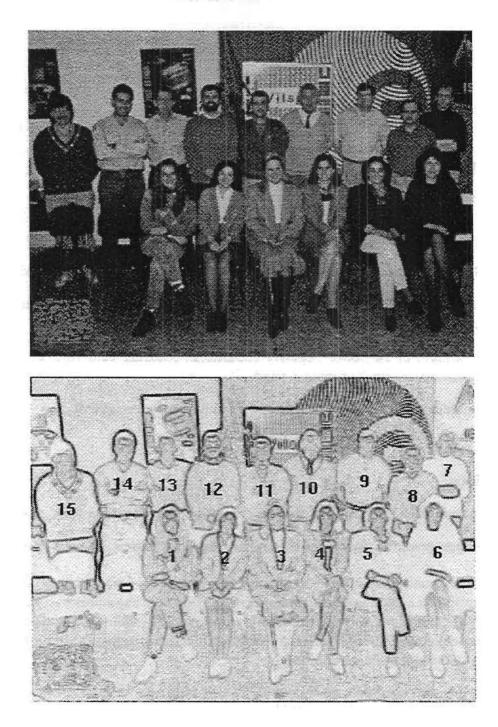
On January 15, 1995 Enrique Solano joined the IUE Resident Astronomer Team. He is well known to the IUE project as he has been working at Vilspa as Image Processing Specialist and as Computer Operator (see ESA IUE Newsletter No. 42, pg. 4, Apr. 1993). He obtained his PhD in the subject of δ Scuti variable stars at the Universidad Complutense de Madrid.

He likes sports, especially tennis and football.

Ian Skillen took up the post of IUE Resident Astronomer at VILSPA on 1st September 1995 under an INSA contract. He obtained his PhD in Astrophysics at the University of St Andrews in 1985. After that he worked for periods in the Universities of Leicester, Cambridge and Sydney, pursuing his twin interests of stellar astrophysics and computing.

His main hobbies are music, art and cinema, and collecting old manuscripts and books.

Our new secretary Carmen Rosales joined the IUE project in July 1995. She made her diploma in Secretarial Skills in June 1983 at the "Instituto Femenino Maria del Pilar Ruiz Liñares de Madrid". She has over 8 years experience in secretarial duties working for computer companies, in the "Sales Department and Manager Director's Office" and in the "Technical Director Office and Medical Department" of a multinational company in pharmaceutical industries. In 1994 she attended a course on "Management Techniques by Computers" at the "Centro de Formación en Tecnologías Aplicadas (CEFAT)" in Madrid (under an Euro-qualification and training program performed by the Spanish Ministry of Employment and the European Community).


She mostly likes drawing and painting, but also enjoys going to the cinema, trekking and dancing (modern, dancing jazz, ballet, etc.)

Departures:

• Constance LaDous (RA) left to Sonnenberg Observatory, Königsstuhl, Germany.

We wish her all the best in her new job!

The ESA IUE Observatory team for IUE's last episode

1.-Marisa Vargas; 2.-Rosario González; 3.-Carmen Ramirez; 4.-Carmen Rosales; 5.-Domitilla De-Martino; 6.-Nora Loiseau; 7.-Armin Theissen; 8.-Pedro Garcia Larios; 9.-Norbert Schartel; 10.-Willem Wamsteker; 11.-Pedro Rodriguez; 12.-Michael Barylak; 13.-John Fernley; 13.-Enrique Solana; 14.-Ian Skillen;

IUE Observing Restrictions for the 19th Episode

D. Hermoso

IUE SOS

Here are the power and thermal restrictions for the 19th Episode, valid as of July 15, 1995.

POWER

Normal operating β range, free of constraints during the whole episode:

$41^{\circ} < \beta < 102^{\circ}$

See Figure 1 for the power conditions for most common operating conditions.

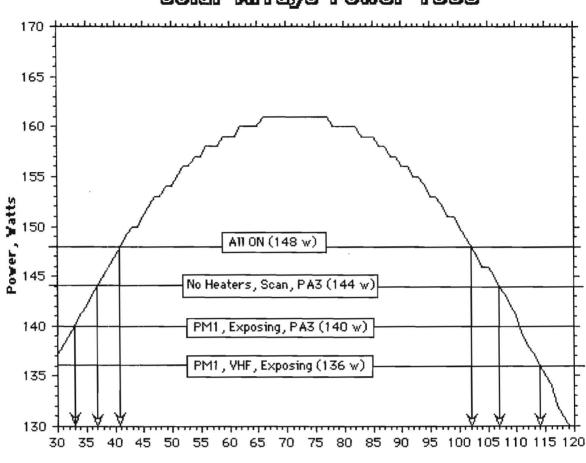
- Most known power negative conditions can be permitted with prior IUE Project approval.
- A maximum of 24 power negative conditions, reaching 22.5 volts on either battery, are allowed during any 12 month period.
- All power neutral situations will be forced into power negative.

THERMAL

Definitions:

- 1. A temperature is stable if there are no glitches in its value for at least 10 minutes.
- 2. A temperature is glitching if there are three glitches within a 10 minute period.
- The thermal balance of the engine values is achieved by switching off the HAPS heater group #2 i.e. cooling the spacecraft (S/C) down at the lower end of the β range. This heater is the last one left for temperature control of the engine values. Therefore it has been defined as ESSENTIAL ITEM and the frequency of switching this heater on/off has to be reduced to a minimum.
- The Sun-side temperatures of the S/C are limited to 90° C. Such values can be reached at β angles between 85° and 110°.
- The engine values thermal limits can be reached at β angles between 90° and 105°; as well as, between β angles of 28° and 45°.

If any of these limits is exceeded for more than 1 hour, the S/C must be maneuvered to a different β angle to cool down. To cool the S/C down takes between 3 to 5 hours.


The hot On-Board-Computer (OBC) β region is defined as follows:

Month	Lower Limit	Upper Limit
January	65°	85°
February	70°	79°
March to October	no limits apply	no limits apply
November	70°	79°
December	65°	85°

Operations are unrestricted for OBC temperatures less than 54.6° C and DMU less than 26.1° C.

Shadow Season Predictions

- Eclipse #36: 09 July to 02 August, 1995 Time of Earliest Penumbra Entry: 02:37z Time of Latest Penumbra Exit: 04:02z
- Eclipse #37: 02January to 01 February, 1996 Time of Earliest Penumbra Entry: 02:13z Time of Latest Penumbra Exit: 03:32z
- Eclipse #38: 03 July to 28 July, 1996 Time of Earliest Penumbra Entry: 02:22z Time of Latest Penumbra Exit: 03:45z
- Moon Shadows:
 - 1995:
 24 September from 07:50:27z to 08:19:09z
 25 September from 00:47:29z to 01:03:15z
 - 1996:
 17 March from 08:17:04z to 09:17:58z
- Power constraints on β range for Shadow Seasons: Batteries charging: 47° < β < 92° Batteries fully charged: 43° < β < 100°

Solar Arrays Power 1995

Beta angle

IUE Data Processing and Distribution Policies

E. Solano, D. de Martino, J.D. Ponz

ESA IUE Observatory

This article summarizes the standard IUE data processing and delivery policies of the 19th IUE episode. Please remember that the latest information about the 19th IUE episode can be read under the "World Wide Web" (WWW) at:

http://www.vilspa.esa.es/iue/iue19th.html

IUE Data Products

• LOW RESOLUTION:

the low dispersion data are processed by the new processing software known as NEWSIPS (NEW Spectral Image Processing System) which was developed in the context of the IUE Final Archive. Information about its performance can be found via the WWW at:

http://www.vilspa.esa.es/iue/IUEFA/manual/chap00/chap00.html

The processed data are stored in FITS format and consist of:

- the raw image (extension RILD),
- the linearized image (extension LILO),
- \circ the resampled spectral image (extension SILO) and
- $\circ\,$ the extracted and calibrated spectrum (extension MXLO).
- HIGH RESOLUTION:

until NEWSIPS for high dispersion data becomes available, IUESIPS software will be used to process both SWP and LWP data. These data remain in the old IUE guest observer (GO) format and comprise:

- \circ the raw (extension RAW),
- $\circ\,$ the photometrically corrected image (extension PHO) and
- $\circ\,$ the extracted and calibrated spectrum (extension MEHI).

IUE Data Delivery

Principal investigators (PIs) will be informed via FAX (i.e. copy of the Hand/Written IUE log) of all observation taken for their programs within 24 hours. The processed data are made available to PIs under both the anonymous FTP account and the WWW data server at

iuearc.vilspa.esa.es and http://iuearc.vilspa.esa.es/

respectively, not later than 14 days from the date of observation. The data will be stored there for a period of at least 4 months. It is the responsibility of the PI to retrieve his/her data from that account.

Urgent processing (24hrs) can be requested in very special cases. This needs to be clarified between the PI and the contact RA and has to be approved by the IUE Observatory Manager.

The data available for electronic retrieval are

- the MEHI files for high resolution data processed by IUESIPS and
- the SILO and MXLO FITS files for all low resolution data as processed by NEWSIPS.

In the very special case that the complete output data set (including raw image, etc.) is needed, the PIs will have to notify the contact RAs. The complete data set will then be delivered via normal mail on either EXABYTE or DAT tapes.

For those 19th episode programs which started already in August and September 1995, where low resolution data were still processed by IUESIPS, NEWSIPS re-processing can be requested.

Please note that **no other NEWSIPS re-processing requests** can be made as most of the NEWSIPS data will be available by mid-1996.

How to retrieve 19th Episode data

After processing, data are copied to the distribution area and stored in the subdirectory identified by the program ID. Low resolution data are named as CAMnnnnn.SILO and CAMnnnnn.MXLO (for instance SWP43567.SILO and SWP43567.MXLO). High resolution data are named as CAMnnnnn.MEHI (for instance, SWP43568.MEHI).

For retrieving data via any WWW browser see the article by I. Yurrita, "A WWW server for IUE's 19th episode data distribution", in this newsletter.

The procedure to retrieve data using FTP is:

```
ftp iuearc.vilspa.esa.es
Username: anonymous
Password: Your e-mail address
```

```
ftp$>$ cd pub
ftp$>$ ls
     AAAREAD.ME
                             this file
     calib
                             Calibration files (only needed for SILO)
     iuefiles
                             Data directory
     iuemidas
                             IUE context for MIDAS
     maint
                             IUE maintenance programmes
ftp$>$ cd iuefiles
ftp$>$ ls
     SA001
                             Subdirectory for programme SA001
     SA002
                             Subdirectory for programme SA002
     . . . . .
ftp$>$ cd SA001
                               To move to your subdirectory (for instance, SA001)
ftp$>$ ls
                               To list the files
ftp$>$ bin
                               To set binary transfer mode
ftp$>$ prompt
                               To disable single file confirmation
ftp$>$ mget *
                               To retrieve all the files
ftp$>$ quit
```

The current transfer rate results in about 6 minutes for low resolution data and about 15 minutes for high resolution, assuming 1 Kbyte/sec.

How to handle IUE data

Both IUESIPS and NEWSIPS data can be analyzed under MIDAS and IDL.

- MIDAS requires the IUE context, available at iuearc.vilspa.esa.es. MIDAS (version 94NOV) has proved to work properly both under Ultrix (version 4.4) and VMS (version 6.2).
- IDL requires the IUERDAF package running on version 2.0. IUERDAF works properly under Ultrix and it is being tested under VMS. This package is available at IUEDAC

How to use the IUE context under MIDAS

This context is enabled with the command set/context IUE (see the on-line help for a more detailed explanation of the commands available under this context). Examples of how to read and convert NEWSIPS low resolution and IUESIPS high resolution data in MIDAS format from disk and tape are briefly summarized below.

Example: How to read and work with the 1-D NEWSIPS Low Resolution spectrum (.MXLO) from disk ?

convert/mxlo SWP32192 (Note: without extension)

This command will create a MIDAS table with the extracted spectra as SWP32192L.tbl (for large aperture) and/or SWP32192S.tbl (for small aperture). The tables have the following columns:

ESA IUE Newsletter No. 46 February 1996

Col.	1:WAVELENGTH	Unit:ANGSTROM	Format:F10.3	R*8
Col.	2:NET	Unit:FN	Format:E15.5	R*4
Col.	3: BACKGROUND	Unit:FN	Format:E15.5	R*4
Col.	4:SIGMA	Unit:ERG/CM2/S/A	Format:E15.5	R*4
Col.	5:QUALITY	Unit:	Format:I11	I*2
Col.	6:FLUX	Unit:ERG/CM2/S/A	Format:E15.5	R*4

The command plot/mxlo plots low dispersion NEWSIPS spectra in MIDAS table format. Three options are available:

PLOT/MXLO SWP32192L F	To plot	flux and sigma spectra
PLOT/MXLO SWP32192L G	To plot	gross, flags and background spectra
PLOT/MXLO SWP32192L N	To plot	net and quality spectra

Example: How to read the NEWSIPS resampled file (.SILO) from disk ?

indisk/fits SWP32192.SILO SWP32192

This command converts FITS format on disk to standard MIDAS (.bdf) format creating the image SWP32192.bdf which allows you to use the standard MIDAS commands for images handling.

Example: How to read NEWSIPS data from tape ?

intape/fits 1-10 iue tape0

This command reads FITS format files from tape and converts them into standard MIDAS format. In the example given above, it will read the first ten images of the tape mounted in the tape unit tape0 and will create the MIDAS files iue0001.bdf, ... on disk.

Example: How to read 1-D IUESIPS High Resolution spectrum (.MEHI) from disk ?

indisk/iue SWP55901.MEHI

This command reads IUE data in GO format from disk and creates a MIDAS table (swp55901.tbl), with the following columns:

Col. Col. Col. Col. Col. Col.	1:WAVELENGTH 2:EPSILON 3:GROSS 4:BACKGROUND 5:NET 6:RNET	Unit: ANGSTROM Unit: UNITLESS Unit: FN Unit: FN Unit: FN Unit: FN	Format:F8.3 Format:I5 Format:E12.4 Format:E12.4 Format:E12.4	R*4 I*4 R*4 R*4 R*4 R*4 R*4
Col. Col.	6:RNET 7:FLUX	Unit:FN Unit:ERGS/CM2/A	Format:E12.4 Format:E12.4	R*4 R*4

Col. 8:ORDER Unit:UNITLESS Format:I4 I*4

concatenate/iue swp55901 swp55901c

This command reads the MIDAS table swp55901 and connects the overlapping orders (see the on-line help for a more detailed explanation about the order concatenation). A new table (swp55901c.tbl) is created with the following columns:

Col.	1:WAVELENGTH	Unit:ANGSTROM	Format:F8.3	R*4
Col.	2:FLUX	Unit:ERG/CM2/A	Format:E12.4	R*4
Col.	3:EPSILON	Unit:UNITLESS	Format:I5	I*4

Example: How to read IUESIPS data (RAW/PHO/MEHI files) from tape ?

intape/iue 1-10 iue tape0

This command reads images in GO format from tape and converts them into MIDAS format on disk. In the example given above, it will read the first ten images of the tape mounted in the tape unit tape0. The files will be named by camera and image number. For the RAW/PHO files, a MIDAS image with extension .raw or .pho will be created. For the MEHI file a MIDAS table (extension .tbl) will be created.

How to use IUERDAF for IUE data

Example: How to read the 1-D NEWSIPS Low Resolution spectrum (.MXLO) from disk ?

readmx,'SWP32525.MXLO',main,wave,flux,flags,sigma,bckgrd,net

This command reads IUE merged extracted spectrum image fits file (.MXLO) and returns the header, wavelength, absolute flux, flags, sigma, background and net flux as IDL variables.

Example: How to read the NEWSIPS resampled file (.SILO) from disk ?

readsi,'SWP32525.SILO',main,wave,image,flags

This command reads the fits file and returns the header, wavelength, image and flags as IDL variables.

Example: How to read NEWSIPS data (RILO/LILO/SILO/MXLO) from tape ?

No specific IUERDAF software has been developed to convert FITS format files on tape to IUERDAF format files on disk. You have to copy your FITS files on tape to FITS files on disk and work with the commands previously outlined. In addition to the readmx, readsi commands, there exist two more commands with similar syntax readri, readli to handle the .RILO and .SILO files.

Example: How to read the 1-D IUESIPS High Dispersion spectrum (MEHI file) from disk ?

iuecopy,'SWP55901.MEHI',3,55901,'h',-2

This command converts IUE GO format disk files to RDAF-format disk files (e.g. converts .go files to .dat and .lab files). See the on-line help for a more detailed explanation on the parameters of this command.

Example: How to read IUESIPS data (RAW/PHO/MEHI files) from tape ?

The command *iuecopy* is also valid to convert IUE GO format tape files to RDAF-format disk files (see on-line help for a more detailed explanation).

Handling flux calibration and sensitivity degradation files

When working with the SILO files you may need to fully calibrate the extracted spectrum. Inverse sensitivity functions as well as correction factors for both SWP and LWP cameras are stored in the calib subdirectory. You are referred to the NEWSIPS Information Manual for information about the derivation of the absolute calibration and the application of time and temperature dependent sensitivity corrections.

Information related to NEWSIPS and IUE Final Archive Project

As mentioned above the NEWSIPS processing manual and general information about the Final Archive project are available on the WWW at:

http://www.vilspa.esa.es/iue

The database of IUE's 19th episode

M. Barylak

ESA IUE Observatory

Introduction

The database for IUE's 19th episode was implemented under a new relational data base management system (RDBMS), namely ORACLE7. ORACLE7 appears to be the most wide-spread used RDBMS of the world and runs on almost any platform i.e. from PCs to minicomputers to mainframes.

For the construction of the **conceptual model** (see Fig. 2) of the IUE database, the Entity-Relationship-diagram methodology was used which eased its translation into a computer data base.

As the data of this new IUE database are being used by many applications (e.g. CDI^2 verification, two image processing systems - IUESIPS and NEWSIPS, data dearchiving, etc.), it is important that the model is well understood and validated.

Apart from making use of the ample facilities available under ORACLE7, the system will be based upon PERL³, specifically ORAPERL with its built-in interface to ORACLE7.

The 19th Episode

The operation of IUE for the 19th episode is carried out mainly at VILSPA ie. all science observations are done at VILSPA for 16 hours a day. Some maintenance tasks are performed by GSFC. This "hybrid" operation was implemented on Oct. 1, 1995. A schematic data flow for the 19th episode is shown in Fig. 1.

IUE images are passed from the TOCS⁴ bridge to the nodes V3500/V3600 where the PIF⁵ generation and CDI verification takes place under IDL⁶. As NEWSIPS's software is not yet able to process high dispersion images, all high dispersion data are processed by IUESIPS. All low dispersion data are passed to NEWSIPS.

NEWSIPS line-by-line and extracted spectral data are made available under both anonymous FTP and the World Wide Web (WWW) within 14 days from the date of observation

²Core Data Item

³Practical Extraction and Report Language

⁴Telescope Operator Console System

⁵Process Information File

⁶Interactive Data Language

(see Solano et al., "IUE Data Processing and Distribution Policies" and Yurrita, "A WWW server for IUE's 19th episode in this newsletter).

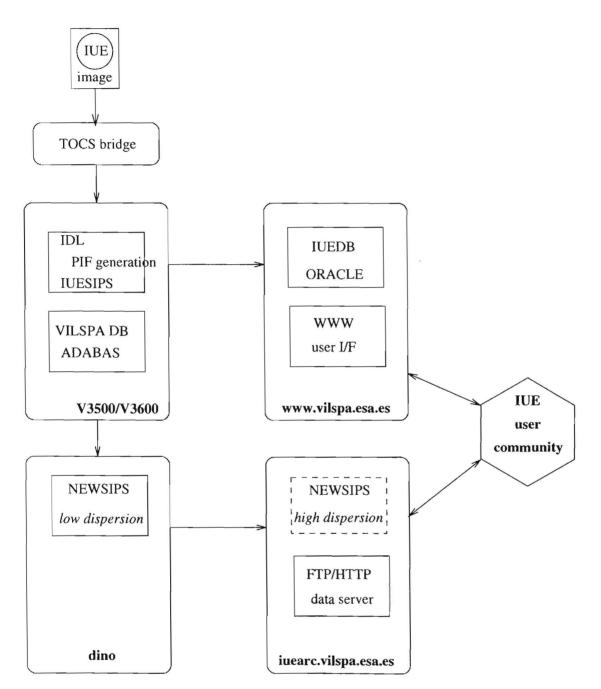


Figure 1: Schematic data-flow diagram of IUE's 19th episode data base.

Recent upgrades to the IUE software under IDL enable the extraction of CDIs from the image headers, present them for verification to the image processing specialists, calculate the dependent CDIs (e.g. Julian date, etc.) and produce the corresponding input PIFs. These PIFs are generated for both low and high dispersion observations and are the primary information source which populates the IUE database of the 19th episode.

The contents of the data base i.e. the IUE observing log of the 19th episode can be addressed as the <u>first ESA ORACLE database to be on-line under WWW</u> at:

http://www.vilspa.esa.es/iue/iue19th.html

Database design and analysis

The fundamental phases in database design and analysis are depicted in the following figure:

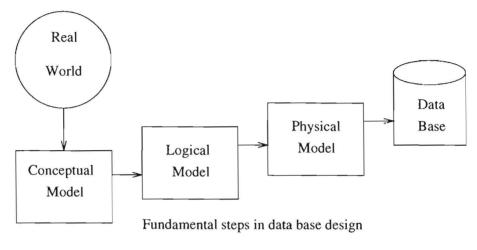
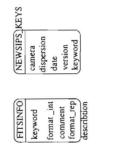


Figure 2.

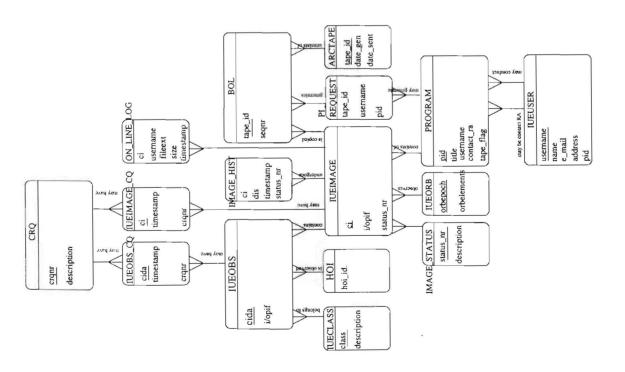
Probably the most widespread technique of data analysis is that proposed by Chen in 1976 called **entity-relationship (E-R)** model. In the E-R model, the real world is represented by entities and by relationships between entities. For the IUE database the final version of the E-R model is given in the Fig. 2. This E-R diagram represents the **conceptual model** of the IUE database for the 19th episode. Steps followed, once the entities and their relationships were defined, were:

- 1. establish the key attributes for each entity
- 2. complete each entity with all the attributes
- 3. normalize all entities (at least to third normal form)
- 4. ensure all events and operations are supported by the model

The next step in the database design, as indicated above, was converting this model into a logical model. The known logical models of databases are:


- hierarchical
- network
- relational
- object oriented

The logical model of the ORACLE7 database is relational. And the advantage of following the fundamental steps of database design and development is that the E-R diagram can very easily be translated into the relational model by the following simple rules:


- entities become tables
- attributes become columns
- relationships become foreign keys

The physical model describes how "ORACLE7 manages physical data storage along with the optimal physical database layouts for any number of disks. These layouts will be the result of understanding the ways in which various database files operate and interact." (K. Loney, 1994, *Oracle DBA Handbook*).

The installation of ORACLE7 at VILSPA has been described by F. Marcelo (Installation of Oracle Version 7 at Vilspa, TN/5020-00/FM/940221).

A WWW server for IUE 19th episode data distribution

I. Yurrita

INSA, VCS

Abstract

The present article describes the dedicated WWW^7 server built at VILSPA for the IUE 19th episode data distribution.

Introduction

This server was built to provide an easy and comfortable access to IUE data of the 19th episode via the WWW. We realized the lack of flexibility of the FTP system (for both the user and the system administrator). Therefore, and using our experience in WWW servers⁸, we built a system with some value-added features.

The following services are provided at present:

- IUE 19th episode data distribution (user observation programs).
- IUE 19th episode data distribution (calibration data, used internally).

You can access the IUE data server server home page at the following URL⁹:

http://iuearc.vilspa.esa.es/

There are plans to extend this server to allow a similar access to the data of the Final Archive.

The server. A user's view

Registration

The ESA IUE data server is intended to be used by registered users only. To register is, thus, the first operation an archive user has to do. This is done only once, except if a user forgets his username. There is no need to register again if only the password has been forgotten.

The register is kept to contact users should a problem occur (i.e. we monitor the problems, but we also have to know who was affected). The register is also used to build meaningful statistical information.

⁷World Wide Web

 $^{^8{\}rm This}$ server is part of the Villafranca Satellite Tracking Station WWW system $^9{\rm Universal}$ Resource Location

Retrieving data files

Once registered, users can browse the different data areas ordered by program id. If a user knows in advance which IUE observations he/she wishes to retrieve, it is also possible to access them by providing an image list.

The images can be retrieved either in packed format (i.e. tar) or individually. The packed format is provided with several compression schemes. Selective filtering is also available to narrow down the retrieval selection (e.g. only SILO files, only SWP files, etc.).

The server. A webmaster's view

The server implements the following features:

- User registration and authentication. Problem solving and accurate access statistics are built from this information.
- Single image or multi-image download, allowing several compression schemes to save network bandwidth.
- All the browsing and file information is updated dynamically as soon as images are processed.
- Feedback and help capabilities at any point.
- Support for virtual storage areas.
- Consistent look and feel.
- The server is built to grow easily in order to add other file services in the future.

IUEFA Project

D. de Martino, J.D. Ponz, E. Solano

ESA IUE Observatory

Introduction

The generation of the Final Archive has been progressing along last year as a background activity, in addition to the developments required to change IUE operations for the 19th episode.

This report describes the status of the project, indicating the main development activities currently in progress, together with the short-term plans.

Project Status

The archive production pipeline has been optimized in two ways:

- 1. Ingestion of input raw images is done from optical disks, available on-line, instead of using tapes, and
- 2. A distributed production environment has been implemented, so that two workstations are used for archive production and two different nodes are used for production and quality control of the images observed daily.

With this optimized environment, the average production rate is now 400 images per week, in addition to other activities required to process and distribute daily observations. The bottleneck is the quality control applied to the production.

For practical reasons, re-processing of low-dispersion archive data for cameras SWP and LWP has been divided into several batches. The status of each set is described below:

- Set-1 : Spectra collected before January 1990. These data have been processed and are being written into optical disks.
- Set-2 : Spectra collected during the period January 1990 until March 1993. These spectra are being re-processed.
- Set-3 : Spectra collected during the period March 1993 until October 1995. Data collected during this period are in the preparatory phase, i.e., input parameters required for processing are being collected and will be verified during the first months of this year.
- Set-4 : Observations done after October 1995. These data are being processed within the new operational scenario of the 19th episode, and are being distributed to users via networks or tapes. Before entering these data into the archive, a new re-processing is foreseen, to take into account new absolute flux calibration due to changes in the instrument sensitivity.

Future activities

There are two main tasks foreseen for the near future:

• Completion of high dispersion code: The software is currently being developed at GSFC. Villafranca is in charge of the determination of the ripple correction algorithm and the absolute flux calibration.

These activities are under development, to be accomplished around mid-1996.

• Data distribution: Requirements for the on-line data distribution have been defined. The distribution system is structured in three levels: a Principal Center, repository of the master archive version, a set of National Hosts containing access catalogue and selected data sets, and an unlimited number of End User Nodes. The technology is based on the WWW architecture.

A prototype has been defined to distribute internally the data and will be used to distribute observations of the 19th episode (see Yurrita, "A WWW server for IUE 19th episode data distribution", in this newsletter).

The actual implementation will be done in two phases, first low-dispersion spectra, then high-dispersion data. The first phase, to distribute low-dispersion data from the Principal Center will be available around mid-1996.

Temporarily, until data is available on-line, data requests can be made via the WWW at the IUE page http://www.vilspa.esa.es/iue/iue.html or can alternatively be addressed via e-mail to the account dbra@vilspa.esa.es.

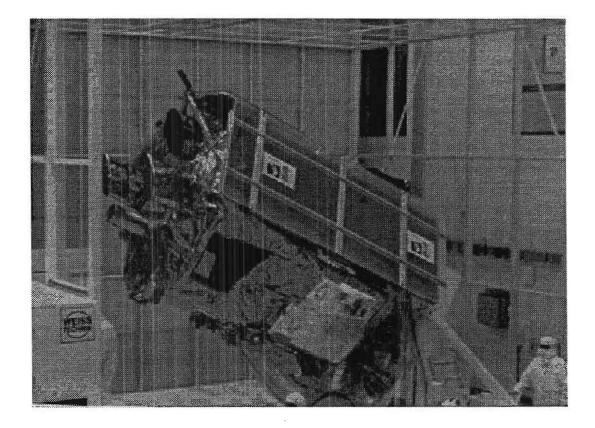
SAX-IUE coordination

Prof. Dr. K.S. de Boer

Chairman of J-IUEAC

The Joint IUE Allocation Committee (J-IUEAC) and the IUE observatory would like to draw your attention to the importance of the simultaneous operations of IUE and SAX as "active coordination of observations could significantly enhance the scientific return of IUE as well as SAX observations."

SAX stands for "Satellite per Astronomia a raggi X", Italian spelling of "X-Ray Astronomy Satellite" and is an Italian/Dutch satellite devoted to systematic, integrated and comprehensive studies of galactic and extragalactic X-ray sources in the energy band 0.1 - 200 keV; the observational goal to be addressed is to continue and expand upon previous spectral and timing observations of celestial sources in those areas for which the existing information is missing or inadequate and will remain uncovered in the foreseeable future.¹⁰


The following procedures for the implementation of such coordination are suggested:

- 1. IUE Principal Investigators (PIs) with targets approved both in IUE and SAX will be suggested to request a time allocation revision for IUE in view of the planned SAX observations.
- 2. The AGN area has actually an approved proposal in the IUE Allocation (SQ101) but a revision of targets and allocation can be requested in view of the SAX Allocation.
- 3. All proposals approved for SAX open time which indicate the desire to obtain coordinated observations with IUE are requested to supply target information and proposal abstract to the IUE Observatory together with a request for possible IUE time allocation.
- 4. All these three inputs will be considered by the J-IUEAC and we will inform SAX and the involved PIs of the decision of the J-IUEAC in a timely way so as to allow adequate scheduling of approved IUE Observations, if feasible.

Please note that this somewhat unusual approach was adopted in view of the associated boundary conditions (final IUE call; uncertainties in SAX programs, etc. ...), but the above assures that we will not have left unique observational opportunities unused which might not be available in the near future. The proposed scheme has been evaluated with the ESA IUE Observatory and it does not seem to present major problems in the case that the IUE Project is extended to overlap with the first year of SAX observations. As you are aware, even though the current planning foresees operations of IUE until the end of 1997, funding approval has only been given until September 1996.

¹⁰Please see http://astro.estec.esa.nl/SA-general/Research/Sax/sax.html

Of course a considerable fraction of the SAX Core program will be carried out early in the SAX mission. For those programmes the above procedure cannot be applied in full since it would limit the availability of IUE time to a restricted community (i.e. those pertaining to participating Agencies in the SAX project). For the previously mentioned IUE program SQ 101 this should not be a problem, since here a clear choice has been expressed by the J-IUEAC. However any other studies in the Core Program will have no other solution than to attempt to set up a collaboration with IUE PIs with approved proposals in the same area of research. Any revision request by these PIs in view of the SAX availability will be taken into consideration by the J-IUEAC.

IUE plumbing: "Bent-pipe Operations"

M. Barylak

ESA IUE Observatory¹¹

Introduction

The 3-Agency cooperating in the IUE Project, ESA, NASA and PPARC, have agreed to both, the reconfiguration of the IUE ground operations and the redistribution of science-operation responsibilities for the 19th episode.

In coordination with ESOC/COM, VILSPA has designed a new configuration and built the required equipment to operate the IUE satellite from VILSPA via GSFC and vice versa. The modified ground system (called $TOCTM^{12}$) has been installed at both VILSPA and GSFC.

COM has also implemented its part in ESOC and configured the VILSPA & GSFC nodes, so that the ground system was ready to start the extended operations as of 1 October 1995.

IUE Communications and bent-pipe operations

The new IUE communication system consists of :

- Raw TLM¹³ (40 Ksymb/s¹⁴) using a 64 kbps¹⁵ comms link (VILSPA \leftrightarrow GSFC IUE)
- Raw TLM (< 40 Ksymb/s) using a 48 kbps comms link (GSFC IUE \leftrightarrow VILSPA)
- ISLU¹⁶ #1 using a 9.6 kbps link (VILSPA \leftrightarrow GSFC IUE)
- ISLU #2 using a 9.6 kbps link (VILSPA \leftrightarrow GSFC IUE via ESOC)
- IUE VOICE using a 9.6 kbps link (VILSPA \leftrightarrow EOSC) and an 8 kbps link (ESOC \leftrightarrow GSFC IUE)
- TOCS¹⁷ using X.21 over a 64 kbps link or 48 kbps link (VILSPA \leftrightarrow GSFC IUE)

¹¹from reports by V. Claros, J. Poblet and C. Topham (INSA/COM)

¹²Telescope Operator Console/Telemetry

¹³Telemetry

¹⁴symbols per second

¹⁵kilo bits per seconds

¹⁶IUE/Interface Switching Logic Unit

¹⁷Telescope Operator Console System

In August '95, the eastward maneuver performed by NASA, placed the IUE satellite in a position where it could be seen from VILSPA for at least 16 hours per day but located the satellite in the highest radiation part of the orbit. This forced ESA to re-negotiate with NASA the use of the Wallops ground station during 8 hours when the satellite is out of the radiation belt, that is, when it cannot be seen from VILSPA. Consequently, VILSPA performs 8 hours/day of science operations locally and 8 hours/day remotely via GSFC/Wallops. This new scenario was nick-named "bent-pipe operations".

Bent-pipe operations require better back-up capabilities at both sides of the Atlantic, therefore a second communication line was installed.

The current IUE communications enable the following "modi operandi":

• VILSPA local operations (8 hours daily):

In this configuration, no data link to GSFC is required except a voice link (via ESOC). In case of a failure at VILSPA, a prime or back-up command/telemetry (ISLU) circuit must be available.

• Bent-pipe VILSPA operations via GSFC using the Wallops Station (8 hours daily):

In this configuration, communications for remote GSFC computer operations (ISLU), voice coordination and reception of science data (TOCS) are required i.e. two 64 kbps link, voice coordination circuit and command/telemetry prime (ISLU #1) and secondary (ISLU #2) circuits.

• VILSPA operations in failure situations (emergency cross support):

Due to the above explained scenario, a second line has been installed (an ISDN connection is currently being evaluated by COM). Thus the new revision of the IUE communications provides the following enhancements:

 $\circ~$ Raw telemetry can be send bidirectionally with the installation of the TOCTM units at both VILSPA and GSFC.

In this configuration VILSPA can receive Wallops raw telemetry and feed it into the VILSPA ground computer system in order to display maneuvering parameters (analog) and raw images which cannot be seen via ISLU.

VILSPA can also send raw telemetry to GSFC in case of a VILSPA ground-computer system failure, obtain processed data from GSFC, and monitor the satellite while Wallops S-band system gets ready to support IUE operations (command system can be prepared in 15 minutes but S-Band systems takes about 1 hour).

- A second science (TOCS) router and a second TOCS computer (provided by NASA at GSFC) have been included in this updated configuration.
- Finally, a PSTN¹⁸ modem allowing an emergency by-pass of the GSFC node has also been included, thus allowing continuing ISLU operations. The GSFC node was a single point failure as it routed both prime and secondary ISLU circuits.

¹⁸Public Switched Telephone Network

Prediction of Background Radiation During IUE Observations

H. Andernach and C. la Dous

ESA IUE Observatory

The Background:

The background radiation we measure in the IUE cameras consists of two components:

- phosphorescence in the detectors which amounts to 5 - 10 DN/hour, and
- Cherenkov radiation from high-energy electrons entering the UV converter section of the cameras during exposure, producing additional phosphorescence.

The strength of this second component, besides increasing with the length of the exposure, depends on the radiation field the Satellite is passing through and is particularly high during passage through the Van Allen Belt. This passage used to coincide with the old US2 shift (right before the VILSPA shift), but at times of particularly high radiation also the US1 shift was occasionally affected; the VILSPA shift normally was unaffected in any case. During times of high radiation the background radiation in the IUE cameras strongly limits the length of useful exposures (see below).

Until 1991 there was a 'Flux Particle Monitor' (FPM) on board the IUE which measured the strength of the background radiation (in Volts), thus giving an indication on how long an exposure could be without saturating the spectrum (see below for more details). In 1991 this device ceased to function so that no direct information on the strength of the radiation has been available since.

A reasonably accurate substitute is provided by the >2MeV electron flux measurements of the GOES-7 Satellite whose data for the last 72 hours are kept on the WWW under

http://www.sel.bldrdoc.gov/electron_flux.html

(see Figure 1). The daily maximum seen by GOES-7 can be converted in an approximate maximum as experienced by IUE using:

$$FPM[V] \simeq (0.7 * log_{10}(GOES_{-}flux)) - 0.2$$

which then in turn translates into the following background levels at times of maximum radiation:

$$DN/hour = c * 10^{FPM[V]} \tag{1}$$

 $= c * 10^{(0.7 * log_{10}(GOES_flux)) - 0.2}$ (2)

ESA IUE Newsletter No. 46

February 1996

where c = 1.0 for SWP and c = 1.35 for LWP.

In Practical Terms:

In the IUE hybrid mode the passage through the Van Allen Belt will take place during the USMS (old US2) shift when (in general) no science observations will be performed so that normally the time of maximum radiation lies way outside the time when spectra are being taken, so that there should not be a problem. Only at times of high radiation (maximum GOES-7 flux significantly above some 1000 electrons/cm2-s-sr) caution ought to be taken during the second half of the VILSPA B shift (old US1); and at specially bad occasions the entire orbit can be affected (see Fig. 2)

Based on past experiences, a reasonable rule of thumb seems to be (see Figure 1):

- if the maximum reading of GOES-7 during the past 24 hours (last relative maximum) does not exceed 1000 electrons/cm2-s-sr, there ought to be no problems concerning the background level during the entire period of science operations; including 16-hour exposures ought to be safe;
- if the last maximum reading is between 1000 and 5000 electrons/cm2-s-sr, exposures longer than some 4 hours should be avoided before H/O, while no constraints ought be necessary for the remaining part of the shift;
- if the last maximum reading is significantly above this limit, exposures longer than some 4 hours should be avoided during the entire shift, while only short exposures should be taken during the last hours before H/O.

As the GOES-7 and IUE Satellites have somewhat different orbits (i.e. encounter the area of maximum particle radiation at somewhat different times each day, so that at times IUE meets the highest flux level hours before GOES-7 does), there is no point in continuously checking the FPM-level. On the other hand the average daily flux level normally does not vary dramatically from one day to the next, so that extrapolation by one day is likely to provide a reasonable idea of whether the radiation might cause problems or not. Thus, for daily operations

- each RA starting duty should check the GOES-page on WWW (address see above), record readings in the special log sheet provided (Appendix 1) and make a colour printout¹⁹; if the radiation field is expected to be particularly high, the observing plan has to be adjusted correspondingly.
- As an additional precaution, if you are concerned about the background during a long exposure, serendipity spectra of 2 hours duration should be taken in the other camera; when evaluating the result, keep in mind that the background keeps adding up and that it acts in somewhat different ways on the two cameras.

¹⁹click on 'Save As'-button at the bottom of the WWW-page; in the new window select 'Postscript' on the 'Plain Text'-button, define a destination file name and click 'OK'. Once outside WWW, send this file to printer 'tpx', for example with the command lpr -Ptpx <filename>. If the latter doesn't work, use ghostview <filename>, click on 'File', then 'Print' and specify 'tpx' for the printer.

• In order to get some kind of cosmic weather forecast, the RA on training will check two further WWW-pages:

http://www.sel.noaa.gov/today.html

giving a general idea of what solar activity is to be expected during the next 2 days (see Appendix 2), and

http://www.sel.noaa.gov/forecast.html

providing more detailed information (this latter page also is available in printed form on the notice board outside DH's office) (see Appendix 3).

Thus, if problems are expected, a note to this effect must be included in the training report and the constraints on exposure times should be taken into account when prepating upcoming observations.

Beyond US Science Operations....

R. Arquilla, M.T. Carini

Goddard Space Flight Center

On 30 September, 1995, the US Science operations team turned over IUE science operations to the ESA ground station at Villafranca. The ESA/PPRC IUE team will conduct 19th episode science operations from Villafranca for 16 hours a day. During the remaining 8 hours a skeleton IUE OCC crew monitors the spacecraft. US guest observers are encouraged to interface directly with VILSPA staff concerning their 19th episode programs. VILSPA maintains a WWW homepage dedicated to the 19th episode which can be found at http://www.vilspa.esa.es/iue/iue19th.html. However, the NASA IUE project is also maintaining a limited level of guest investigator support. Dr. Richard Arquilla (arquilla@iuedac.gsfc.nasa. gov), who served as the IUE science operations supervisor and an IUE resident astronomer for over 9 years, is now acting as a contact point for 19th episode guest observers. However, we are encouraging IUE observers to contact the VILSPA staff member assigned to their program if at all possible.

The end of US science operations does not mean the end of the NASA IUE project. Work continues on the final archive and the IUEDAC continues to provide users with expert advice and assistance on the reduction and analysis of IUE data. We will continue to update users on the status of the IUE final archive and the IUEDAC via this newsletter²⁰.

Editorial Note:

this information was extracted from the IUEDAC Electronic Newsletter.

This is an electronic newsletter edited by the IUE Data Analysis Center (IUEDAC) intended to inform the numerous remote and local users of the IUEDAC software of recent software updates and project changes.

The IUEDAC newsletter and other items of interest about IUE can be found in the IUEDAC World Wide Web homepage at

http://iuewww.gsfc.nasa.gov/iuedac/iuedac_homepage.html

Users can follow the links to information on IUE telescope operations and the IUE project, as well as to other interesting and useful astronomical sites.

²⁰If you want your name to be added to, deleted from, or changed on our distribution list, please send us e-mail to news@iuedac.gsfc.nasa.gov or send a postcard to: IUE Data Analysis Center (IUEDAC), IUE Observatory/Code 684.9, NASA-GSFC Greenbelt, MD 20771

Some IUE Highlights

Yoji Kondo

Goddard Space Flight Center

International Ultraviolet Explorer (IUE)

- The 45-cm telescope was launched on 26 January 1978 as a 3-way collaborative project among NASA, ESA and British SRC (now PPARC). IUE, the only geosynchronous satellite observatory capable of observing continuously 24 hours daily, has been operated from Goddard and ESA Madrid Station.
- Spectrophotometry at high (0.1-0.3A) and low (6-7A) resolutions between 1100 and 3200 Åwith a dynamical range of 22 magnitudes, from -1.5 to 21st magnitude.
- Over 100,000 ultraviolet spectra have been obtained with IUE and are available through the Goddard Data Analysis Facility.
- Total publications in refereed journals from IUE observations stood at 3041 articles at the end of 1994 the largest number for any satellite observatory thus far. (List available.) In 1994 alone, 232 refereed papers were published.
- Over 2000 guest observers from all corners of the world, in- cluding astronomers from such diverse places as South America, China, India, Russia and Africa, have used IUE.
- By 1990, in U.S.A. alone, at least 107 Ph.D. and 11 Master's degree theses were written using IUE results. (List available.) A comparable number of Ph.D. theses were written with IUE data in Europe. Well in excess of 200 Ph.D.s worldwide have been trained. Undergraduate and high school* students have also been trained with IUE. [*One received Ph.D. from Harvard and another from Wisconsin.]
- IUE has been and still is used as a central facility in most multiwavelength observations. Multiwavelength observation is an important modern approach in astrophysical research. In fact, the forthcoming XTE is counting on the continued availability of IUE – not to mention some HST observers.
- IUE Science Operations will be transferred entirely to ESA after 1 October 1995. NASA will continue to provide limited satellite operation support. U.S. astronomers will be equal partners with Europeans in the continued use of IUE.
- Scientific highlights include the discovery or a significantly improved understanding of: galactic halos, super-bubbles, stellar chromospheres, active galactic nuclei including quasars, stellar winds and mass loss, evolutionary processes in interacting binaries, the local interstellar medium, cataclysmic variables, protoplanetary system candidates, super-novae including SN1987A, synoptic studies of solar system objects, such as Io torus, and compositions of cometary comae and tails.

• In 1988, in its tenth anniversary year, IUE was honored by the U.S. Presidential Award for Design Excellence.

IUE RECOGNITION CEREMONY - 11AM - FRIDAY 29 SEPTEMBER 1995

In recognition of 17 years and 8 months of extraordinary service to the astronomical community and the successful efforts to streamline ground operations, Drs. Joe Rothenberg, Director of the Goddard Space Flight Center, Daniel W. Weedman, Director of the Astrophysics Division at NASA, and Yoji Kondo, IUE Project Scientist, will acknowledge the unique role of this first All-Guest-Observatory satellite facility in a formal ceremony of appreciation. We at NASA hope that you can join us in person to acknowledge this special achievement. The proceedings will be held at Goddard Space Flight Center (the home of IUE), Building 21 Room 183, on Friday, 29 September 1995 at 11 am.

The International Ultraviolet Explorer (IUE) project "keeps on going" in the continuing spirit of the little satellite that could. The project has reconfigured its science and satellite operations to reduce costs. On 30 September 1995, the US IUE team will turn over science operations to the ESA ground station at Villafranca, where the ESA/PPARC teams will continue to conduct astronomical observations on behalf of the international astronomical community. The US team will provide streamlined support for satellite operations and will continue their task to complete the IUE Final Archive that contains over 100,000 ultraviolet spectra.

If you plan to be with us for this event, please send us a quick message by email so we can plan for your attendance. If you cannot be with us in person, you are cordially invited to send your messages expressing your sentiments for a job more-than-well done to the following electronic mail address:

iueops@iuesoc.gsfc.nasa.gov

Parking IUE

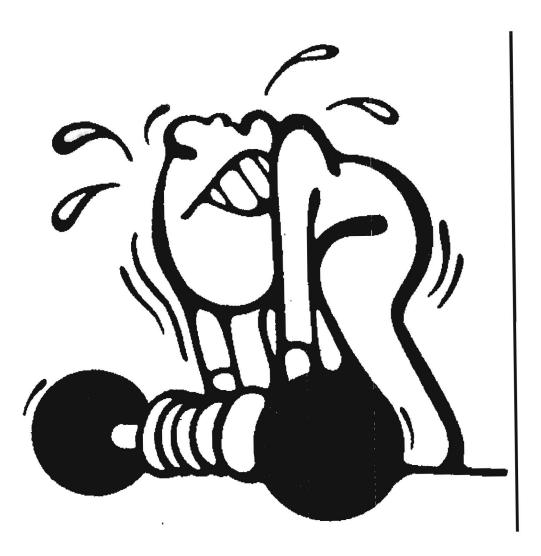
Norbert Schartel

ESA IUE Observatory

In the nineteenth episode of IUE, it's observing time is restricted to 16 hours of science operation from VILSPA. For the remaining 8 hours, the IUE spacecraft will be parked at a bright star, hereafter called 'parking star'. This star is chosen at Vilspa depending on the conditions (power reserves, temperature, etc.) of the spacecraft (S/C) at the end of the observations. S/C Handover to GSFC will be performed on the last target observed at VILSPA. GSFC is responsible for the maneuver to the parking star, it's acquisition, and S/C tracking. At the end of the GSFC shift, GSFC will maneuver to either a bright offset star or the first bright target of the next VILSPA shift and handover is performed on this star.

In order to ensure a safe parking for 8 hours, several constraints have to be considered, i.e. Power positive regions, Earth or Moon occultations, antenna nulls, hot β -angle ranges, etc. Given the orbit of the spacecraft, not one star fulfils all these conditions for the entire year. Therefore, the use of different parking stars at different epochs of the year is necessary.

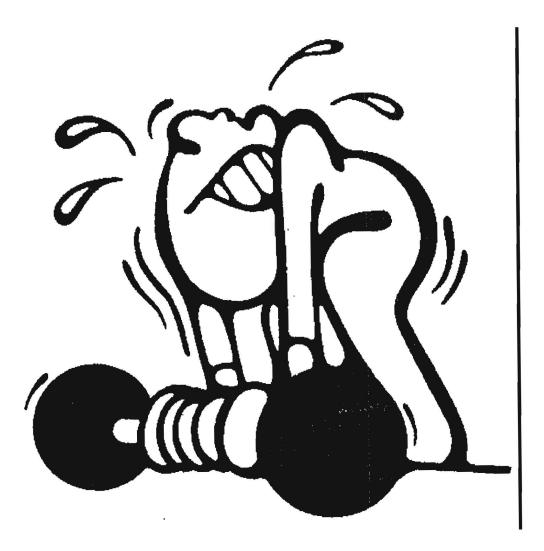
All parking stars are bright enough to be acquired easily. They are located at positions at which no occultations by the Earth or the Moon will occur. Although antenna angles have been calculted in advance, it is not possible to calculate them accurately for a long time in advance. Therefore, it is important to re-check the antenna angles for the chosen parking star. List of approved IUE 19th episode proposals and their contact RAs


19th Episode: 1995 - 1997

Final IUE Science Program

TITLE	APPLICANTS	PGM-ID	@vilspa.esa.es	Alloc.
			CONTACT RA	(hours
Is BK Lyn (PG 0917+342) the first nova-like	F.A. Ringwald	SI001	MGV M ^a -Luisa	9.5
below the period gap?			Garcia Vargas	
UV observations of selected EUV Late-type	J.G. Doyle	SC002	MGV M ^a -Luisa	65
Objects			Garcia Vargas	
Binaries: How Wide ?	N.R. Evans	SC003	MGV M ^a -Luisa	32
			Garcia Vargas	
UV Spectrophotometry of Magnetic Cp and	S.J. Adelman	SA004	MGV M ^a -Luisa	16
Am Stars			Garcia Vargas	
Elemental abundances of Hg-Mn Stars	S.J. Adelman	SA005	MGV M ^a -Luisa	32
HR1094 and HR7775 and A0 IV Normal Star			Garcia Vargas	
$\gamma~{ m Gem}$				
Ultraviolet spectrophotometry of δ Scuti star	R. Monier	SC006	MGV M ^a -Luisa	16
ho Pup			Garcia Vargas	
Analyzing blue stars in NGC 6752	S. Moehle	SA007	MGV M ^a -Luisa	104
			Garcia Vargas	
Understanding the outburst stage of the sym-	A. Skopal	SI008	MGV M ^a -Luisa	10
biotic system CH Cyg	-		Garcia Vargas	
UV spectroscopy study of symbiotic stars	C.B. Pereira	SI009	MGV M ^a -Luisa	10
			Garcia Vargas	
Accretion in the SW Sex Stars	D.W. Hoard	SI010	MGV M ^a -Luisa	22
			Garcia Vargas	
Ly- α satellite absorption in metal-poor	K.S. de Boer	SA012	MGV M ^a -Luisa	28
Horizontal-Branch star spectra		Party Read for the second	Garcia Vargas	
Search for rapid UV Spectroscopic Variabil-	L. Bianchi	SA013	MGV M ^a -Luisa	48
ity in PN nuclei			Garcia Vargas	
UV-spectrophotometry of the double-shell	T. Rauch	SA014	MGV M ^a -Luisa	29
planetary nebula LoTr4 and its very hot cen-			Garcia Vargas	
tral star			U U	
Phase resolved multiwavelength spectropho-	R. Monier	SC015	MGV M ^a -Luisa	24
tometry of RV Tauri stars			Garcia Vargas	
The Most Massive Binaries	D.J. Stickland	SI016	MGV M ^a -Luisa	48
			Garcia Vargas	

TITLE	APPLICANTS	PGM-ID	@vilspa.esa.es	Alloc.
			CONTACT RA	(hours
X-ray and "O VI sequence" Planetary	W.A.	SA017	PMR Pedro Ro-	16
Nebulae	Feibelman		driguez Pascual	
Variable Planetary Nebulae	W.A.	SA018	PMR Pedro Ro-	32
	Feibelman		driguez Pascual	
A Search for the Site of Multiwavelength	M.A. Smith	SA019	PMR Pedro Ro-	35
Variability in γ Cas			driguez Pascual	
Monitoring the Accretion during the Super-	P. Szkody	SI020	PMR Pedro Ro-	154
cycle of V1159 Ori			driguez Pascual	
International AGN Watch: Reverberation	B.M. Peterson	SQ021	PMR Pedro Ro-	720
Mapping of the Broad-Line Region in			driguez Pascual	
Markarian 335				
Ultraviolet Study of Non-eclipsing Algol	P. Koubsky	SI022	PMR Pedro Ro-	20
Systems			driguez Pascual	
Continuity of Monitoring Observations of α	M.A. Smith	SC025	PMR Pedro Ro-	48
Ori and α Her			driguez Pascual	
IUE monitoring of Symbiotic Stars experi-	T. Fernandez-	SI027	PMR Pedro Ro-	40
encing outbursts: Z Andromeda and BF	Castro		driguez Pascual	
Cygni				
Stellar Winds in A-type Supergiants	E. Verdugo	SA028	PMR Pedro Ro-	20
			driguez Pascual	
Spectroscopy of hot white dwarfs: Constrain-	S. Dreizler	SA029	PMR Pedro Ro-	45
ing diffusion theory			driguez Pascual	
Variability of the unique system CQ Dra	D. de Martino	SI030	PMR Pedro Ro-	16
			driguez Pascual	
Multi-frequency monitoring of Oe/X-ray bi-	D. de Martino	SI031	PMR Pedro Ro-	20
nary X Per			driguez Pascual	
Coordinated X-ray and UV Doppler Images	F.M. Walter	SC032	PMR Pedro Ro-	96
of AR Lacertae			driguez Pascual	


TITLE	APPLICANTS	PGM-ID	@vilspa.esa.es		Alloc.
			CONTACT I	RA	(hours)
UV orbital variations in Intermediate Polars	D. de Martino	SI033	CH Ro	sario	62
			Gonzalez-Rie	stra	
Search of the nature of long term mass accre-	D. de Martino	SI035	CH Ro	sario	65
tion variations in Polars			Gonzalez-Riestra		
International AGN watch: The Variable	P.T. O'Brien	SQ037	CH Ro	sario	280
Broad Line Radio Galaxy 3C 390.3			Gonzalez-Riestra		
UV Spectroscopy of helium-rich subdwarf B	C.S. Jeffery	SA038	CH Ro	sario	32
stars			Gonzalez-Riestra		
Multi-frequency Observations of W Comae	K. Mannheim	SQ039	CH Ro	osario	15
			Gonzalez-Riestra		
A search for more transparent lines of sight	D. Reimers	SQ040	CH Ro	osario	300
to bright high redshift quasars			Gonzalez-Riestra		

TITLE	APPLICANTS	PGM-ID	@vilspa.esa.es		Alloc.
			CONTACT	RA	(hours)
UV-spectrophotometry of the extreme he-	T. Rauch	SA041	PEL	Pedro	21
lium star HD 160641			Elósegui		
Probing the structure of Wolf-Rayet winds	C. Lloyd	SA042	PEL	Pedro	28
			Elósegui		
Flux-Flux and Flux-rotation correlations in	B. Montesinos	SC043	PEL	Pedro	112
late-type giants			Elósegui		
Re-Observing the First Hours of SN1987A:	A. Crotts	SE044	PEL	Pedro	17
Final Epoch			Elósegui		
The VV Cep binary KQ Pup: a key for un-	M. Friedjung	SC046	PEL	Pedro	22
derstanding the physics of wind accretion			Elósegui		
The new activity phase of the symbiotic star	R. Viotti	SI047	PEL	Pedro	20
AG Dra			Elósegui		
IUE Mid-UV Spectroscopy of the Galilean	D.L.	SS048	PEL	Pedro	100
Satellites: Examination of Decade Length	Domingue	ĺ	Elósegui		
Temporal Changes and Support of the					
Galileo Mission					
Long-term Monitoring of and Rapid Varia-	W.H. Bauer	SC049	PEL	Pedro	60
tions in the Interacting Binary VV Cephei			Elósegui		
The radius of the pulsating helium star	C.S. Jeffery	SA050	PEL	Pedro	18
LSS3184			Elósegui		
Chromospheres and Li abundances of strong	R. de la Reza	SC051	PEL	Pedro	8
Li K giants			Elósegui		
Ultraviolet spectrophotometry of the radi-	A.E. Lynas	SA052	PEL	Pedro	16
ally pulsating extreme Helium Star V652 Her	Gray		Elósegui		
(BD+133224)					
Spatially-Resolved UV Spectra of Shocked	W.P. Blair	SM053	PEL	Pedro	152
Interstellar Clouds			Elósegui		
IUE Observations of the late stages of Novae	R. Gonzalez	SI054	PEL	Pedro	104
in the LMC	Riestra		Elósegui		

TITLE	APPLICANTS	PGM-ID	@vilspa.esa.es CONTACT RA	Alloc. (hours)
IIV an extrem beta materia of the cutremedia bet	T. Rauch	SA055	DDM Domitilla	· /
UV-spectrophotometry of the extremely hot	1. Rauch	5A055		10.5
H-rich central star of the planetary nebula			De Martino	
		GA050		00
The nearby BHB stars as probes of the galac-	C. Cacciari	SA056	DDM Domitilla	20
tic halo			De Martino	
α Boo stars in young open clusters	M. Gerbaldi	SA058	DDM Domitilla	64
			De Martino	
UV spectroscopy of new, ROSAT-discovered	B.T.	SI059	DDM Domitilla	16
AM Her systems	Gaensicke		De Martino	
Multiwavelength observations of the shell	R. Viotti	SA060	DDM Domitilla	8
phases of η Carinae and of its nebula			De Martino	
The nature of the long-term variability of AM	B.T.	SI062	DDM Domitilla	148
Herculis	Gaensicke		De Martino	
X-ray transients as Targets of Opportunity	C. Shrader	SI063	DDM Domitilla	80
			De Martino	
Disentangling composite spectra of hot sub-	A. Theissen	SA064	DDM Domitilla	32
dwarfs with cool companions			De Martino	
Variability of the central star of the Planetary	M. Pena	SI065	DDM Domitilla	16
Nebula LMC N66			De Martino	
Very hot DA white dwarfs from the	S. Jordan	SA066	DDM Domitilla	34
Hamburg-Quasar Survey			De Martino	
Wind Structure of Red Giants in Symbiotic	W. Schmutz	SI067	DDM Domitilla	60
Systems			De Martino	32 .20
Calibration of convective efficiency by UV ob-	S. Jordan	SA068	DDM Domitilla	21
• •				
servations of a double degenerate			De Martino	

TITLE	APPLICANTS	PGM-ID	@vilspa.esa.es	Alloc.
			CONTACT RA	(hours)
The chemical evolution of hot hydrogen-rich	R. Napiwotzki	SA069	JAF John Fernley	100
central stars of Planetary Nebulae				
Analyzing UV bright stars in globular	S. Moehler	SA070	JAF John Fernley	70
clusters				
Testing the emission conditions of selected fil-	F. Bocchino	SM071	JAF John Fernley	32
aments in the Vela Supernova Remnant				
FG SGE, a unique case of Post-AGB	B. Montesinos	SC072	JAF John Fernley	16
evolution				
The origin of carbon in comets	M.C. Festou	SS074	JAF John Fernley	ToO
A high signal-to-noise echelle survey of H-rich	M.A. Barstow	SA075	JAF John Fernley	144
white dwarfs				

TITLE	APPLICANTS	PGM-ID	@vilspa.esa.es	Alloc.
			CONTACT RA	(hours
A Multi-Wavelength Study of the Quiescent	H. Duerbeck	SI077	HJA Heinz	18
and Flaring Activity of the Algol System RZ			Andernach	
Cas				
UV Flux distributions and terminal velocities	K.A. Venn	SA078	HJA Heinz	24
in Galactic, Cluster B8-A0 Supergiants			Andernach	
Observations of a new eclipsing dwarf nova	T.R. Marsh	SI079	HJA Heinz	16
$HS \ 1804 + 6753$			Andernach	
Multifrequency Spectra of Blazars During	J.R. Webb	SQ080	HJA Heinz	160
Outbursts			Andernach	
A Continuing Search for Hot White Dwarf	M.R. Burleigh	SA081	HJA Heinz	55
Companions to Normal Stars	200 1		Andernach	
Observational constraints on the ionization	W. Schmutz	SA082	HJA Heinz	96
structure and velocity low in γ Vel			Andernach	
Long-term variability in the spectra of single	I. Bues	SC083	HJA Heinz	24
magnetic white dwarfs			Andernach	
Search for emissions of PAH, S2 and	G. Moreels	SS084	HJA Heinz	16
parent molecules in comet Honda-Mrkos-			Andernach	
Pajdusakova				
Discrete Absorption Components and the Be	H.F. Henrichs	SA085	HJA Heinz	2
Star Phenomenon			Andernach	
Stellar wind variability and magnetic fields in	H.F. Henrichs	SA086	HJA Heinz	168
O stars			Andernach	
Wind Modulation in β Cep Stars	H.F. Henrichs	SA087	HJA Heinz	32
			Andernach	
Getting accurate model independent mea-	R. Monier	SA089	HJA Heinz	40
sures of the A and F stars (A multiwave-			Andernach	
length approach)				
Coordinated IUE and XTE Monitoring of	R. Edelson	SQ090	HJA Heinz	125
Active Galactic Nuclei			Andernach	
The Evolution of Boundary Layers in Herbig	F. Bruhweiler	SA091	HJA Heinz	24
Ae/Be Stars			Andernach	

TITLE	APPLICANTS	PGM-ID	@vilspa.esa	a.es	Alloc.
			CONTACT	RA	(hours)
Multifrequency Observations of the Blazars:	F.C.	SQ092	NLL	Nora	84
Mkn 421 and 3C 273	Bruhweiler		Loiseau		
Short-Term Wind Variability in the Be Star	G.J. Peters	SA093	NLL	Nora	144
ω Ori			Loiseau		
A study of the Circumstellar Material in UX	G.J. Peters	SI094	NLL	Nora	32
Mon, a System with Grazing Incidence Mass			Loiseau		
Transfer					
IUE Observations of Post-AGB stars which	M.	SA095	NLL	Nora	16
show spectrum variations	Parthasarathy		Loiseau		
Study of the long term spectral variation of	R. Viotti	SA097	NLL	Nora	26
AG Carinae and its nebula			Loiseau		
Study of X-ray bright quasars	N. Schartel	SQ098	NLL	Nora	150
			Loiseau		
Violent accretion events in AGN	K. Beuermann	SQ099	NLL	Nora	61
			Loiseau		
Variable CS extinction of HR4049 and	C. Waelkens	SI100	NLL	Nora	40
HD213985			Loiseau		
The UV to soft X-ray "Big Bump" in	L. Piro	SQ101	NLL	Nora	44
Seyfert Galaxies: IUE-SAX simultaneous			Loiseau		
observations					
Physical and thermal structure of the accre-	A.I. Gomez de	SC102	NLL	Nora	40
tion flow onto T Tauri stars	Castro		Loiseau		
UV monitoring of the Recurrent Nova RS	R. Gonzalez-	SI103	NLL	Nora	52
Oph in quiescence	Riestra		Loiseau		
Temperature of White Dwarfs, in Quiescent	B.J.M. Hassall	SI104	NLL	Nora	50
Dwarf Novae			Loiseau		
Flux-limited sample and flare studies of new	G.E. Bromage	SC105	NLL	Nora	72
EUV-selected dMe stars			Loiseau		

TITLE	APPLICANTS	PGM-ID	@vilspa	Alloc.	
			CONTAC	CONTACT RA	
Nonradial Pulsation and Mass Loss in Persei	D.R. Gies	SA106	ESM	Enrique	120
			Solano		
Highly interacting massive binaries	H. Drechsel	SI107	ESM	Enrique	13
			Solano		
The Incidence and Origin of Rotational Mod-	D. Massa	SI108	ESM	Enrique	270
ulation of OB-Star Winds			Solano		
The Chemical Compositions of Three Funda-	G.J. Peters	SA109	ESM	Enrique	28
mental O9-B0 Standards			Solano		
Duplicity among A-F Supergiant Calibrators	D.M. Peterson	SA111	ESM	Enrique	16
			Solano		
IUE Observations of 2 UV-Bright Seyferts	I.M. George	SQ113	ESM	Enrique	16
			Solano		
The UV-Bright Stars of Globular Clusters	W. Landsman	SA114	ESM	Enrique	32
			Solano		
Probing the Circumstellar Grains in Herbig	C.A. Grady	SA115	ESM	Enrique	80
Ae/Be Star Disks: Coordinated IUE and ISO			Solano		
observations					
Linking impulsive and gradual phases of RS	A. Brown	SC116	ESM	Enrique	48
CVn Flares: XTE, EUVE, IUE, and Radio			Solano		
observations of HR1099					
The changing wind structure and eruption	G.	SA117	ESM	Enrique	128
in the Small Magellanic Cloud WR System	Koenigsberger		Solano		
HD5980					
Completion of IUE Jovian studies, first year	T.A.	SS118	ESM	Enrique	512
	Livengood		Solano		
Completion of IUE Jovian studies, second	R. Prange	SS119	ESM	Enrique	320
year			Solano		
Simultaneous UV and TeV Gamma Ray	D.R.H.	SQ120	ESM	Enrique	77.5
Monitoring of the Blazar Markarian 421	Johnson		Solano		

TITLE	APPLICANTS	PGM-ID	@vilspa.esa.es		Alloc.
			CONTACT RA		(hours
Last UV/IUE extinction curve of molecular	M.L. Prevot	SM121	ATH	Armin	12
clouds and cirrus clouds			Theissen		
Do early A stars emit X-rays?	R. Freire	SA123	ATH	Armin	32
	Ferrero		Theissen		
Activity in an EUV-selected sample of fast-	G.E. Bromage	SC124	ATH	Armin	60
rotating late-type stars			Theissen		
Mapping of Chrosmospheric Active Regions	O. Engvold	SC125	ATH	Armin	8
on UX Ari			Theissen		
Outstanding TAUVEX sources	N. Brosch	SA126	ATH	Armin	ToO
			Theissen		
Study of GX 301-2 and other two massive X-	A.J.	SI127	ATH	Armin	15
ray binaries	Castro-Tirado		Theissen		
Comets and Related Objects as Targets of	M.F. A'Hearn	SS129	ATH	Armin	ToO
Opportunity			Theissen		
The secrets of T Pyx, a recurrent Nova with	P.L. Selvelli	SI131	ATH	Armin	64
a long-awaited outburst			Theissen		
Ultraviolet Observations of Field Horizontal-	A.G. D. Philip	SA132	ATH	Armin	16
Branch Stars			Theissen		
Eclipsing Binaries in the Magellanic Clouds:	E.F. Guinan	SA133	ATH	Armin	80
Laboratories for Stellar Structure and			Theissen		
Evolution					
A search for high redshift QSOs unobscured	S. Freidman	SQ134	ATH	Armin	160
by Lyman limit system			Theissen		
Supernova Spectroscopy	G. Sonneborn	SI135	ATH	Armin	ToO
			Theissen		
Target-of-Opportunity Observations of	J. Krautter	SI136	ATH	Armin	ToO
Novae			Theissen		

TITLE	APPLICANTS	PGM-ID	@vilspa.esa.es	Alloc.
			CONTACT RA	(hours
Far UV monitoring of Pleione	V. Doazan	SA138	WJI Ian Skillen	28
Nature of the extraordinary short timescale variations in the wind of V 603 AQL detected	M. Friedjung	SI139	WJI Ian Skillen	8
with HST				
Stellar wind variability in the WC star HD 192103 (WC8)	A.J. Willis	SA140	WJI Ian Skillen	168
Understanding Blazar Continuum Emission	J.E. Pesce	SQ141	WJI Ian Skillen	16
A Systematic Ly- α study of Metal Poor Starburst Galaxies	D. Valls-Gabaud	SE142	WJI Ian Skillen	48
Intense multiwavelength monitoring of Gamma-Ray loud Blazars	G. Ghisellini	SQ144	WJI Ian Skillen	156
Long term spectroscopic monitoring of the LBV HD 5980	P.A. Crowther	SA145	WJI Ian Skillen	24
Stellar wind variability in the WN star HD96548 (WN8)	A.J. Willis	SA146	WJI Ian Skillen	80
Dissipation of Herbig Ae/Be envelopes near the Main Sequence	H.R.E. Tjin A Djie	SA148	WJI Ian Skillen	38
Monitoring of the spectral variations in the circumstellar disk of β Pictoris	M. Deleuil	SM150	WJI Ian Skillen	18
Interstellar gas in the fields of globular clusters	B. Bates	SM151	WJI Ian Skillen	48
Chromosphere and transition region of the X-ray sources	L. Pastori	SC152	WJI Ian Skillen	
Probing the relativistic jet structure of PKS 2155-304 through multiwavelength variability	L. Maraschi	SQ153	WJI Ian Skillen	288
Symbiotic novae	H. Nussbaumer	SI154	WJI Ian Skillen	45
X-ray luminous IRAS galaxies: a link be- tween starbursts and Seyfert Galaxies	J.M. Mas Hesse	SQ155	WJI Ian Skillen	110

TITLE	APPLICANTS	PGM-ID	@vilspa.esa.es	Alloc.
			CONTACT RA	(hours)
An investigation of the blue sequence in the	V. Caloi	SA156	NRS Norbert	120
young LMC cluster NGC 1850			Schartel	
Initial mass function and extinction in blue	J.M. Mass	SE157	NRS Norbert	48
compact galaxies	Hesse		Schartel	
Detection of accretion on Herbig Ae/Fe stars	P.F.C. Blondel	SA158	NRS Norbert	32
			Schartel	
Follow-up study of EUV Transient ALEXIS	D. Roussel	SI160	NRS Norbert	32
J1114+43 (AR UMa)	Dupre		Schartel	
Ultraviolet observations of NGC4151 simul-	G.A. Reichert	SQ161	NRS Norbert	32
taneous with XTE and OSSE			Schartel	
Monitoring Mk509: The origin of the	K.M. Leighly	SQ162	NRS Norbert	36
Reprocessor			Schartel	
UV Variability of the Quasar 3C 273	T. Courvoisier	SQ164	NRS Norbert	50
			Schartel	
Monitoring of Long Period Eclipsing Systems	R.E. Stencel	SC165	NRS Norbert	16
			Schartel	
Probing Coronal Flare Energetics: Coordi-	M. Gagne	SC166	NRS Norbert	24
nated IUE, XTE, and EUVE Observations			Schartel	(
of Nearby Flare Stars				
η Car Complex: the Structure and Out-	D.G. Currie	SM167	NRS Norbert	56
bursts. A Multi-Wavelength Campaign			Schartel	
ToO Observations of Tremendous Outburst	S.B. Howell	SI168	NRS Norbert	64
Amplitude Dwarf Nova (TOADs)			Schartel	
Multiwavelength Accretion Studies of AM	S.B. Howell	SI169	NRS Norbert	37
Herculis Stars			Schartel	
Mapping OH Emission in the Magnetosphere	M.C. Festou	SS170	NRS Norbert	56
of Saturn			Schartel	

Teleworking for IUE

M. Barylak

ESA IUE Observatory

Introduction

Over 10 years ago, we started to have our first modem connections and remote queries to the IUE Merged Log of Observations were made possible. Today, the modem speed is more than tenfold then the one used 10 years ago and "better" communication protocols²¹ support almost simultaneously telnet, FTP, e-mail, HTTP, etc. This, in fact, gives rise to the same questions we had 10 years ago – e.g. would it be possible to work at/from home?

Informal arrangements were made then and today - now the IUE project has one **formal teleworker**. His respond to what he thinks about teleworking was:

... working at home results in me spending a minimum of 14hrs.in front of the screen per day (no breaks like going to & from VILSPA etc.) ...

I could rabbit on for pages how, due to teleworking, poverty stares me in the eye...

In passing I hear that after a lot of noise implying that teleworking the greatest thing since the sliced bread, and how it's going to change working patterns drastically, the FT^{22} says the expected stampede into it hasn't materialised. Furthermore, some companies who embraced this new wave are finding it has more limitations than foreseen.

Telework defined

Since various years, the developments in information and telecommunication technology have and are inducing profound changes in our society which experts call the "Digital Revolution" or the beginning of an "Information Society". This revolution will modify the way we organize work as much as did the "Industrial Revolution" back in the XVIII and XIX centuries.

In an Information Society, the majority of tasks is not related with physical objects but with information processing. Nowadays and due to the "communication super-highways", information is location independent. This location independence is the key factor that we can tele-work.

Experts say, that "tele-work, working at-a-distance, is enabled by telecommunications, but fundamentally it is a management and organizational issue inspired by the perception of the many advantages and cost savings in moving work to people rather than people to work." (Andrew Page and David Brain, 1992).

A formal definition of telework might read (Gray et al., 1994):

²¹e.g. the Point-to-Point Protocol (PPP) which enables TCP/IP connections over serial point-to-point links. ²²Financial Times

"Teleworking or "telecommuting"²³ is a flexible way of organizing work without the need of the physical present of the worker at his work place during important parts of his working hours. The professional activity of teleworking implies the frequent use of electronic information processing techniques and the extensive use of telecommunication equipment (e.g. telephone, answering machine, fax, networked computers, and other advanced telecomms services such as $ISDN^{24}$, voice mail, audio and video conferencing, call diversion, mobile telephony, etc...)"

What are the **advantages** of telework?

- For the company:
 - cost savings (subcontracting entire operations to areas of lower costs and more dedicated or more reliable workers),
 - improving staff retention,
 - sourcing of high quality staff (without requiring them to move house),
 - savings on office (and parking) space,
 - savings on the increasing costs of commuting and business travel,
 - $\circ\,$ more effective use of time and increasing productivity
- For the employees:
 - more flexible working arrangements,
 - higher working morale (teleworker's morale and performance improves since they manage their own time, arrange their own schedules, and tend to work, not by the clock, but rather until the job gets done)
- For the general public:
 - reduction in pollution levels
 - \circ lower energy consumption
 - reduction of traffic congestions

Telework in EUROPE

Many studies on telework have been conducted in Europe,²⁵ where the focus has mainly been on employment, organizational or social aspects or on the potential of telework to address specific issues such as rural re-development.

In the USA, mainly environmental and traffic demand management aspects of telework have been considered, and a separate focus placed upon the economic significance of networking

²³coined by Jack Nilles of JALA International, considered to be the father of teleworking

²⁴Integrated Services Digital Network

²⁵see, e.g. http://www.agora.stm.it/ectf/tw95indx.html

and teletrade. Developing countries and some European regions have focused on telework as a means to attract work into their local economies.

The **Bangemann** report *"Europe and the global information society"*, is a summary of recommendations and an action plan, which was unanimously adopted by the European Council at its meeting in Corfu. This report lists the following ten applications:

- 1. TELEWORKING more jobs, new jobs, for a mobile society
- 2. DISTANCE LEARNING life long learning for a changing society
- 3. A NETWORK for Universities and Research Centres networking Europe's brain power
- 4. TELEMATIC SERVICES for SMEs²⁶
- 5. ROAD TRAFFIC MANAGEMENT electronic roads for better quality of life
- 6. AIR TRAFFIC CONTROL an electronic airway for Europe
- 7. HEALTHCARE NETWORKS less costly and more effective healthcare systems for Europe's citizens
- 8. ELECTRONIC TENDERING more effective administration at lower cost
- 9. TRANS-EUROPEAN PUBLIC ADMINISTRATION NETWORK
- 10. CITY INFORMATION HIGHWAYS bringing the information society into the home

The aim of the teleworking recommendation is to have 2% of "white collar workers" by the end of 1996 and 10 million teleworking jobs by the year 2000.

Conclusions

The IUE projects counts with one formal teleworker and many informal ones (- aren't you yourself a teleworker when you collaborate with colleagues over networked computers, make queries to remote observing logs or copy science data to your home/institute computer ?).

Maybe in the not too far future we all will be formal teleworkers and maybe we as humans will someday live in a "Society of Knowledge" evolved from the up-coming "Information Society". And how is life going to be when this "Society of Knowledge" turns into a "Society of Wisdom",... but this may be just two fatal steps ahead of reality.

References

- Gray, Mike: Hodson, Noel: Gordon, Gil: 1994, *Teleworking explained*, Edited by John Wiley & Son Ldt, England.
- Page, Andrew; Brain, David: 1992, *Teleworking: A Common Sense Management Tool*, European Community Telework Forum (ECTF).

²⁶Small and Medium Enterprises